A Review of Ocular and Systemic Side Effects in Glaucoma Pharmacotherapy
Abstract
:1. Introduction
2. Pharmacological Treatment of Glaucoma
2.1. Therapeutic Classes That Reduce Aqueous Inflow
2.1.1. Carbonic Anhydrase Inhibitors (CAIs)
2.1.2. Βeta (β)-Blockers
2.1.3. Alpha (α)-Adrenergic Agonists
2.2. Therapeutic Classes That Increase Outflow
2.2.1. Prostaglandin Analogs (PGAs)
2.2.2. Parasympathomimetics
2.2.3. Rho Kinase Inhibitors
2.2.4. Hyperosmotic Agents
3. Ocular Side Effects of Glaucoma Medications
3.1. Therapeutic Classes That Reduce Aqueous Inflow
3.1.1. Carbonic Anhydrase Inhibitor (CAIs)
3.1.2. Βeta (β)-Blockers
3.1.3. Alpha (α)-Adrenergic Agonists
3.2. Therapeutic Classes That Increase Outflow
3.2.1. Prostaglandin Analogs (PGAs)
3.2.2. Parasympathomimetics
3.2.3. Rho Kinase Inhibitors
4. Systemic Side Effects of Glaucoma Medications
4.1. Therapeutic Classes That Reduce Aqueous Inflow
4.1.1. Carbonic Anhydrase Inhibitors (CAIs)
4.1.2. Βeta (β)-Blockers
4.1.3. Alpha (α)-Adrenergic Agonists
4.2. Therapeutic Classes Which Increase Outflow
4.2.1. Prostaglandin Analogs (PGAs)
4.2.2. Parasympathomimetics
4.2.3. Rho Kinase Inhibitors
4.2.4. Hyperosmotic Agents
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Weinreb, R.N.; Leung, C.K.S.; Crowston, J.G.; Medeiros, F.A.; Friedman, D.S.; Wiggs, J.L.; Martin, K.R. Primary open-angle glaucoma. Nat. Rev. Dis. Primers 2016, 2, 16067. [Google Scholar] [CrossRef] [PubMed]
- Casson, R.J.; Chidlow, G.; Wood, J.P.; Crowston, J.G.; Goldberg, I. Definition of glaucoma: Clinical and experimental concepts. Clin. Experiment. Ophthalmol. 2012, 40, 341–349. [Google Scholar] [CrossRef]
- Casson, R.J. Medical therapy for glaucoma: A review. Clin. Experiment. Ophthalmol. 2022, 50, 198–212. [Google Scholar] [CrossRef]
- Allison, K.; Patel, D.; Alabi, O. Epidemiology of Glaucoma: The Past, Present, and Predictions for the Future. Cureus 2020, 12, e11686. [Google Scholar] [CrossRef]
- Tham, Y.-C.; Li, X.; Wong, T.Y.; Quigley, H.A.; Aung, T.; Cheng, C.-Y. Global Prevalence of Glaucoma and Projections of Glaucoma Burden through 2040. Ophthalmology 2014, 121, 2081–2090. [Google Scholar] [CrossRef] [PubMed]
- Wiggs, J.L.; Pasquale, L.R. Genetics of glaucoma. Hum. Mol. Genet. 2017, 26, R21–R27. [Google Scholar] [CrossRef]
- Plateroti, P.; Plateroti, A.M.; Abdolrahimzadeh, S.; Scuderi, G. Pseudoexfoliation Syndrome and Pseudoexfoliation Glaucoma: A Review of the Literature with Updates on Surgical Management. J. Ophthalmol. 2015, 2015, 370371. [Google Scholar] [CrossRef]
- Caprioli, J.; Coleman, A.L. Blood Pressure, Perfusion Pressure, and Glaucoma. Am. J. Ophthalmol. 2010, 149, 704–712. [Google Scholar] [CrossRef] [PubMed]
- Congdon, N.G.; Broman, A.T.; Bandeen-Roche, K.; Grover, D.; Quigley, H.A. Central Corneal Thickness and Corneal Hysteresis Associated with Glaucoma Damage. Am. J. Ophthalmol. 2006, 141, 868–875. [Google Scholar] [CrossRef] [PubMed]
- Soh, Z.; Yu, M.; Betzler, B.K.; Majithia, S.; Thakur, S.; Tham, Y.C.; Wong, T.Y.; Aung, T.; Friedman, D.S.; Cheng, C.-Y. The Global Extent of Undetected Glaucoma in Adults: A Systematic Review and Meta-analysis. Ophthalmology 2021, 128, 1393–1404. [Google Scholar] [CrossRef] [PubMed]
- Weinreb, R.N.; Aung, T.; Medeiros, F.A. The Pathophysiology and Treatment of Glaucoma. JAMA 2014, 311, 1901. [Google Scholar] [CrossRef] [PubMed]
- Arbabi, A.; Bao, X.; Shalaby, W.S.; Razeghinejad, R. Systemic side effects of glaucoma medications. Clin. Exp. Optom. 2022, 105, 157–165. [Google Scholar] [CrossRef]
- Akingbehin, T.Y.; Raj, P.S. Ophthalmic Topical Beta Blockers: Review of Ocular and Systemic Adverse Effects. J. Toxicol.Cutan. Ocul. Toxicol. 1990, 9, 131–147. [Google Scholar] [CrossRef]
- Becker, B. Carbonic anhydrase and the formation of aqueous humor. Am. J. Ophthalmol. 1959, 47, 342–361. [Google Scholar] [CrossRef]
- Green, K.; Pederson, J.E. Contribution of secretion and filtration to aqueous humor formation. Am. J. Physiol. 1972, 222, 1218–1226. [Google Scholar] [CrossRef] [PubMed]
- Becker, B. Decrease in intraocular pressure in man by a carbonic anhydrase inhibitor, diamox; a preliminary report. Am. J. Ophthalmol. 1954, 37, 13–15. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.F.; Serle, J.B.; Podos, S.M.; Sugrue, M.F. MK-507 (L-671,152), a topically active carbonic anhydrase inhibitor, reduces aqueous humor production in monkeys. Arch. Ophthalmol. 1991, 109, 1297–1299. [Google Scholar] [CrossRef]
- DeSantis, L. Preclinical overview of brinzolamide. Surv. Ophthalmol. 2000, 44 (Suppl. 2), S119–S129. [Google Scholar] [CrossRef]
- Sugrue, M.F. Pharmacological and ocular hypotensive properties of topical carbonic anhydrase inhibitors. Prog. Retin. Eye Res. 2000, 19, 87–112. [Google Scholar] [CrossRef] [PubMed]
- Supuran, C.T.; Scozzafava, A. Carbonic anhydrase inhibitors and their therapeutic potential. Expert. Opin. Ther. Pat. 2000, 10, 575–600. [Google Scholar] [CrossRef]
- Swenson, E.R. Safety of carbonic anhydrase inhibitors. Expert Opin. Drug Saf. 2014, 13, 459–472. [Google Scholar] [CrossRef] [PubMed]
- Pfeiffer, N. Dorzolamide: Development and clinical application of a topical carbonic anhydrase inhibitor. Surv. Ophthalmol. 1997, 42, 137–151. [Google Scholar] [CrossRef]
- Popovic, M.M.; Schlenker, M.B.; Thiruchelvam, D.; Redelmeier, D.A. Serious Adverse Events of Oral and Topical Carbonic Anhydrase Inhibitors. JAMA Ophthalmol. 2022, 140, 235–242. [Google Scholar] [CrossRef] [PubMed]
- Epstein, D.L.; Grant, W.M. Carbonic Anhydrase Inhibitor Side Effects: Serum Chemical Analysis. Arch. Ophthalmol. 1977, 95, 1378–1382. [Google Scholar] [CrossRef] [PubMed]
- McMahon, C.D.; Shaffer, R.N.; Hoskins, H.D., Jr.; Hetherington, J., Jr. Adverse effects experienced by patients taking timolol. Am. J. Ophthalmol. 1979, 88, 736–738. [Google Scholar] [CrossRef] [PubMed]
- Van Buskirk, E.M. Adverse reactions from timolol administration. Ophthalmology 1980, 87, 447–450. [Google Scholar] [CrossRef]
- Zimmerman, T.J.; Leader, B.J.; Golob, D.S. Potential side effects of timolol therapy in the treatment of glaucoma. Ann. Ophthalmol. 1981, 13, 683–689. [Google Scholar] [PubMed]
- Van Buskirk, E.M. Corneal anesthesia after timolol maleate therapy. Am. J. Ophthalmol. 1979, 88, 739–743. [Google Scholar] [CrossRef] [PubMed]
