Purification, Characterization and Antifungal Activity of the Aspergillus niveus Chitinase Produced Using Shrimp Shells
Abstract
:1. Introduction
2. Materials and Methods
2.1. Microorganism and Culture Conditions
2.2. Obtainment of the Enzymatic Extract
2.3. Assessment of Chitinase Activity
2.4. Quantification of the Protein and Carbohydrates
2.5. Purification
2.6. Electrophoresis
2.7. Influence of Temperature and pH on Chitinase Activity
2.8. Influence of Different Compounds on Chitinase Activity
2.9. Assessment of Kinetic Parameters
2.10. Evaluation of Antifungal Activity
3. Results
3.1. Enzyme Production
3.2. Purification and Molecular Mass Estimation
3.3. Influence of Temperature and pH on Enzyme Activity
3.4. Influence of Different Compounds on Enzyme Activity
3.5. Kinetic Parameters
3.6. Antifungal Activity
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Loc, N.H.; Huy, N.D.; Quang, H.T.; Lan, T.T.; Ha, T.T.T. Characterization and antifungal activity of extracellular chitinase from a biocontrol fungus Trichoderma asperellum PQ34. Mycology 2019, 11, 38–48. [Google Scholar] [CrossRef] [PubMed]
- Kaya, M.; Mujtaba, M.; Ehrlich, H.; Salaberria, A.M.; Baran, T.; Amemiya, C.T.; Roberta, G.; Lalehan, A.; Idris, S.; Labidi, J. On chemistry of γ-chitin. Carboh. Polym. 2017, 176, 177–186. [Google Scholar] [CrossRef] [PubMed]
- Rajput, M.; Kumar, M.; Pareek, N. Myco-chitinases as versatile biocatalysts for translation of coastal residual resources to eco-competent chito-bioactives. Fungal Biol. Rev. 2022, 41, 62–69. [Google Scholar] [CrossRef]
- Van Long, N.N.; Joly, C.; Dantigny, P. Active packaging with antifungal activities. Int. J. Food Microbiol. 2016, 220, 73–90. [Google Scholar] [CrossRef] [PubMed]
- Júnior, J.E.M.; Grangeiro, T.B.; Nogueira, N.A.P. Chitinases as antibacterial proteins: A systematic review. J. Young Pharm. 2018, 10, 144–148. [Google Scholar]
- Kumar, M.; Brar, A.; Vivekanand, V.; Pareek, N. Process optimization, purification and characterization of a novel acidic, thermostable chitinase from Humicola grisea. Int. J. Biol. Macromol. 2018, 116, 931–938. [Google Scholar] [CrossRef]
- Patil, N.S.; Jadhav, J.P. Enzymatic production of N-acetyl-D-glucosamine by solid state fermentation of chitinase by Penicillium ochrochloron MTCC 517 using agricultural residues. Int. Biodeter. Biodegrad. 2014, 91, 9–17. [Google Scholar] [CrossRef]
- Thadathil, N.; Kuttappan, A.K.P.; Vallabaipatel, E.; Kandasamy, M.; Velappan, S.P. Statistical optimization of solid-state fermentation conditions for the enhanced production of thermoactive chitinases by mesophilic soil fungi using response surface methodology and their application in the reclamation of shrimp processing by-products. Ann. Microbiol. 2014, 64, 671–681. [Google Scholar] [CrossRef]
- Fleuri, L.F.; Sato, H.H.; Garcia, J.S.; Franco, T.T. Elucidação parcial da estrutura de aminogluconooligossacarídeos (AGO’s) produzidos enzimaticamente. Polímeros Ciência Tecnol. 2009, 19, 111–116. [Google Scholar] [CrossRef]
- Dahiya, N.; Tewari, R.; Hoondal, G.S. Biotechnological aspects of chitinolytic enzymes: A review. Appl. Microbiol. Biotechnol. 2006, 71, 773–782. [Google Scholar] [CrossRef]
