Noninvasive Assessments of Mitochondrial Capacity in People with Mitochondrial Myopathies
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
NIRS Measurements
- Specific muscle endurance
- Muscle-specific endurance training
- Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Barca, E.; Long, Y.; Cooley, V.; Schoenaker, R.; Emmanuele, V.; DiMauro, S.; Cohen, B.H.; Karaa, A.; Vladutiu, G.D.; Haas, R.; et al. Mitochondrial Diseases in North America: An Analysis of the Namdc Registry. Neurol. Genet. 2020, 6, e402. [Google Scholar] [CrossRef] [PubMed]
- Klopstock, T.; Priglinger, C.; Yilmaz, A.; Kornblum, C.; Distelmaier, F.; Prokisch, H. Mitochondrial Disorders. Dtsch. Arztebl. Int. 2021, 118, 741–748. [Google Scholar] [CrossRef] [PubMed]
- Chinnery, P.F. Mitochondrial Disorders Overview. In Genereviews; Pagon, R.A., Adam, M.P., Ardinger, H.H., Wallace, S.E., Amemiya, A., Bean, L.J., Bird, T.D., Dolan, C.R., Fong, C.T., Smith, R.J., et al., Eds.; University of Washington: Seattle, WA, USA, 1993. [Google Scholar]
- Parikh, S.; Goldstein, A.; Koenig, M.K.; Scaglia, F.; Enns, G.M.; Saneto, R.; Anselm, I.; Cohen, B.H.; Falk, M.J.; Greene, C.; et al. Diagnosis and Management of Mitochondrial Disease: A Consensus Statement from the Mitochondrial Medicine Society. Genet. Med. 2015, 17, 689–701. [Google Scholar] [CrossRef] [PubMed]
- Tarnopolsky, M.A.; Raha, S. Mitochondrial Myopathies: Diagnosis, Exercise Intolerance, and Treatment Options. Med. Sci. Sports Exerc. 2005, 37, 2086–2093. [Google Scholar] [CrossRef]
- Lokken, N.; Skriver, S.V.; Khawajazada, T.; Storgaard, J.H.; Vissing, J. Plasma Lactate Responses During and after Submaximal Handgrip Exercise Are Not Diagnostically Helpful in Mitochondrial Myopathy. Mitochondrion 2021, 60, 21–26. [Google Scholar] [CrossRef]
- Jeppesen, T.D.; Quistorff, B.; Wibrand, F.; Vissing, J. 31p-Mrs of Skeletal Muscle Is Not a Sensitive Diagnostic Test for Mitochondrial Myopathy. J. Neurol. 2007, 254, 29–37. [Google Scholar] [CrossRef]
- Barstow, T.J. Corp: Understanding near Infrared Spectroscopy (Nirs) and Its Application to Skeletal Muscle Research. J. Appl. Physiol. 2019, 126, 1360–1376. [Google Scholar] [CrossRef]
- Hamaoka, T.; McCully, K.K.; Quaresima, V.; Yamamoto, K.; Chance, B. Near-Infrared Spectroscopy/Imaging for Monitoring Muscle Oxygenation and Oxidative Metabolism in Healthy and Diseased Humans. J. Biomed. Opt. 2007, 12, 062105. [Google Scholar] [CrossRef]
- Ferrari, M.; Muthalib, M.; Quaresima, V. The Use of near-Infrared Spectroscopy in Understanding Skeletal Muscle Physiology: Recent Developments. Philos. Transact. A Math. Phys. Eng. Sci. 2011, 369, 4577–4590. [Google Scholar] [CrossRef]
- Grassi, B.; Marzorati, M.; Lanfranconi, F.; Ferri, A.; Longaretti, M.; Stucchi, A.; Vago, P.; Marconi, C.; Morandi, L. Impaired Oxygen Extraction in Metabolic Myopathies: Detection and Quantification by near-Infrared Spectroscopy. Muscle Nerve 2007, 35, 510–520. [Google Scholar] [CrossRef]
- Bank, W.; Chance, B. An Oxidative Defect in Metabolic Myopathies: Diagnosis by Noninvasive Tissue Oximetry. Ann. Neurol. 1994, 36, 830–837. [Google Scholar] [CrossRef] [PubMed]
- Toft, A.D.; Jensen, L.B.; Bruunsgaard, H.; Ibfelt, T.; Halkjaer-Kristensen, J.; Febbraio, M.; Pedersen, B.K. Cytokine Response to Eccentric Exercise in Young and Elderly Humans. Am. J. Physiol. Cell Physiol. 2002, 283, C289–C295. [Google Scholar] [CrossRef] [PubMed]
- Wredenberg, A.; Wibom, R.; Wilhelmsson, H.; Graff, C.; Wiener, H.H.; Burden, S.J.; Oldfors, A.; Westerblad, H.; Larsson, N.G. Increased Mitochondrial Mass in Mitochondrial Myopathy Mice. Proc. Natl. Acad. Sci. USA 2002, 99, 15066–15071. [Google Scholar] [CrossRef]