- Bonomi, L.; Zavarise, G.; Noya, E.; Michieletto, S. Effects of timolol maleate on tear flow in human eyes. Albrecht Von Graefes Arch. Klin. Exp. Ophthalmol. 1980, 213, 19–22. [Google Scholar] [CrossRef] [PubMed]
- Scoville, B.; Mueller, B.; White, B.G.; Krieglstein, G.K. A double-masked comparison of carteolol and timolol in ocular hypertension. Am. J. Ophthalmol. 1988, 105, 150–154. [Google Scholar] [CrossRef] [PubMed]
- Berry, D.P., Jr.; Van Buskirk, E.M.; Shields, M.B. Betaxolol and timolol. A comparison of efficacy and side effects. Arch. Ophthalmol. 1984, 102, 42–45. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, N.V.; Eriksen, J.S. Timolol transitory manifestations of dry eyes in long term treatment. Acta Ophthalmol. Copenh. 1979, 57, 418–424. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.-Y.; Lin, C.-L.; Tsai, Y.-Y.; Kao, C.-H. Association between Glaucoma Medication Usage and Dry Eye in Taiwan. Optom. Vis. Sci. 2015, 92, e227–e232. [Google Scholar] [CrossRef] [PubMed]
- Nelson, W.L.; Fraunfelder, F.T.; Sills, J.M.; Arrowsmith, J.B.; Kuritsky, J.N. Adverse respiratory and cardiovascular events attributed to timolol ophthalmic solution, 1978–1985. Am. J. Ophthalmol. 1986, 102, 606–611. [Google Scholar] [CrossRef] [PubMed]
- Gary, D.N.; Irving, H.L. The toxicity of topical ophthalmic beta blockers. J. Toxicol. Cutan. Ocul. Toxicol. 1987, 6, 283–297. [Google Scholar] [CrossRef]
- Blondeau, P.; Rousseau, J.A. Allergic reactions to brimonidine in patients treated for glaucoma. Can. J. Ophthalmol. 2002, 37, 21–26. [Google Scholar] [CrossRef] [PubMed]
- David, R. Brimonidine (Alphagan): A clinical profile four years after launch. Eur. J. Ophthalmol. 2001, 11 (Suppl. 2), S72–S77. [Google Scholar] [CrossRef]
- Melamed, S.; David, R. Ongoing clinical assessment of the safety profile and efficacy of brimonidine compared with timolol: Year-three results. Clin. Ther. 2000, 22, 103–111. [Google Scholar] [CrossRef]
- Kampik, A.; Arias-Puente, A.; O’Brart, D.P.; Vuori, M.L. Intraocular pressure-lowering effects of latanoprost and brimonidine therapy in patients with open-angle glaucoma or ocular hypertension: A randomized observer-masked multicenter study. J. Glaucoma 2002, 11, 90–96. [Google Scholar] [CrossRef]
- Schuman, J.S.; Horwitz, B.; Choplin, N.T.; David, R.; Albracht, D.; Chen, K. A 1-Year Study of Brimonidine Twice Daily in Glaucoma and Ocular Hypertension: A Controlled, Randomized, Multicenter Clinical Trial. Arch. Ophthalmol. 1997, 115, 847–852. [Google Scholar] [CrossRef]
- Buerkle, H.; Yaksh, T.L. Pharmacological evidence for different alpha 2-adrenergic receptor sites mediating analgesia and sedation in the rat. Br. J. Anaesth. 1998, 81, 208–215. [Google Scholar] [CrossRef]
- Philipp, M.; Brede, M.; Hein, L. Physiological significance of alpha(2)-adrenergic receptor subtype diversity: One receptor is not enough. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2002, 283, R287–R295. [Google Scholar] [CrossRef]
- Samuels, E.R.; Szabadi, E. Functional neuroanatomy of the noradrenergic locus coeruleus: Its roles in the regulation of arousal and autonomic function part II: Physiological and pharmacological manipulations and pathological alterations of locus coeruleus activity in humans. Curr. Neuropharmacol. 2008, 6, 254–285. [Google Scholar] [CrossRef]
- Cantor, L.B.; Spaeth, G.L. Side effects of glaucoma medications. PA Med. 1985, 88, 58–60. [Google Scholar] [PubMed]
- Arthur, S.; Cantor, L.B. Update on the role of alpha-agonists in glaucoma management. Exp. Eye Res. 2011, 93, 271–283. [Google Scholar] [CrossRef]
- Becker, B.; Morton, W.R. Topical epinephrine in glaucoma suspects. Am. J. Ophthalmol. 1966, 62, 272–277. [Google Scholar] [CrossRef] [PubMed]
- Schuman, J.S. Short- and long-term safety of glaucoma drugs. Expert Opin. Drug Saf. 2002, 1, 181–194. [Google Scholar] [CrossRef] [PubMed]
- Schuman, J.S. Antiglaucoma medications: A review of safety and tolerability issues related to their use. Clin. Ther. 2000, 22, 167–208. [Google Scholar] [CrossRef] [PubMed]
- Warwar, R.E.; Bullock, J.D.; Ballal, D. Cystoid macular edema and anterior uveitis associated with latanoprost use. Experience and incidence in a retrospective review of 94 patients. Ophthalmology 1998, 105, 263–268. [Google Scholar] [CrossRef] [PubMed]
- Alm, A.; Grierson, I.; Shields, M.B. Side Effects Associated with Prostaglandin Analog Therapy. Surv. Ophthalmol. 2008, 53, S93–S105. [Google Scholar] [CrossRef] [PubMed]
- Bean, G.; Reardon, G.; Zimmerman, T.J. Association between ocular herpes simplex virus and topical ocular hypotensive therapy. J. Glaucoma 2004, 13, 361–364. [Google Scholar] [CrossRef]
- Kaufman, H.E.; Varnell, E.D.; Thompson, H.W. Latanoprost increases the severity and recurrence of herpetic keratitis in the rabbit. Am. J. Ophthalmol. 1999, 127, 531–536. [Google Scholar] [CrossRef] [PubMed]
- Holló, G.; Aung, T.; Cantor, L.B.; Aihara, M. Cystoid macular edema related to cataract surgery and topical prostaglandin analogs: Mechanism, diagnosis, and management. Surv. Ophthalmol. 2020, 65, 496–512. [Google Scholar] [CrossRef]
- Pisella, P.J.; Debbasch, C.; Hamard, P.; Creuzot-Garcher, C.; Rat, P.; Brignole, F.; Baudouin, C. Conjunctival proinflammatory and proapoptotic effects of latanoprost and preserved and unpreserved timolol: An ex vivo and in vitro study. Investig. Ophthalmol. Vis. Sci. 2004, 45, 1360–1368. [Google Scholar] [CrossRef] [PubMed]
- Kucukevcilioglu, M.; Bayer, A.; Uysal, Y.; Altinsoy, H.I. Prostaglandin associated periorbitopathy in patients using bimatoprost, latanoprost and travoprost. Clin. Exp. Ophthalmol. 2014, 42, 126–131. [Google Scholar] [CrossRef]
- European Glaucoma Society. European Glaucoma Society Terminology and Guidelines for Glaucoma, 4th Edition—Chapter 2: Classification and terminology Supported by the EGS Foundation. Br. J. Ophthalmol. 2017, 101, 73–127. [Google Scholar] [CrossRef] [PubMed]
- Herndon, L.W.; Robert, D.W.; Wand, M.; Asrani, S. Increased periocular pigmentation with ocular hypotensive lipid use in African Americans. Am. J. Ophthalmol. 2003, 135, 713–715. [Google Scholar] [CrossRef] [PubMed]
- Osborne, S.A.; Montgomery, D.M.; Morris, D.; McKay, I.C. Alphagan allergy may increase the propensity for multiple eye-drop allergy. Eye 2005, 19, 129–137. [Google Scholar] [CrossRef] [PubMed]