- Hill, T.W.; Kafer, E. Improved protocols for Aspergillus minimal medium: Trace element and minimal medium salt stock solutions. Fungal Gen. Rep. 2001, 48, 20–21. [Google Scholar] [CrossRef]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef] [PubMed]
- Dubois, M.; Gilles, K.A.; Hamilton, J.K.; Rebers, P.A.; Smith, F. Colorimetric method for determination of sugars and related substances. Anal. Chem. 1956, 28, 350–356. [Google Scholar] [CrossRef]
- Laemmli, U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 1970, 227, 680–685. [Google Scholar] [CrossRef] [PubMed]
- Candiano, G.; Bruschi, M.; Musante, L.; Santucci, L.; Ghiggeri, G.M.; Carnemolla, B.; Orecchia, P.; Zardi, L.; Righetti, P.G. Blue silver: A very sensitive colloidal Coomassie G-250 staining for proteome analysis. Electrophoresis 2004, 25, 1327–1333. [Google Scholar] [CrossRef]
- Leone, F.A.; Baranauskas, J.A.; Furriel, R.P.M.; Borin, I.A. SigrafW: An easy-to-use program for fitting enzyme kinetic data. Biochem. Mol. Biol. Educ. 2005, 33, 399–403. [Google Scholar] [CrossRef] [PubMed]
- Mania, D.; Hilpert, K.; Ruden, S.; Fischer, R.; Takeshita, N. Screening for antifungal peptides and their modes of action in Aspergillus nidulans. Appl. Environ. Microbiol. 2010, 76, 7102–7108. [Google Scholar] [CrossRef] [PubMed]
- Rathore, A.S.; Gupta, R.D. Chitinases from bacteria to human: Properties, application, and future perspectives. Enzym. Res. 2015, 2015, 791907. [Google Scholar] [CrossRef]
- Alves, T.B.; Ornela, P.H.O.; Oliveira, A.H.C.; Jorge, J.A.; Guimarães, L.H.S. Production and characterization of a thermostable antifungal chitinase secreted by the filamentous fungus Aspergillus niveus under submerged fermentation. 3 Biotech 2018, 8, 369. [Google Scholar] [CrossRef]
- Brzezinska, M.S.; Jankiewicz, U. Production of chitinase by Aspergillus niger LOCK 62 and its potential role in the biological control. Curr. Microbiol. 2012, 65, 666–672. [Google Scholar] [CrossRef]
- Akpuaka, M.U.; Esimai, B.G. Isolation and characterization of chitin and chitosan from the biomass of Nigerian shrimp shells and conversion to glucosamine. Int. J. Progress. Res. Sci. Eng. 2021, 2, 181–187. [Google Scholar]
- Liu, H.; Cheng, M.; Zhao, S.; Lin, C.; Song, J.; Yang, Q. ATP-binding cassette transporter regulates N, N′-diacetylchitobiose transportation and chitinase production in Trichoderma asperellum T4. Int. J. Mol. Sci. 2019, 20, 2412. [Google Scholar] [CrossRef] [PubMed]
- Sheikh, I.U.; Banday, M.T.; Baba, I.A.; Adil, S.; Nissa, S.S.; Zaffer, B.; Bulbul, K.H. Utilization of silkworm pupae meal as an alternative source of protein in the diet of livestock and poultry: A review. J. Entomol. Zool. Stud. 2018, 6, 1010–1016. [Google Scholar]
- Farag, A.M.; Abd-Elnabey, H.M.; Ibrahim, H.A.H.; El-Shenawy, M. Purification, characterization and antimicrobial activity of chitinase from marine-derived Aspergillus terreus. Egypt. J. Aquat. Res. 2016, 42, 185–192. [Google Scholar] [CrossRef]
- Abu-Tahon, M.A.; Isaac, G.S. Anticancer and antifungal efficiencies of purified chitinase produced from Trichoderma viride under submerged fermentation. J. Gen. Appl. Microbiol. 2020, 66, 32–40. [Google Scholar] [CrossRef] [PubMed]