- Cade, W.T.; Reeds, D.N.; Peterson, L.R.; Bohnert, K.L.; Tinius, R.A.; Benni, P.B.; Byrne, B.J.; Taylor, C.L. Endurance Exercise Training in Young Adults with Barth Syndrome: A Pilot Study. JIMD Rep. 2017, 32, 15–24. [Google Scholar]
- Jeppesen, T.D.; Schwartz, M.; Olsen, D.B.; Wibrand, F.; Krag, T.; Duno, M.; Hauerslev, S.; Vissing, J. Aerobic Training Is Safe and Improves Exercise Capacity in Patients with Mitochondrial Myopathy. Brain 2006, 129 Pt 12, 3402–3412. [Google Scholar] [CrossRef]
- Taivassalo, T.; Haller, R.G. Exercise and Training in Mitochondrial Myopathies. Med. Sci. Sports Exerc. 2005, 37, 2094–2101. [Google Scholar] [CrossRef] [PubMed]
- Ryan, T.E.; Erickson, M.L.; Brizendine, J.T.; Young, H.J.; McCully, K.K. Noninvasive Evaluation of Skeletal Muscle Mitochondrial Capacity with near-Infrared Spectroscopy: Correcting for Blood Volume Changes. J. Appl. Physiol. 2012, 113, 175–183. [Google Scholar] [CrossRef] [PubMed]
- Hamaoka, T.; Iwane, H.; Shimomitsu, T.; Katsumura, T.; Murase, N.; Nishio, S.; Osada, T.; Kurosawa, Y.; Chance, B. Noninvasive Measures of Oxidative Metabolism on Working Human Muscles by near-Infrared Spectroscopy. J. Appl. Physiol. 1996, 81, 1410–1417. [Google Scholar] [CrossRef]
- Willingham, T.B.; McCully, K.K. In Vivo Assessment of Mitochondrial Dysfunction in Clinical Populations Using near-Infrared Spectroscopy. Front. Physiol. 2017, 8, 689. [Google Scholar] [CrossRef]
- Chance, B.; Bank, W. Genetic Disease of Mitochondrial Function Evaluated by Nmr and Nir Spectroscopy of Skeletal Tissue. Biochim. Biophys. Acta 1995, 1271, 7–14. [Google Scholar] [CrossRef]
- Taylor, D.J.; Kemp, G.J.; Radda, G.K. Bioenergetics of Skeletal Muscle in Mitochondrial Myopathy. J. Neurol. Sci. 1994, 127, 198–206. [Google Scholar] [CrossRef] [PubMed]
- Argov, Z.; Bank, W.J.; Maris, J.; Peterson, P.; Chance, B. Bioenergetic Heterogeneity of Human Mitochondrial Myopathies: Phosphorus Magnetic Resonance Spectroscopy Study. Neurology 1987, 37, 257–262. [Google Scholar] [CrossRef] [PubMed]
- Jensen, T.D.; Kazemi-Esfarjani, P.; Skomorowska, E.; Vissing, J. A Forearm Exercise Screening Test for Mitochondrial Myopathy. Neurology 2002, 58, 1533–1538. [Google Scholar] [CrossRef] [PubMed]
- Bank, W.; Argov, Z.; Leigh, J.; Chance, B. The Value of 31P NMR in the Diagnosis and Monitoring the Course of Human Myopathies. Ann. N. Y. Acad. Sci. 1987, 508, 448–450. [Google Scholar] [CrossRef]
- Aydin, J.; Andersson, D.C.; Hanninen, S.L.; Wredenberg, A.; Tavi, P.; Park, C.B.; Larsson, N.G.; Bruton, J.D.; Westerblad, H. Increased Mitochondrial Ca2+ and Decreased Sarcoplasmic Reticulum Ca2+ in Mitochondrial Myopathy. Hum. Mol. Genet. 2009, 18, 278–288. [Google Scholar] [CrossRef]
- Parikh, S.; Goldstein, A.; Karaa, A.; Koenig, M.K.; Anselm, I.; Brunel-Guitton, C.; Christodoulou, J.; Cohen, B.H.; Dimmock, D.; Enns, G.M.; et al. Patient Care Standards for Primary Mitochondrial Disease: A Consensus Statement from the Mitochondrial Medicine Society. Genet. Med. 2017, 19, 1380–1397. [Google Scholar] [CrossRef]
- Willingham, T.B.; McCully, K.K. Assessment of Muscle Fatigue During Twitch Electrical Stimulation Using Accelerometer-Based Mechanomyography. Adv. Skelet. Muscle Funct. Assess. 2017, 1, 14–20. [Google Scholar]
- Ryan, T.E.; Southern, W.M.; Brizendine, J.T.; McCully, K.K. Activity-Induced Changes in Skeletal Muscle Metabolism Measured with Optical Spectroscopy. Med. Sci. Sports Exerc. 2013, 45, 2346–2352. [Google Scholar] [CrossRef]