- Perry, C.M.; McGavin, J.K.; Culy, C.R.; Ibbotson, T. Latanoprost: An update of its use in glaucoma and ocular hypertension. Drugs Aging 2003, 20, 597–630. [Google Scholar] [CrossRef] [PubMed]
- Stjernschantz, J.; Ocklind, A.; Wentzel, P.; Lake, S.; Hu, D.N. Latanoprost-induced increase of tyrosinase transcription in iridial melanocytes. Acta Ophthalmol. Scand. 2000, 78, 618–622. [Google Scholar] [CrossRef] [PubMed]
- Drago, F.; Marino, A.; La Manna, C. alpha-Methyl-p-tyrosine inhibits latanoprost-induced melanogenesis in vitro. Exp. Eye Res. 1999, 68, 85–90. [Google Scholar] [CrossRef] [PubMed]
- Kashiwagi, K.; Tsukamoto, K.; Suzuki, M.; Tsukahara, S. Effects of isopropyl unoprostone and latanoprost on melanogenesis in mouse epidermal melanocytes. J. Glaucoma 2002, 11, 57–64. [Google Scholar] [CrossRef] [PubMed]
- Stjernschantz, J.W.; Albert, D.M.; Hu, D.N.; Drago, F.; Wistrand, P.J. Mechanism and clinical significance of prostaglandin-induced iris pigmentation. Surv. Ophthalmol. 2002, 47 (Suppl. 1), S162–S175. [Google Scholar] [CrossRef] [PubMed]
- Aptel, F.; Cucherat, M.; Denis, P. Efficacy and tolerability of prostaglandin analogs: A meta-analysis of randomized controlled clinical trials. J. Glaucoma 2008, 17, 667–673. [Google Scholar] [CrossRef] [PubMed]
- Rajan, M.S.; Syam, P.; Liu, C. Systemic side effects of topical latanoprost. Eye 2003, 17, 442–444. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.; Yang, K.; Zheng, Z.; Ong, M.L.; Wang, N.L.; Zhan, S.Y. Meta-analysis of the Efficacy and Safety of Latanoprost Monotherapy in Patients with Angle-closure Glaucoma. J. Glaucoma 2016, 25, e134–e144. [Google Scholar] [CrossRef] [PubMed]
- Novack, G.D.; O’Donnell, M.J.; Molloy, D.W. New glaucoma medications in the geriatric population: Efficacy and safety. J. Am. Geriatr. Soc. 2002, 50, 956–962. [Google Scholar] [CrossRef] [PubMed]
- Konstas, A.G.; Katsimbris, J.M.; Lallos, N.; Boukaras, G.P.; Jenkins, J.N.; Stewart, W.C. Latanoprost 0.005% versus bimatoprost 0.03% in primary open-angle glaucoma patients. Ophthalmology 2005, 112, 262–266. [Google Scholar] [CrossRef]
- Arens, A.M.; Kearney, T. Adverse Effects of Physostigmine. J. Med. Toxicol. 2019, 15, 184–191. [Google Scholar] [CrossRef] [PubMed]
- Moshirfar, M.; Parker, L.; Birdsong, O.C.; Ronquillo, Y.C.; Hofstedt, D.; Shah, T.J.; Gomez, A.T.; Hoopes, P.C.S. Use of Rho kinase Inhibitors in Ophthalmology: A Review of the Literature. Med. Hypothesis Discov. Innov. Ophthalmol. 2018, 7, 101–111. [Google Scholar]
- Lin, J.B.; Harris, J.M.; Baldwin, G.; Goss, D.; Margeta, M.A. Ocular effects of Rho kinase (ROCK) inhibition: A systematic review. Eye 2024, 38, 3418–3428. [Google Scholar] [CrossRef]
- Phillips, C.I.; Howitt, G.; Rowlands, D.J. Propranolol as ocular hypotensive agent. Br. J. Ophthalmol. 1967, 51, 222–226. [Google Scholar] [CrossRef] [PubMed]
- Coakes, R.L.; Brubaker, R.F. The mechanism of timolol in lowering intraocular pressure. In the normal eye. Arch. Ophthalmol. 1978, 96, 2045–2048. [Google Scholar] [CrossRef]
- Berrospi, A.R.; Leibowitz, H.M. Betaxolol. A new beta-adrenergic blocking agent for treatment of glaucoma. Arch. Ophthalmol. 1982, 100, 943–946. [Google Scholar] [CrossRef] [PubMed]
- Kitazawa, Y.; Azuma, I.; Takase, M.; Komemushi, S. Ocular hypotensive effects of carteolol hydrochloride in primary open-angle glaucoma and ocular hypertensive patients. A double-masked cross-over study for the determination of concentrations optimal for the clinical use (author’s transl). Nippon Ganka Gakkai Zasshi 1981, 85, 798–804. [Google Scholar]
- Berson, F.G.; Epstein, D.L.; Partamian, L.G.; Cinotti, A.; Cohen, H.; Fries, P.; David, R.; Gurion, B.; Duzman, E.; Novack, G.D.; et al. Levobunolol: A beta-adrenoceptor antagonist effective in the long-term treatment of glaucoma. Ophthalmology 1985, 92, 1271–1276. [Google Scholar] [CrossRef]
- Andréasson, S.; Jensen, K.M. Effect of pindolol on intraocular pressure in glaucoma: Pilot study and a randomised comparison with timolol. Br. J. Ophthalmol. 1983, 67, 228. [Google Scholar] [CrossRef] [PubMed]
- Kitazawa, Y.; Horie, T.; Shirato, S. Ocular and Systemic Effects of new Beta-blocking Agents, Carteolol and Befunolol. In Medikamentöse Glaukomtherapie; J.F. Bergmann-Verlag: Munich, Germany, 1982; pp. 183–187. [Google Scholar]
- Sears, M.L. Regulation of Aqueous Flow by the Adenylate Cyclase Receptor Complex in the Ciliary Epithelium. Am. J. Ophthalmol. 1985, 100, 194–198. [Google Scholar] [CrossRef] [PubMed]
- Shim, M.S.; Kim, K.Y.; Ju, W.K. Role of cyclic AMP in the eye with glaucoma. BMB Rep. 2017, 50, 60–70. [Google Scholar] [CrossRef] [PubMed]
- Brubaker, R.F.; Nagataki, S.; Bourne, W.M. Effect of chronically administered timolol on aqueous humor flow in patients with glaucoma. Ophthalmology 1982, 89, 280–283. [Google Scholar] [CrossRef] [PubMed]
- Boger, W.P., 3rd. Shortterm “escape” and longterm “drift.” The dissipation effects of the beta adrenergic blocking agents. Surv. Ophthalmol. 1983, 28, 235–242. [Google Scholar] [CrossRef]
- Mittag, T.W.; Tormay, A. Drug responses of adenylate cyclase in iris-ciliary body determined by adenine labelling. Investig. Ophthalmol. Vis. Sci. 1985, 26, 396–399. [Google Scholar]
- Toris, C.B.; Gleason, M.L.; Camras, C.B.; Yablonski, M.E. Effects of brimonidine on aqueous humor dynamics in human eyes. Arch. Ophthalmol. 1995, 113, 1514–1517. [Google Scholar] [CrossRef] [PubMed]
- Alm, A.; Nilsson, S.F.E. Uveoscleral outflow—A review. Exp. Eye Res. 2009, 88, 760–768. [Google Scholar] [CrossRef] [PubMed]
- Yüksel, N.; Karabaş, L.; Altintaş, O.; Yildirim, Y.; Cağlar, Y. A comparison of the short-term hypotensive effects and side effects of unilateral brimonidine and apraclonidine in patients with elevated intraocular pressure. Ophthalmologica 2002, 216, 45–49. [Google Scholar] [CrossRef] [PubMed]
- Sodhi, P.K.; Verma, L.; Ratan, J. Dermatological side effects of brimonidine: A report of three cases. J. Dermatol. 2003, 30, 697–700. [Google Scholar] [CrossRef]
- Robin, A.L.; Coleman, A.L. Apraclonidine hydrochloride: An evaluation of plasma concentrations, and a comparison of its intraocular pressure lowering and cardiovascular effects to timolol maleate. Trans. Am. Ophthalmol. Soc. 1990, 88, 149–159. [Google Scholar]
- Katz, L.J. Brimonidine tartrate 0.2% twice daily vs timolol 0.5% twice daily: 1-year results in glaucoma patients. Brimonidine Study Group. Am. J. Ophthalmol. 1999, 127, 20–26. [Google Scholar] [CrossRef]
