Occurrence of Microplastics in the Sediments of an Irish River and Their Effects on Nematode Survival and Biodiversity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Effects of MPs Contamination on Nematodes
2.1.1. Microplastic Samples’ Preparation
2.1.2. Nematode Cultures
Culturing and Maintenance of Caenorhabditis elegans
Seeding of NGM Plates and Nematode Medium Preparation
Culturing and Maintenance of Entomopathogenic Nematodes
2.1.3. Caenorhabditis elegans Age Synchronisation Using Alkaline Hypochlorite Solution (Bleaching)
2.1.4. Toxicity Bioassay of EPNs and C. elegans Using Microplastic Pollutants
2.1.5. Statistical Analysis
2.2. Effects of MPs on Nematode Communities in Irish River Sediments
2.2.1. Sediment Sampling and Processing
2.2.2. 18S rDNA Gene Amplification and DNA Sequencing
2.2.3. Analysis of the DNA Sequencing Data
3. Results
3.1. Effects of Contaminated MP on Nematodes
3.1.1. Interactions Between Microplastics and Organic Pollutants
3.1.2. Toxicity Bioassays of MPs on Nematodes
3.2. Characteristics of DNA Sequences from Sediment Nematodes
3.2.1. Sediment Nematode Community Composition
3.2.2. Nematode Alpha and Beta Diversity
3.2.3. Trophic Guilds and c-p Scale Association Across Locations
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- He, D.; Luo, Y.; Lu, S.; Liu, M.; Song, Y.; Lei, L. Microplastics in soils: Analytical methods, pollution characteristics and ecological risks. TrAC—Trends Anal. Chem. 2018, 109, 163–172. [Google Scholar] [CrossRef]
- Yang, Y.; Liu, W.; Zhang, Z.; Grossart, H.P.; Gadd, G.M. Microplastics provide new microbial niches in aquatic environments. Appl. Microbiol. Biotechnol. 2020, 104, 6501–6511. [Google Scholar] [CrossRef]
- Talbot, R.; Chang, H. Microplastics in freshwater: A global review of factors affecting spatial and temporal variations. Environ. Pollut. 2022, 292, 118393. [Google Scholar] [CrossRef]
- Wang, Z.; Li, W.; Yang, W.; Li, W.; Yang, J.; Yang, F. Ecological effects of microplastics on microorganism characteristics in sediments of the Daihai Lakeshore, China. J. Freshw. Ecol. 2021, 37, 21–37. [Google Scholar] [CrossRef]
- European Commission, Directorate-General for Environment. EU Action Against Microplastics; European Commission: Brussels, Belgium, 2023. [Google Scholar] [CrossRef]
- Borges-Ramírez, M.M.; Escalona-Segura, G.; Huerta-Lwanga, E.; Iñigo-Elias, E.; Osten, J.R.V. Organochlorine pesticides, polycyclic aromatic hydrocarbons, metals and metalloids in microplastics found in regurgitated pellets of black vulture from Campeche, Mexico. Sci. Total Environ. 2021, 801, 149674. [Google Scholar] [CrossRef]
- Thiele, C.J.; Hudson, M.D.; Russell, A.E.; Saluveer, M.; Sidaoui-Haddad, G. Microplastics in fish and fishmeal: An. emerging environmental challenge? Sci. Rep. 2021, 11, 2045. [Google Scholar] [CrossRef] [PubMed]
- Kosuth, M.; Mason, S.A.; Wattenberg, E.V. Anthropogenic contamination of tap water, beer, and sea salt. PLoS ONE 2018, 13, e0194970. [Google Scholar] [CrossRef]
- Verla, A.W.; Enyoh, C.E.; Verla, E.N.; Nwarnorh, K.O. Microplastic–toxic chemical interaction: A review study on quantified levels, mechanism and implication. SN Appl. Sci. 2019, 1, 1400. [Google Scholar] [CrossRef]
- Attaelmanan, A.; Huda Aslam, L.D. Mapping of Heavy Metal Contamination Associated to Microplastics Marine Debris—A Case Study: Dubai, UAE. Sci. Total Environ. 2023, 891, 164370. [Google Scholar] [CrossRef] [PubMed]