Height | Weight | BMI | ATT | IPAQ | ||
---|---|---|---|---|---|---|
m | km | kg/m2 | cm | MET-min/wk | ||
MITOs | Mean | 1.71 | 64.9 | 22.3 | 0.55 | 4071 |
SD | 0.11 | 12.4 | 3.8 | 0.21 | 4106 | |
Controls | Mean | 1.69 | 62.3 | 21.9 | 0.51 | 3369 |
SD | 0.08 | 7.3 | 2.2 | 0.13 | 2022 |
Week | Training Session | Training | Comments |
---|---|---|---|
1 | #4 | 15 min, 3 min rest, 15 min | “Muscle was starting to fatigue at 13/14 min. Second 15 min my arm felt pretty fatigued from the start. Towards the end of the reps were getting jerky. The ‘recovery’ period is still noticeable 15 min later. Muscle feels tired elbow and wrist a little achy.” |
2 | #8 | 15 min, 3–5 min rest, 15 min Weight was 1.82 kg 1 contraction every 5 s | “First 15, it seems later in the day I have more control in reps Not shaky. No pain, 0. I was feeling fatigue about 13 min in. When I stopped for a short break I again feel like my arm is weak. Recovery 30 s although I feel unsteady sensation. Second 15, I am noticing a better rep since I began this study. The range of rep is considerably wider. Just the thought of this as I sat lifting up and down up and down. No pain, 0, Weakish when finished.” |
3 | #15 | 30 min no break Weight was 1.82 kg 1 contraction every 4 s | “I did a 30 min session with no break. I started to feel fatigued at about 23 min. Pain level 0. No shakiness or weak feeling.” |
4 | #18 Final session | 30 min no break Weight was 1.82 kg 1 contraction every 4 s | “Very interesting. First of all, I really did not experience fatigue. I felt like I was exercising, but not needing a break. I stopped the session and felt completely recovered immediately.” |
ID | Age | Sex | BMI | ATT | IPAQ | Mitochondrial Diagnosis | |||
---|---|---|---|---|---|---|---|---|---|
Syndrome | Abnormal | Biochemical | Mitochondrial | ||||||
Biopsy | Abnormalities | DNA Mutation | |||||||
1 | 59 | F | 23.7 | 0.40 | 378 | MM | Yes; complex I defect | None | None |
2 | 34 | F | 16.1 | 0.44 | 3178 | MELAS | Not conducted | None | mtDNA 3243 A>G mutation |
3 | 44 | F | 22.9 | 0.68 | 522 | MM | Yes, RRF complex I defect | Elevated CPK | mtDNA deletion in muscle |
4 | 46 | F | 27.5 | 0.80 | 997 | MM | Yes; RRF no enzymology | Elevated CPK | mtDNA deletion in muscle |
5 | 24 | M | 24.2 | 0.35 | 8106 | Mito Cytopathy | Yes; complex I defect | Elevated lactate and CPK | None to date |
6 | 37 | M | 18.7 | 0.36 | 4291 | Leigh Syndrome | Yes; signs of mito proliferation | Elevated lactate and CPK | mtDNA 8993 T>C mutation |
7 | 47 | F | 23.1 | 0.80 | 11025 | KSS | Yes; complex I defect | Elevated lactate | mtDNA deletion |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
McCully, K.K.; Bossie, H.M.; Kendall, F.D. Noninvasive Assessments of Mitochondrial Capacity in People with Mitochondrial Myopathies. Muscles 2024, 3, 393-403. https://doi.org/10.3390/muscles3040033
McCully KK, Bossie HM, Kendall FD. Noninvasive Assessments of Mitochondrial Capacity in People with Mitochondrial Myopathies. Muscles. 2024; 3(4):393-403. https://doi.org/10.3390/muscles3040033
Chicago/Turabian StyleMcCully, Kevin K., Hannah M. Bossie, and Fran D. Kendall. 2024. "Noninvasive Assessments of Mitochondrial Capacity in People with Mitochondrial Myopathies" Muscles 3, no. 4: 393-403. https://doi.org/10.3390/muscles3040033
APA StyleMcCully, K. K., Bossie, H. M., & Kendall, F. D. (2024). Noninvasive Assessments of Mitochondrial Capacity in People with Mitochondrial Myopathies. Muscles, 3(4), 393-403. https://doi.org/10.3390/muscles3040033