- Adkins, J.C.; Balfour, J.A. Brimonidine. A review of its pharmacological properties and clinical potential in the management of open-angle glaucoma and ocular hypertension. Drugs Aging 1998, 12, 225–241. [Google Scholar] [CrossRef] [PubMed]
- Cantor, L.B. Brimonidine in the treatment of glaucoma and ocular hypertension. Ther. Clin. Risk Manag. 2006, 2, 337–346. [Google Scholar] [CrossRef] [PubMed]
- Walters, T.R. Development and use of brimonidine in treating acute and chronic elevations of intraocular pressure: A review of safety, efficacy, dose response, and dosing studies. Surv. Ophthalmol. 1996, 41 (Suppl. 1), S19–S26. [Google Scholar] [CrossRef] [PubMed]
- Docherty, J.R. Subtypes of functional alpha1-adrenoceptor. Cell. Mol. Life Sci. 2010, 67, 405–417. [Google Scholar] [CrossRef] [PubMed]
- Goel, M.; Picciani, R.G.; Lee, R.K.; Bhattacharya, S.K. Aqueous humor dynamics: A review. Open Ophthalmol. J. 2010, 4, 52–59. [Google Scholar] [CrossRef] [PubMed]
- Toris, C.B.; Gabelt, B.T.; Kaufman, P.L. Update on the mechanism of action of topical prostaglandins for intraocular pressure reduction. Surv. Ophthalmol. 2008, 53 (Suppl 1), S107–S120. [Google Scholar] [CrossRef] [PubMed]
- Lin, L.; Zhao, Y.J.; Chew, P.T.; Sng, C.C.; Wong, H.T.; Yip, L.W.; Wu, T.S.; Bautista, D.; Teng, M.; Khoo, A.L.; et al. Comparative efficacy and tolerability of topical prostaglandin analogues for primary open-angle glaucoma and ocular hypertension. Ann. Pharmacother. 2014, 48, 1585–1593. [Google Scholar] [CrossRef]
- Hoy, S.M. Latanoprostene Bunod Ophthalmic Solution 0.024%: A Review in Open-Angle Glaucoma and Ocular Hypertension. Drugs 2018, 78, 773–780. [Google Scholar] [CrossRef]
- Robb, G.L. The Ordeal Poisons of Madagascar and Africa. Bot. Mus. Leaflets 1957, 17, 265–316. [Google Scholar] [CrossRef]
- Grierson, I.; Lee, W.R.; Abraham, S. Effects of pilocarpine on the morphology of the human outflow apparatus. Br. J. Ophthalmol. 1978, 62, 302–313. [Google Scholar] [CrossRef]
- Kobayashi, H.; Kobayashi, K.; Kiryu, J.; Kondo, T. Ultrasound biomicroscopic analysis of the effect of pilocarpine on the anterior chamber angle. Graefes Arch. Clin. Exp. Ophthalmol. 1997, 235, 425–430. [Google Scholar] [CrossRef] [PubMed]
- Ganias, F.; Mapstone, R. Miotics in closed-angle glaucoma. Br. J. Ophthalmol. 1975, 59, 205–206. [Google Scholar] [CrossRef] [PubMed]
- Grierson, I.; Lee, W.R. Pressure-induced changes in the ultrastructure of the endothelium lining Schlemm’s canal. Am. J. Ophthalmol. 1975, 80, 863–884. [Google Scholar] [CrossRef] [PubMed]
- Honjo, M.; Tanihara, H.; Inatani, M.; Kido, N.; Sawamura, T.; Yue, B.Y.J.T.; Narumiya, S.; Honda, Y. Effects of Rho-Associated Protein Kinase Inhibitor Y-27632 on Intraocular Pressure and Outflow Facility. Investig. Ophthalmol. Vis. Sci. 2001, 42, 137–144. [Google Scholar]
- Tanna, A.P.; Johnson, M. Rho Kinase Inhibitors as a Novel Treatment for Glaucoma and Ocular Hypertension. Ophthalmology 2018, 125, 1741–1756. [Google Scholar] [CrossRef] [PubMed]
- Asrani, S.; Robin, A.L.; Serle, J.B.; Lewis, R.A.; Usner, D.W.; Kopczynski, C.C.; Heah, T. Netarsudil/Latanoprost Fixed-Dose Combination for Elevated Intraocular Pressure: Three-Month Data from a Randomized Phase 3 Trial. Am. J. Ophthalmol. 2019, 207, 248–257. [Google Scholar] [CrossRef] [PubMed]
- Kolker, A.E. Hyperosmotic agents in glaucoma. Investig. Ophthalmol. 1970, 9, 418–423. [Google Scholar]
- Widengård, I.; Mandahl, A.; Törnquist, P.; Wistrand, P.J. Colour vision and side-effects during treatment with methazolamide. Eye 1995, 9 Pt 1, 130–135. [Google Scholar] [CrossRef]
- Kwon, S.J.; Park, D.H.; Shin, J.P. Bilateral transient myopia, angle-closure glaucoma, and choroidal detachment induced by methazolamide. Jpn. J. Ophthalmol. 2012, 56, 515–517. [Google Scholar] [CrossRef]
- Guedes, G.B.; Karan, A.; Mayer, H.R.; Shields, M.B. Evaluation of Adverse Events in Self-Reported Sulfa-Allergic Patients Using Topical Carbonic Anhydrase Inhibitors. J. Ocul. Pharmacol. Ther. 2013, 29, 456–461. [Google Scholar] [CrossRef] [PubMed]
- Holdiness, M.R. Contact dermatitis to topical drugs for glaucoma. Am. J. Contact Dermat. 2001, 12, 217–219. [Google Scholar] [CrossRef]
- Lee, S.-J.; Kim, M. Allergic contact dermatitis caused by dorzolamide eyedrops. Clin. Ophthalmol. 2015, 9, 575–577. [Google Scholar] [CrossRef]
- Konowal, A.; Morrison, J.C.; Brown, S.V.L.; Cooke, D.L.; Maguire, L.J.; Verdier, D.V.; Fraunfelder, F.T.; Dennis, R.F.; Epstein, R.J. Irreversible corneal decompensation in patients treated with topical dorzolamide. Am. J. Ophthalmol. 1999, 127, 403–406. [Google Scholar] [CrossRef] [PubMed]
- van Beek, L.M.; de Keizer, R.J.; Polak, B.C.; Elzenaar, P.R.; van Haeringen, N.J.; Kijlstra, A. Incidence of ocular side effects of topical beta blockers in the Netherlands. Br. J. Ophthalmol. 2000, 84, 856–859. [Google Scholar] [CrossRef] [PubMed]
- Herbst, R.A.; Maibach, H.I. Contact dermatitis caused by allergy to ophthalmics: An update. Contact Dermat. 1992, 27, 335–336. [Google Scholar] [CrossRef] [PubMed]
- Rudzki, E.; Kecik, T.; Rebandel, P.; Portacha, L.; Pauk, M. Frequency of contact sensitivity to drugs and preservatives in patients with conjunctivitis. Contact Dermat. 1995, 33, 270. [Google Scholar] [CrossRef] [PubMed]
- Perrenoud, D.; Bircher, A.; Hunziker, T.; Suter, H.; Bruckner-Tuderman, L.; Stäger, J.; Thürlimann, W.; Schmid, P.; Suard, A.; Hunziker, N. Frequency of sensitization to 13 common preservatives in Switzerland. Swiss Contact Dermatitis Research Group. Contact Dermat. 1994, 30, 276–279. [Google Scholar] [CrossRef]
- O’Donnell, B.F.; Foulds, I.S. Contact allergy to beta-blocking agents in ophthalmic preparations. Contact Dermat. 1993, 28, 121–122. [Google Scholar] [CrossRef]
- Petounis, A.D.; Akritopoulos, P. Influence of topical and systemic β-blockers on tear production. Int. Ophthalmol. 1989, 13, 75–80. [Google Scholar] [CrossRef]
- Byles, D.B.; Frith, P.; Salmon, J.F. Anterior uveitis as a side effect of topical brimonidine. Am. J. Ophthalmol. 2000, 130, 287–291. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, E.V.; Azar, D.; Papalkar, D.; McCluskey, P. Brimonidine-induced Anterior Uveitis and Conjunctivitis: Clinical and Histologic Features. J. Glaucoma 2008, 17, 40–42. [Google Scholar] [CrossRef]