- Beltagy, E.A.; Rawway, M.; Abdul-Raouf, U.M.; Elshenawy, M.A.; Kelany, M.S. Purification and characterization of thermo halophilic chitinase producing by halophilic Aspergillus flavus isolated from Suez Gulf. Egypt. J. Aquat. Res. 2018, 44, 227–232. [Google Scholar] [CrossRef]
- Parashar, S.K.; Srivastava, S.K.; Garlapati, V.K.; Dutta, N.N. Production of microbial enzyme triacylglycerol acylhydrolases by Aspergillus sydowii JPG01 in submerged fermentation using agro-residues. Asian J. Microbiol. Biotechnol. Environ. Sci. 2019, 21, 1076–1079. [Google Scholar]
- Snyman, C.; Theron, L.W.; Divol, B. Understanding the regulation of extracellular protease gene expression in fungi: A key step towards their biotechnological applications. Appl. Microbiol. Biotechnol. 2019, 103, 5517–5532. [Google Scholar] [CrossRef] [PubMed]
- Atalla, S.M.; Gamal, N.G.E.; Awad, H.M. Chitinase of marine Penicillium chrysogenum MH745129: Isolation, identification, production and characterization as controller for citrus fruits postharvest pathogens. Jordan J. Biol. Sci. 2020, 13, 19–28. [Google Scholar]
- Subramaniam, V.; Das, S.; Sandeep, K. Production and partial characterization of chitinase and glucanse produced by riboflavin overproducer Eremothecium Ashbyii. In Proceedings of the International Conference on Drug Discovery (ICDD), Hyderabad, India, 29 February–2 March 2020. [Google Scholar]
- Jiang, Z.; Hu, S.; Ma, J.; Liu, Y.; Qiao, Z.; Yan, Q.; Gao, Y.; Yang, S. Crystal structure of a chitinase (RmChiA) from the thermophilic fungus Rhizomucor miehei with a real active site tunnel. Biochim. Biophys. Acta 2021, 1869, 140709. [Google Scholar] [CrossRef]
- Bhagwat, P.; Amobonye, A.; Singh, S.; Pillai, S. A comparative analysis of GH18 chitinases and their isoforms from Beauveria bassiana: An in-silico approach. Process Biochem. 2021, 100, 207–216. [Google Scholar] [CrossRef]
- Menghiu, G.; Ostafe, V.; Prodanovic, R.; Fischer, R.; Ostafe, R. Biochemical characterization of chitinase A from Bacillus licheniformis DSM8785 expressed in Pichia pastoris KM71H. Prot. Express Purif. 2019, 154, 25–32. [Google Scholar] [CrossRef] [PubMed]
- Kabir, M.F.; Ju, L.-K. On optimization of enzymatic processes: Temperature effects on activity and long-term deactivation kinetics. Process Biochem. 2023, 130, 734–746. [Google Scholar] [CrossRef]
- Marin, F.R.; Lopes-Assad, M.L.; Assad, E.D.; Vian, C.E.; Santos, M.C. Sugarcane crop efficiency in two growing seasons in São Paulo State, Brazil. Pesqui. Agropecuária Bras. 2008, 43, 1449–1455. [Google Scholar] [CrossRef]
- Pommer, V.; Rother, P.D.H.; Rasbold, L.M.; Silva, J.L.; Maller, A.; Simão, R.C.G.; Kadowaki, M.K. A novel Thermothelomyces heterothallicus PA2S4T fungus isolated from the soil induces chitinase production using orange peel flour. Sci. Plena 2021, 17, 091501. [Google Scholar] [CrossRef]
- Wang, A.; Robertson, A.D.; Bolen, D. Effects of a naturally occurring compatible osmolyte on the internal dynamics of ribonuclease A. Biochemistry 1995, 34, 15096–15104. [Google Scholar] [CrossRef] [PubMed]
- Bowman, S.M.; Free, S.J. The structure and synthesis of the fungal cell wall. Bioassays 2006, 28, 799–808. [Google Scholar] [CrossRef] [PubMed]
- Gow, N.A.R.; Latge, J.-P.; Munro, C.A. The fungal cell wall: Structure, biosynthesis, and function. Microbiol. Spectr. 2017, 5, FUNK-0035-2016. [Google Scholar] [CrossRef] [PubMed]