- Ramirez, M.M.B.; Caamal, R.D.; von Osten, J.R. Occurrence and seasonal distribution of microplastics and phthalates in sediments from the urban channel of the Ria and coast of Campeche, Mexico. Sci. Total Environ. 2019, 672, 97–105. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.; Zhu, Z.; Yang, Y.; Sun, Y.; Yu, F.; Ma, J. Sorption behavior and mechanism of hydrophilic organic chemicals to virgin and aged microplastics in freshwater and seawater. Environ. Pollut. 2019, 246, 26–33. [Google Scholar] [CrossRef]
- Singla, M.; Díaz, J.; Broto-Puig, F.; Borrós, S. Sorption and release process of polybrominated diphenyl ethers (PBDEs) from different composition microplastics in aqueous medium: Solubility parameter approach. Environ. Pollut. 2020, 262, 114377. [Google Scholar] [CrossRef]
- Foshtomi, M.Y.; Oryan, S.; Taheri, M.; Bastami, K.D.; Zahed, M.A. Composition and abundance of microplastics in surface sediments and their interaction with sedimentary heavy metals, PAHs and TPH (total petroleum hydrocarbons). Mar. Pollut. Bull. 2019, 149, 110655. [Google Scholar] [CrossRef]
- Du, S.; Zhu, R.; Cai, Y.; Xu, N.; Yap, P.-S.; Zhang, Y.; He, Y.; Zhang, Y. Environmental fate and impacts of microplastics in aquatic ecosystems: A review. RSC Adv. 2021, 11, 15762–15784. [Google Scholar] [CrossRef]
- Cverenkárová, K.; Valachovičová, M.; Mackul’ak, T.; Žemlička, L.; Bírošová, L. Microplastics in the food chain. Life 2021, 11, 1349. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Chen, L.; Chao, J.; Yang, X.; Wang, Q. Research Progress of Microplastics in Freshwater Sediments in China. Environ. Sci. Pollut. Res. 2020, 27, 31046–31060. [Google Scholar] [CrossRef]
- da Silva, F.C.; Felipe, M.B.M.C.; de Castro, D.E.F.; da Araújo, S.C.; Sisenando, H.C.N.; de Medeiros, S.R.B. A look beyond the priority: A systematic review of the genotoxic, mutagenic, and carcinogenic endpoints of non-priority PAHs. Environ. Pollut. 2021, 278, 116838. [Google Scholar] [CrossRef] [PubMed]
- Honda, M.; Suzuki, N. Toxicities of polycyclic aromatic hydrocarbons for aquatic animals. Int. J. Environ. Res. Public Health 2020, 17, 1363. [Google Scholar] [CrossRef]
- de Souza, R.M.; Seibert, D.; Quesada, H.B.; de Jesus Bassetti, F.; Fagundes-Klen, M.R.; Bergamasco, R. Occurrence, impacts and general aspects of pesticides in surface water: A review. Process Saf. Environ. Prot. 2020, 135, 22–37. [Google Scholar] [CrossRef]
- Li, H.; Wang, F.; Li, J.; Deng, S.; Zhang, S. Adsorption of three pesticides on polyethylene microplastics in aqueous solutions: Kinetics, isotherms, thermodynamics, and molecular dynamics simulation. Chemosphere 2021, 264, 128556. [Google Scholar] [CrossRef]
- Cheng, H.; Zhang, D.; Huang, B.; Song, Z.; Ren, L.; Hao, B.; Liu, J.; Zhu, J.; Fang, W.; Yan, D.; et al. Organic fertilizer improves soil fertility and restores the bacterial community after 1,3-dichloropropene fumigation. Sci. Total Environ. 2020, 738, 140345. [Google Scholar] [CrossRef] [PubMed]
- Graymore, M.; Stagnitti, F.; Allinson, G. Impacts of atrazine in aquatic ecosystems. Environ. Int. 2001, 26, 483–495. [Google Scholar] [CrossRef]
- Singh, S.; Kumar, V.; Chauhan, A.; Datta, S.; Wani, A.B.; Singh, N.; Singh, J. Toxicity, degradation and analysis of the herbicide atrazine. Environ. Chem. Lett. 2018, 16, 211–237. [Google Scholar] [CrossRef]
- Yeates, G.W.; Ferris, H.; Moens, T.; Van Der Putten, W.H. The Role of Nematodes in Ecosystems; CABI Digital Library: Wallingford, UK, 2009. [Google Scholar] [CrossRef]
- Wilson, M.J.; Kakouli-Duarte, T. Ematodes as Environmental Indicators; CABI Digital Library: Wallingford, UK, 2009. [Google Scholar] [CrossRef]