- Katz, L.J. Twelve-month evaluation of brimonidine-purite versus brimonidine in patients with glaucoma or ocular hypertension. J. Glaucoma 2002, 11, 119–126. [Google Scholar] [CrossRef]
- Feibel, R.M. High Incidence of Topical Allergic Reactions to 1% Apraclonidine. Arch. Ophthalmol. 1995, 113, 1579. [Google Scholar] [CrossRef]
- Feldman, R.M. Conjunctival Hyperemia and the Use of Topical Prostaglandins in Glaucoma and Ocular Hypertension. J. Ocul. Pharmacol. Ther. 2003, 19, 23–35. [Google Scholar] [CrossRef]
- Inoue, K. Managing adverse effects of glaucoma medications. Clin. Ophthalmol. 2014, 8, 903. [Google Scholar] [CrossRef]
- O’Toole, L.; Cahill, M.; O’Brien, C. Eyelid hypertrichosis associated with latanoprost is reversible. Eur. J. Ophthalmol. 2001, 11, 377–379. [Google Scholar] [CrossRef] [PubMed]
- Bearden, W.; Anderson, R. Trichiasis associated with prostaglandin analog use. Ophthalmic Plast. Reconstr. Surg. 2004, 20, 320–322. [Google Scholar] [CrossRef] [PubMed]
- Uno, H.; Zimbric, M.L.; Albert, D.M.; Stjernschantz, J. Effect of latanoprost on hair growth in the bald scalp of the stump-tailed macacque: A pilot study. Acta Derm. Venereol. 2002, 82, 7–12. [Google Scholar] [CrossRef]
- Parrish, R.K.; Palmberg, P.; Sheu, W.P. A comparison of latanoprost, bimatoprost, and travoprost in patients with elevated intraocular pressure: A 12-week, randomized, masked-evaluator multicenter study. Am. J. Ophthalmol. 2003, 135, 688–703. [Google Scholar] [CrossRef]
- Alm, A.; Schoenfelder, J.; McDermott, J. A 5-year, multicenter, open-label, safety study of adjunctive latanoprost therapy for glaucoma. Arch Ophthalmol. 2004, 122, 957–965. [Google Scholar] [CrossRef] [PubMed]
- Netland, P.A.; Landry, T.; Sullivan, E.K.; Andrew, R.; Silver, L.; Weiner, A.; Mallick, S.; Dickerson, J.; Bergamini, M.V.W.; Robertson, S.M.; et al. Travoprost compared with latanoprost and timolol in patients with open-angle glaucoma or ocular hypertension. Am. J. Ophthalmol. 2001, 132, 472–484. [Google Scholar] [CrossRef]
- Brandt, J.D.; VanDenburgh, A.M.; Chen, K.; Whitcup, S.M. Comparison of once- or twice-daily bimatoprost with twice-daily timolol in patients with elevated IOP: A 3-month clinical trial. Ophthalmology 2001, 108, 1023–1031. [Google Scholar] [CrossRef] [PubMed]
- Sherwood, M.; Brandt, J. Six-Month Comparison of Bimatoprost Once-Daily and Twice-Daily with Timolol Twice-Daily in Patients with Elevated Intraocular Pressure. Surv. Ophthalmol. 2001, 45, S361–S368. [Google Scholar] [CrossRef]
- Aihara, M.; Shirato, S.; Sakata, R. Incidence of deepening of the upper eyelid sulcus after switching from latanoprost to bimatoprost. Jpn. J. Ophthalmol. 2011, 55, 600–604. [Google Scholar] [CrossRef]
- Nakakura, S.; Terao, E.; Fujisawa, Y.; Tabuchi, H.; Kiuchi, Y. Changes in Prostaglandin-associated Periorbital Syndrome After Switch from Conventional Prostaglandin F2α Treatment to Omidenepag Isopropyl in 11 Consecutive Patients. J. Glaucoma 2020, 29, 326–328. [Google Scholar] [CrossRef] [PubMed]
- Shah, M.; Lee, G.; Lefebvre, D.R.; Kronberg, B.; Loomis, S.; Brauner, S.C.; Turalba, A.; Rhee, D.J.; Freitag, S.K.; Pasquale, L.R. A cross-sectional survey of the association between bilateral topical prostaglandin analogue use and ocular adnexal features. PLoS ONE 2013, 8, e61638. [Google Scholar] [CrossRef] [PubMed]
- Patradul, C.; Tantisevi, V.; Manassakorn, A. Factors Related to Prostaglandin-Associated Periorbitopathy in Glaucoma Patients. Asia Pac. J. Ophthalmol. 2017, 6, 238–242. [Google Scholar] [CrossRef]
- Manju, M.; Pauly, M. Prostaglandin-associated periorbitopathy: A prospective study in Indian eyes. Kerala J. Ophthalmol. 2020, 32, 36–40. [Google Scholar] [CrossRef]
- Taketani, Y.; Yamagishi, R.; Fujishiro, T.; Igarashi, M.; Sakata, R.; Aihara, M. Activation of the prostanoid FP receptor inhibits adipogenesis leading to deepening of the upper eyelid sulcus in prostaglandin-associated periorbitopathy. Investig. Ophthalmol. Vis. Sci. 2014, 55, 1269–1276. [Google Scholar] [CrossRef] [PubMed]
- Choi, H.Y.; Lee, J.E.; Lee, J.W.; Park, H.J.; Lee, J.E.; Jung, J.H. In Vitro Study of Antiadipogenic Profile of Latanoprost, Travoprost, Bimatoprost, and Tafluprost in Human Orbital Preadiopocytes. J. Ocul. Pharmacol. Ther. 2011, 28, 146–152. [Google Scholar] [CrossRef] [PubMed]
- Seibold, L.K.; Ammar, D.A.; Kahook, M.Y. Acute effects of glaucoma medications and benzalkonium chloride on pre-adipocyte proliferation and adipocyte cytotoxicity in vitro. Curr. Eye Res. 2013, 38, 70–74. [Google Scholar] [CrossRef]
- Ishida, A.; Miki, T.; Naito, T.; Ichioka, S.; Takayanagi, Y.; Tanito, M. Surgical Results of Trabeculectomy among Groups Stratified by Prostaglandin-Associated Periorbitopathy Severity. Ophthalmology 2023, 130, 297–303. [Google Scholar] [CrossRef] [PubMed]
- Guenoun, J.M.; Baudouin, C.; Rat, P.; Pauly, A.; Warnet, J.M.; Brignole-Baudouin, F. In vitro study of inflammatory potential and toxicity profile of latanoprost, travoprost, and bimatoprost in conjunctiva-derived epithelial cells. Investig. Ophthalmol. Vis. Sci. 2005, 46, 2444–2450. [Google Scholar] [CrossRef]
- Jerstad, K.M.; Warshaw, E. Allergic contact dermatitis to latanoprost. Am. J. Contact Dermat. 2002, 13, 39–41. [Google Scholar] [CrossRef]
- Saxena, R.; Prakash, J.A.I.; Mathur, P.; Gupta, S.K. Pharmacotherapy of Glaucoma. Indian. J. Pharmacol. 2002, 34, 71–85. [Google Scholar]
- Zimmerman, T.J.; Wheeler, T.M. Miotics: Side effects and ways to avoid them. Ophthalmology 1982, 89, 76–80. [Google Scholar] [CrossRef]
- Costagliola, C.; dell’Omo, R.; Romano, M.R.; Rinaldi, M.; Zeppa, L.; Parmeggiani, F. Pharmacotherapy of intraocular pressure: Part I. Parasympathomimetic, sympathomimetic and sympatholytics. Expert Opin. Pharmacother. 2009, 10, 2663–2677. [Google Scholar] [CrossRef] [PubMed]
- Tanihara, H.; Inoue, T.; Yamamoto, T.; Kuwayama, Y.; Abe, H.; Araie, M. Phase 2 randomized clinical study of a Rho kinase inhibitor, K-115, in primary open-angle glaucoma and ocular hypertension. Am. J. Ophthalmol. 2013, 156, 731–736. [Google Scholar] [CrossRef] [PubMed]
- Gupta, S.A.V. Carbonic Anhydrase Inhibitors; StatPearls: Treasure Island, FL, USA, 2023. Available online: https://www.ncbi.nlm.nih.gov/books/NBK557736/ (accessed on 23 August 2024).