- Lewis, R.E. Current concepts in antifungal pharmacology. Mayo Clin. Proc. 2011, 86, 805–817. [Google Scholar] [CrossRef]
- Mazrou, Y.S.; Makhlouf, A.H.; Hassan, M.M.; Baazeem, A.; Hamad, A.A.; Farid, M.M. Influence of chitinase production on the antagonistic activity of Trichoderma against plant-pathogenic fungi. J. Environ. Biol. 2020, 41, 1501–1510. [Google Scholar] [CrossRef]
Step | Volume (mL) | Activity (Total U) | Protein (Total mg) | Specific Activity (U/mg prot) | Yield (%) | Purification Factor (Fold) |
---|---|---|---|---|---|---|
Crude filtrate | 100 | 140 ± 25 | 128.1 ± 10 | 1.1 ± 0.3 | 100 | 1 |
Sephadex G-100 | 13 | 20.2 ± 3.4 | 0.45 ± 0.05 | 44.3 ± 2.9 | 14.3 ± 0.1 | 40.3 ± 5.9 |
Compounds | Relative Activity (%) | Compounds | Relative Activity (%) |
---|---|---|---|
Salts (1 mmol L−1) | NH4Cl | 72.1 ± 0.3 | |
AgNO3 | 74.0 ± 0.1 | NH4NO3 | 77.5 ± 0.4 |
BaCl2 | 78.6 ± 0.2 | Zn(NO3)2 | 73.6 ± 0.3 |
CaCl2 | 68.4 ± 0.1 | ZnSO4 | 88.7 ± 0.2 |
CoCl2 | 86.1 ± 0.6 | Solvents (1%, v/v) | |
CuCl2 | 73.6 ± 0.1 | Acetone | 38.3 ± 0.1 |
CuSO4 | 86.0 ± 0.3 | Acetonitrile | 38.9 ± 0.1 |
FeCl3 | 74.5 ± 0.2 | Butanol | 29.2 ± 0.1 |
FeSO4 | 86.9 ± 0.5 | Ethanol | 35.9 ± 0.2 |
KCl | 98.0 ± 0.5 | Isopropanol | 32.2 ± 0.2 |
KH2PO4 | 75.7 ± 0.3 | Methanol | 35.3 ± 0.4 |
MgCl2 | 79.3 ± 0.3 | Detergents (0.05%, v/v) | |
MgSO4 | 85.6 ± 0.1 | Tween-20 | 96.1 ± 0.2 |
MnCl2 | 80.1 ± 0.2 | Triton X-100 | 74.4 ± 0.1 |
MnSO4 | 86.0 ± 0.4 | SDS (5 mmol L−1) | 93.3 ± 0.2 |
NaBr | 82.9 ± 0.3 | Others (5 mmol L−1) | |
NaCl | 85.0 ± 0.3 | EDTA | 88.7 ± 0.3 |
NaNO3 | 82.9 ± 0.3 | β-mercaptoethanol | 92.3 ± 0.2 |
Fungal Strains | MIC (μg mL−1) | ||
---|---|---|---|
Chitinase | Amphotericin | Fluconazole | |
Aspergillus flavus | 44.7 | 5 | 20 |
Aspergillus fumigatus | 89.4 | 10 | 20 |
Aspergillus niger | 5.6 | 0.6 | 1.3 |
Aspergillus phoenicis | 89.4 | 10 | 40 |
C. herbarum | 11.2 | 10 | 20 |
Fusarium lateritium | 22.4 | 10 | 20 |
Fusarium verticillioides | 11.2 | 1.3 | 2.5 |
Paecilomyces variotii | 89.4 | 5 | 5 |
Penicillium purpurogenum | 11.2 | 40 | 40 |
Trichoderma harzianum | 22.4 | 10 | 40 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ornela, P.H.; Guimarães, L.H.S. Purification, Characterization and Antifungal Activity of the Aspergillus niveus Chitinase Produced Using Shrimp Shells. Appl. Biosci. 2024, 3, 220-232. https://doi.org/10.3390/applbiosci3020015
Ornela PH, Guimarães LHS. Purification, Characterization and Antifungal Activity of the Aspergillus niveus Chitinase Produced Using Shrimp Shells. Applied Biosciences. 2024; 3(2):220-232. https://doi.org/10.3390/applbiosci3020015
Chicago/Turabian StyleOrnela, Pedro Henrique, and Luis Henrique Souza Guimarães. 2024. "Purification, Characterization and Antifungal Activity of the Aspergillus niveus Chitinase Produced Using Shrimp Shells" Applied Biosciences 3, no. 2: 220-232. https://doi.org/10.3390/applbiosci3020015
APA StyleOrnela, P. H., & Guimarães, L. H. S. (2024). Purification, Characterization and Antifungal Activity of the Aspergillus niveus Chitinase Produced Using Shrimp Shells. Applied Biosciences, 3(2), 220-232. https://doi.org/10.3390/applbiosci3020015