- Haight, M.; Mudry, T.; Pasternak, J. Toxicity of seven heavy metals on panagrellus Silusiae: The efficacy of the free-living nematode an an in vivo toxicological bioassay. Nematologica 2017, 91, 399–404. [Google Scholar]
- Gulcu, B.; Cimen, H.; Raja, R.K.; Hazir, S. Entomopathogenic nematodes and their mutualistic bacteria: Their ecology and application as microbial control agents. Biopestic. Int. 2017, 13, 79–112. [Google Scholar] [CrossRef]
- Kary, N.E.; Sanatipour, Z.; Mohammadi, D.; Dillon, A.B. Combination effects of entomopathogenic nematodes, Heterorhabditis bacteriophora and Steinernema feltiae, with Abamectin on developmental stages of Phthorimaea operculella (Lepidoptera, Gelechiidae). Crop Prot. 2021, 143, 105543. [Google Scholar] [CrossRef]
- Akhurst, R.J. Antibiotic Activity of Xenorhabdus spp., Bacteria Symbiotically Associated with Insect Pathogenic Nematodes of the Families Heterorhabditidae and Steinernematidae. Microbiology 1982, 128, 3061–3065. [Google Scholar] [CrossRef]
- Bode, H.B. Entomopathogenic bacteria as a source of secondary metabolites. Curr. Opin. Chem. Biol. 2009, 13, 224–230. [Google Scholar] [CrossRef]
- Labaude, S.; Griffin, C.T. Transmission success of entomopathogenic nematodes used in pest control. Insects 2018, 9, 72. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Li, X.; Lei, L.; Cao, C.; Wang, D.; He, D. The Toxicity of (Nano)Microplastics on C. elegans and Its Mechanisms. Handb. Environ. Chem. 2020, 95, 259–278. [Google Scholar] [CrossRef]
- Ficociello, G.; Gerardi, V.; Uccelletti, D.; Setini, A. Molecular and cellular responses to short exposure to bisphenols A, F, and S and eluates of microplastics in C. elegans. Environ. Sci. Pollut. Res. 2021, 28, 805–818. [Google Scholar] [CrossRef] [PubMed]
- Brenner, S. The Genetics of Caenorhabditis elegans. Genetics 1974, 77, 71–94. [Google Scholar] [CrossRef] [PubMed]
- Shang, X.; Lu, J.; Feng, C.; Ying, Y.; He, Y.; Fang, S.; Lin, Y.; Dahlgren, R.; Ju, J. Microplastic (1 and 5 μm) exposure disturbs lifespan and intestine function in the nematode Caenorhabditis elegans. Sci. Total Environ. 2020, 705, 135837. [Google Scholar] [CrossRef]
- Huang, C.W.; Li, S.W.; Liao, V.H.-C. Chronic ZnO-NPs exposure at environmentally relevant concentrations results in metabolic and locomotive toxicities in Caenorhabditis elegans. Environ. Pollut. 2017, 220, 1456–1464. [Google Scholar] [CrossRef]
- Zhou, D.; Yang, J.; Li, H.; Cui, C.; Yu, Y.; Liu, Y.; Lin, K. The chronic toxicity of bisphenol A to Caenorhabditis elegans after long-term exposure at environmentally relevant concentrations. Chemosphere 2016, 154, 546–551. [Google Scholar] [CrossRef] [PubMed]
- Jewett, E.; Arnott, G.; Connolly, L.; Vasudevan, N.; Kevei, E. Microplastics and Their Impact on Reproduction—Can we Learn From the C. elegans Model? Front. Toxicol. 2022, 4, 748912. [Google Scholar] [CrossRef]
- Kim, S.W.; Waldman, W.R.; Kim, T.Y.; Rillig, M.C. Effects of Different Microplastics on Nematodes in the Soil Environment: Tracking the Extractable Additives Using an Ecotoxicological Approach. Environ. Sci. Technol. 2020, 54, 13868–13878. [Google Scholar] [CrossRef]
- Mueller, M.T.; Fueser, H.; Höss, S.; Traunspurger, W. Species-specific effects of long-term microplastic exposure on the population growth of nematodes, with a focus on microplastic ingestion. Ecol. Indic. 2020, 118, 106698. [Google Scholar] [CrossRef]
- Schenk, J.; Höss, S.; Brinke, M.; Kleinbölting, N.; Brüchner-Hüttemann, H.; Traunspurger, W. Nematodes as bioindicators of polluted sediments using metabarcoding and microscopic taxonomy. Environ. Int. 2020, 143, 105922. [Google Scholar] [CrossRef]