- Lichter, P.R.; Newman, L.P.; Wheeler, N.C.; Beall, O.V. Patient tolerance to carbonic anhydrase inhibitors. Am. J. Ophthalmol. 1978, 85, 495–502. [Google Scholar] [CrossRef]
- Wall, M.; McDermott, M.P.; Kieburtz, K.D.; Corbett, J.J.; Feldon, S.E.; Friedman, D.I.; Katz, D.M.; Keltner, J.L.; Schron, E.B.; Kupersmith, M.J. Effect of acetazolamide on visual function in patients with idiopathic intracranial hypertension and mild visual loss: The idiopathic intracranial hypertension treatment trial. JAMA 2014, 311, 1641–1651. [Google Scholar] [CrossRef] [PubMed]
- Fraunfelder, F.T.; Meyer, S.M.; Bagby, G.C., Jr.; Dreis, M.W. Hematologic reactions to carbonic anhydrase inhibitors. Am. J. Ophthalmol. 1985, 100, 79–81. [Google Scholar] [CrossRef] [PubMed]
- Maren, T.H.; Haywood, J.R.; Chapman, S.K.; Zimmerman, T.J. The pharmacology of methazolamide in relation to the treatment of glaucoma. Investig. Ophthalmol. Vis. Sci. 1977, 16, 730–742. [Google Scholar]
- Maren, T.H.; Conroy, C.W.; Wynns, G.C.; Levy, N.S. Ocular Absorption, Blood Levels, and Excretion of Dorzolamide, a Topically Active Carbonic Anhydrase Inhibitor. J. Ocul. Pharmacol. Ther. 1997, 13, 23–30. [Google Scholar] [CrossRef] [PubMed]
- Wilkerson, M.; Cyrlin, M.; Lippa, E.A.; Esposito, D.; Deasy, D.; Panebianco, D.; Fazio, R.; Yablonski, M.; Shields, M.B. Four-Week Safety and Efficacy Study of Dorzolamide, a Novel, Active Topical Carbonic Anhydrase Inhibitor. Arch. Ophthalmol. 1993, 111, 1343–1350. [Google Scholar] [CrossRef]
- Strahlman, E.; Tipping, R.; Vogel, R. The Dorzolamide Dose-Response Study, G. A Six-week Dose-response Study of the Ocular Hypotensive Effect of Dorzolamide with a One-year Extension. Am. J. Ophthalmol. 1996, 122, 183–194. [Google Scholar] [CrossRef] [PubMed]
- Maren, T.H. Carbonic anhydrase: Chemistry, physiology, and inhibition. Physiol. Rev. 1967, 47, 595–781. [Google Scholar] [CrossRef] [PubMed]
- Denet, A.R.; Ucakar, B.; Préat, V. Transdermal delivery of timolol and atenolol using electroporation and iontophoresis in combination: A mechanistic approach. Pharm. Res. 2003, 20, 1946–1951. [Google Scholar] [CrossRef] [PubMed]
- McAinsh, J.; Cruickshank, J.M. Beta-blockers and central nervous system side effects. Pharmacol. Ther. 1990, 46, 163–197. [Google Scholar] [CrossRef] [PubMed]
- Wilson, R.P.; Spaeth, G.L.; Poryzees, E. The place of timolol in the practice of ophthalmology. Ophthalmology 1980, 87, 451–454. [Google Scholar] [CrossRef]
- Britman, N.A. Cardiac effects of topical timolol. N. Engl. J. Med. 1979, 300, 566. [Google Scholar] [CrossRef] [PubMed]
- Ros, F.E.; Dake, C.L. Timolol eye drops: Bradycardia or tachycardia? Doc. Ophthalmol. 1980, 48, 283–289. [Google Scholar] [CrossRef]
- Jones, F.L., Jr.; Ekberg, N.L. Exacerbation of asthma by timolol. N. Engl. J. Med. 1979, 301, 270. [Google Scholar]
- Ahmad, S. Cardiopulmonary effects of timolol eyedrops. Lancet 1979, 2, 1028. [Google Scholar] [CrossRef] [PubMed]
- Guzman, C.A. Exacerbation of bronchorrhea induced by topical timolol. Am. Rev. Respir. Dis. 1980, 121, 899–900. [Google Scholar] [PubMed]
- Jones, F.L.; Ekberg, N.L. Exacerbation of obstructive airway disease by timolol. JAMA 1980, 244, 2730. [Google Scholar] [CrossRef] [PubMed]
- Noyes, J.H.; Chervinsky, P. Case report: Exacerbation of asthma by timolol. Ann. Allergy 1980, 45, 301. [Google Scholar] [PubMed]
- Charan, N.B.; Lakshminarayan, S. Pulmonary effects of topical timolol. Arch. Intern. Med. 1980, 140, 843–844. [Google Scholar] [CrossRef] [PubMed]
- Schoene, R.B.; Martin, T.R.; Charan, N.B.; French, C.L. Timolol-induced bronchospasm in asthmatic bronchitis. JAMA 1981, 245, 1460–1461. [Google Scholar] [CrossRef] [PubMed]
- Nelson, W.L.; Kuritsky, J.N. Early postmarketing surveillance of betaxolol hydrochloride, September 1985-September 1986. Am. J. Ophthalmol. 1987, 103, 592. [Google Scholar] [CrossRef] [PubMed]
- Tattersfield, A.E. Beta adrenoceptor antagonists and respiratory disease. J. Cardiovasc. Pharmacol. 1986, 8 (Suppl. 4), S35–S39. [Google Scholar] [CrossRef]
- Fraunfelder, F.T.; Barker, A.F. Respiratory effects of timolol. N. Engl. J. Med. 1984, 311, 1441. [Google Scholar] [CrossRef]
- Cojocariu, S.A.; Maștaleru, A.; Sascău, R.A.; Stătescu, C.; Mitu, F.; Leon-Constantin, M.M. Neuropsychiatric Consequences of Lipophilic Beta-Blockers. Medicina 2021, 57, 155. [Google Scholar] [CrossRef] [PubMed]
- Fraunfelder, F.T. Ocular beta-blockers and systemic effects. Arch. Intern. Med. 1986, 146, 1073–1074. [Google Scholar] [CrossRef] [PubMed]
- Westsmith, R.A.; Abernethy, R.E. Detachment of retina with use of diisopropyl fluorophosphate (fluropryl) in treatment of glaucoma. AMA Arch. Ophthalmol. 1954, 52, 779–780. [Google Scholar] [CrossRef]
- Fraunfelder, F.T.; Meyer, S.M. Sexual dysfunction secondary to topical ophthalmic timolol. JAMA 1985, 253, 3092–3093. [Google Scholar] [CrossRef]
- Cohen, J.B. A comparative study of the central nervous system effects of betaxolol vs timolol. Arch. Ophthalmol. 1989, 107, 633–634. [Google Scholar] [CrossRef]
- Treseder, A.S.; Thomas, T.P. Sinus arrest due to timolol eye drops. Br. J. Clin. Pract. 1986, 40, 256–258. [Google Scholar] [CrossRef] [PubMed]
- Farkouh, A.; Frigo, P.; Czejka, M. Systemic side effects of eye drops: A pharmacokinetic perspective. Clin. Ophthalmol. 2016, 10, 2433–2441. [Google Scholar] [CrossRef] [PubMed]
- Everitt, D.E.; Avorn, J. Systemic effects of medications used to treat glaucoma. Ann. Intern. Med. 1990, 112, 120–125. [Google Scholar] [CrossRef] [PubMed]
- Fraunfelder, F.T.; Scafidi, A.F. Possible adverse effects from topical ocular 10% phenylephrine. Am. J. Ophthalmol. 1978, 85, 447–453. [Google Scholar] [CrossRef]
- Little, J.W. Thyroid disorders. Part I: Hyperthyroidism. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 2006, 101, 276–284. [Google Scholar] [CrossRef]
- Kerr, C.R.; Hass, I.; Drance, S.M.; Walters, M.B.; Schulzer, M. Cardiovascular effects of epinephrine and dipivalyl epinephrine applied topically to the eye in patients with glaucoma. Br. J. Ophthalmol. 1982, 66, 109–114. [Google Scholar] [CrossRef]
- Yu, Y.; Lucitt, M.B.; Stubbe, J.; Cheng, Y.; Friis, U.G.; Hansen, P.B.; Jensen, B.L.; Smyth, E.M.; FitzGerald, G.A. Prostaglandin F2alpha elevates blood pressure and promotes atherosclerosis. Proc. Natl. Acad. Sci. USA 2009, 106, 7985–7990. [Google Scholar] [CrossRef] [PubMed]
- Peak, A.S.; Sutton, B.M. Systemic adverse effects associated with topically applied latanoprost. Ann. Pharmacother. 1998, 32, 504–505. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.; Lee, S.H.; Kim, T.H. The Biology of Prostaglandins and Their Role as a Target for Allergic Airway Disease Therapy. Int. J. Mol. Sci. 2020, 21, 1851. [Google Scholar] [CrossRef]
- Ohyama, K.; Sugiura, M. Evaluation of the Association between Topical Prostaglandin F2α Analogs and Asthma Using the JADER Database: Comparison with β-Blockers. Yakugaku Zasshi 2018, 138, 559–564. [Google Scholar] [CrossRef]
- Reyes, P.F.; Dwyer, B.A.; Schwartzman, R.J.; Sacchetti, T. Mental status changes induced by eye drops in dementia of the Alzheimer type. J. Neurol. Neurosurg. Psychiatry 1987, 50, 113–115. [Google Scholar] [CrossRef]
- Pakala, R.S.; Brown, K.N.; Preuss, C.V. Cholinergic Medications; StatPearls: Treasure Island, FL, USA, 2024. Available online: https://www.ncbi.nlm.nih.gov/books/NBK538163/ (accessed on 1 September 2024).