- Du Preez, G.; Daneel, M.; De Goede, R.; Du Toit, M.J.; Ferris, H.; Fourie, H.; Geisen, S.; Kakouli-Duarte, T.; Korthals, G.; Sánchez-Moreno, S.; et al. Nematode-based indices in soil ecology: Application, utility, and future directions. Soil. Biol. Biochem. 2022, 169, 108640. [Google Scholar] [CrossRef]
- Lu, Q.; Liu, T.; Wang, N.; Dou, Z.; Wang, K.; Zuo, Y. A review of soil nematodes as biological indicators for the assessment of soil health. Front. Agric. Sci. Eng. 2020, 7, 275–281. [Google Scholar] [CrossRef]
- Zullini, A. Nematodes as indicators of river pollution. Nematol. Mediterr. 1976, 4, 13–22. [Google Scholar]
- Wu, H.C.; Chen, P.C.; Tsay, T.T. Assessment of nematode community structure as a bioindicator in river monitoring. Environ. Pollut. 2010, 158, 1741–1747. [Google Scholar] [CrossRef]
- Murphy, L.; Germaine, K.; Kakouli-Duarte, T.; Cleary, J. Assessment of microplastics in Irish river sediment. Heliyon 2022, 8, e09853. [Google Scholar] [CrossRef]
- Lei, K.; Qiao, F.; Liu, Q.; Wei, Z.; Qi, H.; Cui, S.; Yue, X.; Deng, Y.; An, L. Microplastics releasing from personal care and cosmetic products in China. Mar. Pollut. Bull. 2017, 123, 122–126. [Google Scholar] [CrossRef]
- Napper, I.E.; Bakir, A.; Rowland, S.J.; Thompson, R.C. Characterisation, quantity and sorptive properties of microplastics extracted from cosmetics. Mar. Pollut. Bull. 2015, 99, 178–185. [Google Scholar] [CrossRef]
- McMullen, J.G.; Stock, S.P. In Vivo and In Vitro Rearing of Entomopathogenic Nematodes (Steinernematidae and Heterorhabditidae). J. Vis. Exp. 2014, 91, 52096. [Google Scholar] [CrossRef]
- Stiernagle, T. Maintenance of C. elegans. WormBook 2006, 1999, 51–67. [Google Scholar] [CrossRef]
- Corsi, A.K.; Wightman, B.; Chalfie, M. A Transparent window into biology: A primer on Caenorhabditis elegans. Genetics 2015, 200, 387–407. [Google Scholar] [CrossRef] [PubMed]
- Porta-de-la-Riva, M.; Fontrodona, L.; Villanueva, A.; Cerón, J. Basic Caenorhabditis elegans Methods: Synchronization and Observation. J. Vis. Exp. 2012, 64, e4019. [Google Scholar] [CrossRef]
- White, G.F. A Method for Obtaining Infective Nematode Larvae from Cultures. Science 1927, 66, 302–303. [Google Scholar] [CrossRef] [PubMed]
- Bhadury, P.; Austen, M.C.; Bilton, D.T.; Lambshead, P.J.D.; Rogers, A.D.; Smerdon, G.R. Development and evaluation of a DNA-barcoding approach for the rapid identification of nematodes. Mar. Ecol. Prog. Ser. 2006, 320, 1–9. [Google Scholar] [CrossRef]
- Anderson, M.J. A new method for non-parametric multivariate analysis of variance. Austral Ecol. 2001, 26, 32–46. [Google Scholar]
- Zapala, M.A.; Schork, N.J. Multivariate regression analysis of distance matrices for testing associations between gene expression patterns and related variables. Proc. Natl. Acad. Sci. USA 2006, 103, 19430–19435. [Google Scholar] [CrossRef] [PubMed]
- Mcardle, B.H.; Anderson, M.J.; Ecology, S.; Jan, N. Fitting Multivariate Models to Community Data: A Comment on Distance-Based Redundancy Analysis fitting multivariate models to community data: A comment on distance-based redundancy analysis. Ecol. Soc. Am. 2001, 82, 290–297. [Google Scholar]
- Warton, D.I.; Wright, S.T.; Wang, Y. Distance-based multivariate analyses confound location and dispersion effects. Methods Ecol. Evol. 2012, 3, 89–101. [Google Scholar] [CrossRef]
- Bongers, T. The maturity index: An ecological measure of environmental disturbance based on nematode species composition. Oecologia 1990, 83, 14–19. [Google Scholar] [CrossRef]