- Becker, B.; Gage, T. Demecarium bromide and echothiophate iodide in chronic glaucoma. Arch. Ophthalmol. 1960, 63, 102–107. [Google Scholar] [CrossRef]
- Pratt-Johnson, J.A.; Drance, S.M.; Innes, R. Comparison between pilocarpine and echothiophate for chronic simple glaucoma. A comparison between 4 per cent pilocarpine and 0.06 per cent echothiophate iodine in the diurnal management of chronic simple glaucoma. Arch. Ophthalmol. 1964, 72, 485–488. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Wang, H.; Dang, Y. Rho-Kinase Inhibitors as Emerging Targets for Glaucoma Therapy. Ophthalmol. Ther. 2023, 12, 2943–2957. [Google Scholar] [CrossRef]
- Sambhara, D.; Aref, A.A. Glaucoma management: Relative value and place in therapy of available drug treatments. Ther. Adv. Chronic Dis. 2014, 5, 30–43. [Google Scholar] [CrossRef] [PubMed]
- Domaingue, C.M.; Nye, D.H. Hypotensive effect of mannitol administered rapidly. Anaesth. Intensive Care 1985, 13, 134–136. [Google Scholar] [CrossRef]
- Tsai, S.F.; Shu, K.H. Mannitol-induced acute renal failure. Clin. Nephrol. 2010, 74, 70–73. [Google Scholar] [CrossRef]
- Spaeth, G.L.; Spaeth, E.B.; Spaeth, P.G.; Lucier, A.C. Anaphylactic reaction to mannitol. Arch. Ophthalmol. 1967, 78, 583–584. [Google Scholar] [CrossRef] [PubMed]
- Park, J.; Kwak, Y.; Kim, C.H.; Lee, Y.; Choi, Y.J.; Kang, D.H.; Ohk, B. Intraoperative Mannitol Administration Increases the Risk of Postoperative Chronic Subdural Hemorrhage After Unruptured Aneurysm Surgery. World Neurosurg. 2019, 127, e919–e924. [Google Scholar] [CrossRef] [PubMed]
- Tenny, S.; Patel, R.; Thorell, W. Mannitol; StatPearls: Treasure Island, FL, USA, 2024. Available online: https://www.ncbi.nlm.nih.gov/books/NBK470392/ (accessed on 1 September 2024).
- Murray, D. Emergency management: Angle-closure glaucoma. Community Eye Health 2018, 31, 64. [Google Scholar] [PubMed]
- Novack, G.D.; Evans, R. Commercially available ocular hypotensive products: Preservative concentration, stability, storage, and in-life utilization. J. Glaucoma 2001, 10, 483–486. [Google Scholar] [CrossRef]
- Zimmerman, T.J.; Kooner, K.S.; Kandarakis, A.S.; Ziegler, L.P. Improving the therapeutic index of topically applied ocular drugs. Arch. Ophthalmol. 1984, 102, 551–553. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, G.F.; Quigley, H.A. Adherence and Persistence with Glaucoma Therapy. Surv. Ophthalmol. 2008, 53, S57–S68. [Google Scholar] [CrossRef]
- Stein, J.D.; Khawaja, A.P.; Weizer, J.S. Glaucoma in Adults—Screening, Diagnosis, and Management: A Review. JAMA 2021, 325, 164–174. [Google Scholar] [CrossRef]
- Movahedinejad, T.; Adib-Hajbaghery, M. Adherence to treatment in patients with open-angle glaucoma and its related factors. Electron. Physician 2016, 8, 2954–2961. [Google Scholar] [CrossRef] [PubMed]
- Tsai, J.C.; McClure, C.A.; Ramos, S.E.; Schlundt, D.G.; Pichert, J.W. Compliance barriers in glaucoma: A systematic classification. J. Glaucoma 2003, 12, 393–398. [Google Scholar] [CrossRef]
- Patel, S.C.; Spaeth, G.L. Compliance in patients prescribed eyedrops for glaucoma. Ophthalmic Surg. 1995, 26, 233–236. [Google Scholar] [CrossRef] [PubMed]
- Wolfram, C.; Stahlberg, E.; Pfeiffer, N. Patient-Reported Nonadherence with Glaucoma Therapy. J. Ocul. Pharmacol. Ther. 2019, 35, 223–228. [Google Scholar] [CrossRef] [PubMed]
- Friedman, D.S.; Hahn, S.R.; Gelb, L.; Tan, J.; Shah, S.N.; Kim, E.E.; Zimmerman, T.J.; Quigley, H.A. Doctor-patient communication, health-related beliefs, and adherence in glaucoma results from the Glaucoma Adherence and Persistency Study. Ophthalmology 2008, 115, 1320–1327.e3. [Google Scholar] [CrossRef] [PubMed]
- Nordmann, J.-P.; Auzanneau, N.; Ricard, S.; Berdeaux, G. Vision related quality of life and topical glaucoma treatment side effects. Health Qual. Life Outcomes 2003, 1, 75. [Google Scholar] [CrossRef] [PubMed]
- Quaranta, L.; Riva, I.; Gerardi, C.; Oddone, F.; Floriano, I.; Konstas, A.G.P. Quality of Life in Glaucoma: A Review of the Literature. Adv. Ther. 2016, 33, 959–981. [Google Scholar] [CrossRef]
- Odberg, T.; Jakobsen, J.E.; Hultgren, S.J.; Halseide, R. The impact of glaucoma on the quality of life of patients in Norway. Acta Ophthalmol. Scand. 2001, 79, 116–120. [Google Scholar] [CrossRef]
- Lewis, R.A.; Levy, B.; Ramirez, N.; Kopczynski, C.C.; Usner, D.W.; Novack, G.D. Fixed-dose combination of AR-13324 and latanoprost: A double-masked, 28-day, randomised, controlled study in patients with open-angle glaucoma or ocular hypertension. Br. J. Ophthalmol. 2016, 100, 339–344. [Google Scholar] [CrossRef]
- Medeiros, F.A.; Martin, K.R.; Peace, J.; Scassellati Sforzolini, B.; Vittitow, J.L.; Weinreb, R.N. Comparison of Latanoprostene Bunod 0.024% and Timolol Maleate 0.5% in Open-Angle Glaucoma or Ocular Hypertension: The LUNAR Study. Am. J. Ophthalmol. 2016, 168, 250–259. [Google Scholar] [CrossRef] [PubMed]
- Weinreb, R.N.; Scassellati Sforzolini, B.; Vittitow, J.; Liebmann, J. Latanoprostene Bunod 0.024% versus Timolol Maleate 0.5% in Subjects with Open-Angle Glaucoma or Ocular Hypertension: The APOLLO Study. Ophthalmology 2016, 123, 965–973. [Google Scholar] [CrossRef]
- Jiang, Y.; Ondeck, C. A Review of New Medications and Future Directions of Medical Therapies in Glaucoma. Semin. Ophthalmol. 2020, 35, 280–286. [Google Scholar] [CrossRef]
- Weinreb, R.N.; Liebmann, J.M.; Martin, K.R.; Kaufman, P.L.; Vittitow, J.L. Latanoprostene Bunod 0.024% in Subjects With Open-angle Glaucoma or Ocular Hypertension: Pooled Phase 3 Study Findings. J. Glaucoma 2018, 27, 7–15. [Google Scholar] [CrossRef]
- Kawase, K.; Vittitow, J.L.; Weinreb, R.N.; Araie, M. Long-term Safety and Efficacy of Latanoprostene Bunod 0.024% in Japanese Subjects with Open-Angle Glaucoma or Ocular Hypertension: The JUPITER Study. Adv. Ther. 2016, 33, 1612–1627. [Google Scholar] [CrossRef]
- Wang, J.W.; Woodward, D.F.; Stamer, W.D. Differential effects of prostaglandin E2-sensitive receptors on contractility of human ocular cells that regulate conventional outflow. Investig. Ophthalmol. Vis. Sci. 2013, 54, 4782–4790. [Google Scholar] [CrossRef] [PubMed]
- Kalouche, G.; Beguier, F.; Bakria, M.; Melik-Parsadaniantz, S.; Leriche, C.; Debeir, T.; Rostène, W.; Baudouin, C.; Vigé, X. Activation of Prostaglandin FP and EP2 Receptors Differently Modulates Myofibroblast Transition in a Model of Adult Primary Human Trabecular Meshwork Cells. Investig. Ophthalmol. Vis. Sci. 2016, 57, 1816–1825. [Google Scholar] [CrossRef] [PubMed]
- Schlötzer-Schrehardt, U.; Zenkel, M.; Nüsing, R.M. Expression and localization of FP and EP prostanoid receptor subtypes in human ocular tissues. Investig. Ophthalmol. Vis. Sci. 2002, 43, 1475–1487. [Google Scholar]
- Miller Ellis, E.; Berlin, M.S.; Ward, C.L.; Sharpe, J.A.; Jamil, A.; Harris, A. Ocular hypotensive effect of the novel EP3/FP agonist ONO-9054 versus Xalatan: Results of a 28-day, double-masked, randomised study. Br. J. Ophthalmol. 2017, 101, 796–800. [Google Scholar] [CrossRef] [PubMed]
- Chamard, C.; Larrieu, S.; Baudouin, C.; Bron, A.; Villain, M.; Daien, V. Preservative-free versus preserved glaucoma eye drops and occurrence of glaucoma surgery. A retrospective study based on the French national health insurance information system, 2008–2016. Acta Ophthalmol. Copenh. 2020, 98, e876–e881. [Google Scholar] [CrossRef] [PubMed]
- Boimer, C.; Birt, C.M. Preservative exposure and surgical outcomes in glaucoma patients: The PESO study. J. Glaucoma 2013, 22, 730–735. [Google Scholar] [CrossRef] [PubMed]
- Rosin, L.M.; Bell, N.P. Preservative toxicity in glaucoma medication: Clinical evaluation of benzalkonium chloride-free 0.5% timolol eye drops. Clin. Ophthalmol. 2013, 7, 2131–2135. [Google Scholar] [CrossRef]