- Bongers, T.; Bongers, M. Functional diversity of nematodes. Appl. Soil Ecol. 1998, 10, 239–251. [Google Scholar] [CrossRef]
- Chen, H.; Hua, X.; Li, H.; Wang, C.; Dang, Y.; Ding, P.; Yu, Y. Transgenerational neurotoxicity of polystyrene microplastics induced by oxidative stress in Caenorhabditis elegans. Chemosphere 2021, 272, 129642. [Google Scholar] [CrossRef]
- Mateos-Cárdenas, A.; O’Halloran, J.; van Pelt, F.N.A.M.; Jansen, M.A.K. Beyond plastic microbeads—Short-term feeding of cellulose and polyester microfibers to the freshwater amphipod Gammarus duebeni. Sci. Total Environ. 2021, 753, 141859. [Google Scholar] [CrossRef]
- Yu, F.; Yang, C.; Zhu, Z.; Bai, X.; Ma, J. Adsorption behavior of organic pollutants and metals on micro/nanoplastics in the aquatic environment. Sci. Total Environ. 2019, 694, 133643. [Google Scholar] [CrossRef] [PubMed]
- Menéndez-Pedriza, A.; Jaumot, J. Interaction of environmental pollutants with microplastics: A critical review of sorption factors, bioaccumulation and ecotoxicological effects. Toxics 2020, 8, 40. [Google Scholar] [CrossRef]
- Kim, S.W.; Kim, D.; Jeong, S.W.; An, Y.J. Size-dependent effects of polystyrene plastic particles on the nematode Caenorhabditis elegans as related to soil physicochemical properties. Environ. Pollut. 2019, 258, 113740. [Google Scholar] [CrossRef]
- Yang, B.; Li, P.; Entemake, W.; Guo, Z.; Xue, S. Concentration-Dependent Impacts of Microplastics on Soil Nematode Community in Bulk Soils of Maize: Evidence From a Pot Experiment. Front. Environ. Sci. 2022, 10, 872898. [Google Scholar] [CrossRef]
- Mateos-Cárdenas, A.; Alexandra, R.J.; O’Halloran, J.; Frank, N.A.M.; Marcel, A.K. Impacts of Microplastics in the Irish Freshwater Environment. 2021. Available online: https://www.epa.ie/publications/research/epa-research-2030-reports/Research_Report_377.pdf (accessed on 5 January 2018).
- Tytgat, B.; Nguyen, D.T.; Nguyen, T.X.P.; Pham, T.M.; Long, P.K.; Vanreusel, A.; Derycke, S. Monitoring of marine nematode communities through 18S rRNA metabarcoding as a sensitive alternative to morphology. Ecol. Indic. 2019, 107, 105554. [Google Scholar] [CrossRef]
- Höss, S.; Claus, E.; Von der Ohe, P.C.; Brinke, M.; Güde, H.; Heininger, P.; Traunspurger, W. Nematode species at risk—A metric to assess pollution in soft sediments of freshwaters. Environ. Int. 2011, 37, 940–949. [Google Scholar] [CrossRef] [PubMed]
- Stark, J.S.; Mohammad, M.; McMinn, A.; Ingels, J. Diversity, Abundance, Spatial Variation, and Human Impacts in Marine Meiobenthic Nematode and Copepod Communities at Casey Station, East Antarctica. Front. Mar. Sci. 2020, 7, 480. [Google Scholar] [CrossRef]
- Steyaert, M.; Garner, N.; Van Gansbeke, D.; Vincx, M. Nematode communities from the North Sea: Environmental controls on species diversity and vertical distribution within the sediment. J. Mar. Biol. Assoc. UK 1999, 79, 253–264. [Google Scholar] [CrossRef]
- Boots, B.; Russell, C.W.; Green, D.S. Effects of Microplastics in Soil Ecosystems: Above and below Ground. Environ. Sci. Technol. 2019, 53, 11496–11506. [Google Scholar] [CrossRef] [PubMed]
- Sieriebriennikov, B.; Ferris, H.; de Goede, R.G.M. NINJA: An automated calculation system for nematode-based biological monitoring. Eur. J. Soil Biol. 2014, 61, 90–93. [Google Scholar] [CrossRef]
- Heininger, P.; Höss, S.; Claus, E.; Pelzer, J.; Traunspurger, W. Nematode communities in contaminated river sediments. Environ. Pollut. 2007, 146, 64–76. [Google Scholar] [CrossRef] [PubMed]