- Inoue, K.; Masumoto, M.; Wakakura, M.; Tomita, G. Ocular hypotensive effects and safety of latanoprost without benzalkonium hydrochloride. Atarashii Ganka 2011, 28, 1635–1639. [Google Scholar]
- Zimmerman, T.J.; Hahn, S.R.; Gelb, L.; Tan, H.; Kim, E.E. The impact of ocular adverse effects in patients treated with topical prostaglandin analogs: Changes in prescription patterns and patient persistence. J. Ocul. Pharmacol. Ther. 2009, 25, 145–152. [Google Scholar] [CrossRef]
- Konstas, A.G.; Boboridis, K.G.; Kapis, P.; Marinopoulos, K.; Voudouragkaki, I.C.; Panayiotou, D.; Mikropoulos, D.G.; Pagkalidou, E.; Haidich, A.B.; Katsanos, A.; et al. 24-Hour Efficacy and Ocular Surface Health with Preservative-Free Tafluprost Alone and in Conjunction with Preservative-Free Dorzolamide/Timolol Fixed Combination in Open-Angle Glaucoma Patients Insufficiently Controlled with Preserved Latanoprost Monotherapy. Adv. Ther. 2017, 34, 221–235. [Google Scholar] [CrossRef] [PubMed]
- Konstas, A.G.; Holló, G. Preservative-free tafluprost/timolol fixed combination: A new opportunity in the treatment of glaucoma. Expert Opin. Pharmacother. 2016, 17, 1271–1283. [Google Scholar] [CrossRef] [PubMed]
Therapeutic Class | Ocular Side Effects | Systemic Side Effects | Clinical Recommendations |
---|---|---|---|
Carbonic anhydrase inhibitors (CAIs) | Oral: Color vision changes, bilateral transient myopia, angle-closure glaucoma, and choroidal detachment Topical: Stinging sensation (12%), reddening or burning sensation of the eye (12%), blurred vision (9%), pruritus/itching (9%), and tearing (7%) [20] Rarely: Hyperemia, corneal decompensation, and contact dermatitis | Topical: - Stevens–Johnson syndrome, toxic epidermal necrolysis or aplastic anemia (0.208%) - Transient bitter or metallic taste (25%) [19,20,21,22] - Rarely: nausea, fatigue, headache, skin rashes, paresthesia, and urolithiasis Oral: - Stevens–Johnson syndrome, toxic epidermal necrolysis or aplastic anemia (0.29%) [23] - Symptom complex (47.8%): general malaise, weight loss, fatigue, nausea, anorexia, depression, and loss of libido [24] | Second-line; Safety profile: topical > oral. Efficacy: topical < oral Avoid in patients with serious nephropathy. |
Βeta (β) blockers | -Allergic blepharoconjunctivitis, conjunctival hyperemia, punctate keratopathy (due to allergic reactions to benzalkonium chloride or β-blocker) - Burning or stinging sensation on instillation (~30–40% of patients), eye pain or discomfort, foreign body sensation, itchiness, and blurred vision [13,25,26,27,28,29,30,31] - Dry eye (11%) (due to reduced tear production) [32,33] | - Cardiovascular: arrythmia (55%), syncope (13%), heart failure (9%), palpitations (4%), and angina (3%) [34] - Respiratory: bronchospasm-related reactions (58%) such as asthma exacerbation and chronic obstructive airways; dyspnea (29%), apnea (4%), respiratory distress (3%), and respiratory failure (2%) [34] - Neurological: depression, decreased libido, anxiety, nausea, lethargy, emotional lability or irritability, and anorexia | First-line; may be chosen if PGAs are contraindicated or not well-tolerated. Avoid in patients with cardiovascular (e.g., heart failure, sinus bradycardia, atrioventricular block) or respiratory (e.g., asthma, bronchospasms, chronic obstructive lung disease) comorbidities, especially in elderly patients. |
Alpha-adrenergic agonist | Brimonidine: - Blurry vision (6.3–22.2%), burning sensation (14.6–28.1%), conjunctival hyperemia (5.9–30.3%), lid erythema (10.4%), photophobia (4.2–11.3%), and ocular pruritus (12.2–12.5%) [30,31,35] - High-risk of allergic reactions (up to 26%) [36,37] Apraclonidine: - Follicular conjunctivitis and contact dermatitis (due to high oxidative potential) Non-selective agonists: - Irritation, pupillary dilation, hyperemia, follicular conjunctivitis, adrenochrome deposits | Brimonidine: - Fatigue/drowsiness (2.7–19.9%), sedation, and analgesic effects [38,39,40,41] - Reduced blood pressure, headache (4.3–19%) or dizziness (2.1%), and dry mouth (5.3–33%) [38,39,40,42,43] Apraclonidine: - Does not readily cross blood–brain barrier. Epinephrine: - Cardiovascular: increased risk of benign ventricular extrasystoles, severe hypertensive reactions, and myocardial infarction | Second-line; Valuable in both chronic (Brimonidine) and acute (Apraclonidine) glaucoma management; highest risk of allergic reactions, which may warrant medical discontinual and switching. |
Prostaglandin analogs (PGAs) | - Lash growth, periocular skin pigmentation (1.5–2.9%), iris pigmentation changes (7–30%), conjunctival hyperemia (5% to 68%), and peri-orbitopathy [44,45,46,47,48,49,50,51,52,53,54] - Extent of lash grow: 0–25% (latanoprost) 3–36% (bimatoprost) 0.7–52% (travoprost) [44,55,56,57,58,59,60,61,62,63,64] - Anterior uveitis (4.9–6.4%) and reactivation of herpetic simplex keratitis (0.44%) [49,50,51,52,53,54] | - May elevate risk of asthma exacerbation (0.98%) - Muscle/join aches and migraines (0.13%), rhinitis (0.26%), and non-ocular skin pigmentation (0.13%) [65,66,67,68]. | First-line; An excellent choice as the first glaucoma medication for a wide range of patient populations. Exert caution when treating inflammatory glaucoma: risk of anterior uveitis and cystoid macular edema. |
Parasympathomimetics | Direct-acting: - Miosis, ciliary muscle spasm, and brow ache | Direct-acting: - Cardiovascular: bradycardia, arrhythmia, hypotension, flushing, and angina pectoris - Central nervous system: headache, dizziness, somnolence - Gastrointestinal: nausea, vomiting, salivation, diarrhea, urinary incontinence - Respiratory: cough, dyspnea, asthma exacerbation, pulmonary edema - Alzheimer’s disease exacerbation Indirect-acting: hypersalivation (9%), seizure (0.61%), vomiting (4.2%), abdominal cramps, bradycardia (0.35%), and arrhythmia (0.04%) [69] | Rarely used in practice now due to undesirable benefit to harm ratio. |
Rho kinase inhibitors | - Conjunctival hyperemia (>50% of patients for Netarsudil) [70,71] - Corneal verticillate, instillation site pain, and conjunctival hemorrhages | Newer agents with promising efficacy and safety profile. May serve as a meaningful adjunct to first-line therapy. | |
Hyperosmotic agents | - Dry mouth, volume depletion, and cardiac effects (tachycardiac, hypotension, worsened heart failure) - Gastrointestinal events (nausea, vomiting) - Renal events (metabolic acidosis, urinary retention, acute kidney injury, peripheral edema) - Subdural hematoma - Anaphylactic reactions | Limited to acute glaucoma attacks. Should be avoided in patients with heart failure, pulmonary edema, electrolyte imbalance. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Balas, M.; Mathew, D.J. A Review of Ocular and Systemic Side Effects in Glaucoma Pharmacotherapy. J. Clin. Transl. Ophthalmol. 2025, 3, 2. https://doi.org/10.3390/jcto3010002
Li X, Balas M, Mathew DJ. A Review of Ocular and Systemic Side Effects in Glaucoma Pharmacotherapy. Journal of Clinical & Translational Ophthalmology. 2025; 3(1):2. https://doi.org/10.3390/jcto3010002
Chicago/Turabian StyleLi, Xiaole, Michael Balas, and David J. Mathew. 2025. "A Review of Ocular and Systemic Side Effects in Glaucoma Pharmacotherapy" Journal of Clinical & Translational Ophthalmology 3, no. 1: 2. https://doi.org/10.3390/jcto3010002
APA StyleLi, X., Balas, M., & Mathew, D. J. (2025). A Review of Ocular and Systemic Side Effects in Glaucoma Pharmacotherapy. Journal of Clinical & Translational Ophthalmology, 3(1), 2. https://doi.org/10.3390/jcto3010002