- Ji, Z.; Huang, Y.; Feng, Y.; Johansen, A.; Xue, J.; Tremblay, L.A.; Li, Z. Effects of pristine microplastics and nanoplastics on soil invertebrates: A systematic review and meta-analysis of available data. Sci. Total Environ. 2021, 788, 147784. [Google Scholar] [CrossRef] [PubMed]
Treatment | |||||||||
---|---|---|---|---|---|---|---|---|---|
Ringer’s/Untreated | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 |
Ringer’s/Untreated + MPs | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 |
Atrazine 100ppb | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 |
Atrazine 100ppb +MPs | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 |
Ringer’s/Untreated | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 |
Ringer’s/Untreated + MPs | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 |
Napht100ppb | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 |
Atrazine 100ppb +MPs | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 |
Polymer | Absorption Band (cm−1) | Assignment |
---|---|---|
Polyethylene (PE) | 2915 | C-H stretch |
2848 | C-H stretch | |
1472 | CH2 bend | |
717 | CH2 rock |
Treatment | Exposure Time (Hours) | F | p-Value |
---|---|---|---|
Nematode medium, atrazine, and MP | 96 | 0.964 | 0.527931 |
Nematode medium, naphthalene, and MP | 72 | 0.938 | 0.563178 |
Nematode medium, naphthalene, and MP | 96 | 1.954 | 0.008807 |
Nematode medium, fluorene, and MP | 72 | 1.645 | 0.039446 |
Nematode medium, fluorene, and MP | 96 | 0.639 | 0.913678 |
Nematode medium, 1,3-dichloropropene, and MP | 72 | 0.718 | 0.843136 |
Nematode medium, 1,3-dichloropropene, and MP | 96 | 0.948 | 0.548654 |
Sample Name | Observed Number of Species | Shannon | Simpson | Chao1 | ACE | Good’s Coverage |
---|---|---|---|---|---|---|
DHC | 80.8 ± 19.84 | 3.46 ± 0.55 | 0.7908 ± 0.054 | 108.82 ± 27.295 | 114.798 ± 34.818 | 0.980 ± 0.006 |
MLF | 69.6 ± 14.57 | 3.33 ± 1.202 | 0.7042 ± 0.218 | 105.741 ± 31.369 | 107.27 ± 21.354 | 0.9818 ± 0.004 |
MCR | 59.8 ± 9.81 | 3.66 ± 0.828 | 0.8226 ± 0.137 | 91.347 ± 35.021 | 81.037 ± 16.566 | 0.9874 ± 0.004 |
GI | 43.6 ± 3.29 | 2.85 ± 0.274 | 0.7746 ± 0.056 | 79.628 ± 43.50 | 72.519 ± 15.127 | 0.9874 ± 0.003 |
Family | c-p Class | p-p Class | Feeding Type |
---|---|---|---|
Trichodoridae | 0 | 4 | Herbivores—ectoparasites |
Tylenchidae | 0 | 2 | Herbivores—epidermal/root hair feeders |
Monhysteridae | 2 | 0 | Bacterivores |
Plectidae | 2 | 0 | Bacterivores |
Rhabditidae | 1 | 0 | Bacterivores |
Achromadoridae | 3 | 0 | Predators |
Cyatholaimidae | 3 | 0 | Predators |
Dorylaimidae | 4 | 0 | Omnivores |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Murphy, L.; Germaine, K.; Cleary, J.; Kakouli-Duarte, T. Occurrence of Microplastics in the Sediments of an Irish River and Their Effects on Nematode Survival and Biodiversity. Appl. Biosci. 2024, 3, 532-558. https://doi.org/10.3390/applbiosci3040034
Murphy L, Germaine K, Cleary J, Kakouli-Duarte T. Occurrence of Microplastics in the Sediments of an Irish River and Their Effects on Nematode Survival and Biodiversity. Applied Biosciences. 2024; 3(4):532-558. https://doi.org/10.3390/applbiosci3040034
Chicago/Turabian StyleMurphy, Loriane, Kieran Germaine, John Cleary, and Thomais Kakouli-Duarte. 2024. "Occurrence of Microplastics in the Sediments of an Irish River and Their Effects on Nematode Survival and Biodiversity" Applied Biosciences 3, no. 4: 532-558. https://doi.org/10.3390/applbiosci3040034
APA StyleMurphy, L., Germaine, K., Cleary, J., & Kakouli-Duarte, T. (2024). Occurrence of Microplastics in the Sediments of an Irish River and Their Effects on Nematode Survival and Biodiversity. Applied Biosciences, 3(4), 532-558. https://doi.org/10.3390/applbiosci3040034