What Insights Do Short-Maturity (7DTE) Return Predictive Regressions Offer about Risk Preferences in the Oil Market?
Abstract
:1. Introduction
2. Forecasting Oil Futures Returns and Relation to the Literature
3. Data on Short Maturity (7DTE) Options and Oil Futures
4. Short Maturity (7DTE) Oil Futures Return Predictability
- skewness from weekly oil options (). This weekly variable is .
- excess kurtosis from weekly oil options (). This weekly variable is .
- Realized variance of oil futures returns (). This weekly variable is based on oil futures returns sampled at five-minute intervals.
- Realized skewness from oil futures returns (). This weekly variable is based on oil futures returns sampled at five-minute intervals.
- second equity return cumulant (). This is based on weekly S&P 500 equity index options prices. We use , with .
- third equity return cumulant (). This is based on weekly S&P 500 equity index options prices.
- fourth equity return cumulant (). This is based on weekly S&P 500 equity index options prices.
- skewness from weekly equity options (). This weekly variable is . We use S&P 500 equity index options prices.
- excess kurtosis from weekly equity options (). This weekly variable is . We use S&P 500 equity index options prices.
- Realized variance of equity futures returns (). This weekly variable is based on S&P 500 E-mini equity futures returns sampled at five-minute intervals.
- Realized skewness from equity futures returns (). This weekly variable is based on S&P 500 E-mini equity futures returns sampled at five-minute intervals.
- Growth rate of crude oil stock (). This is constructed based on EIA releases of petroleum status reports (https://www.eia.gov/petroleum/supply/weekly/, accessed on 14 May 2024). The underlying quantity is crude oil stock.
- Growth rate of crude oil production (). The underlying variable is domestic crude oil production (EIA estimates).
- Growth rate of crude oil imports (). The underlying variable is crude oil imports (EIA estimates).
- When the nested model is the historical average and is the full model, the values are 1.13% and 0.97% for WTI and the oil basket, respectively. These values suggest that using as a predictor adds to the predictive ability beyond using the historical average.
- When the alternative predictor is the nested model and the bivariate predictor constitutes the full model, the resulting values reported in Table 5 and Table 6 are all positive and range from 0.25% to 4.1%. These values align with the notion that has additional predicting power over the considered alternative predictor.
5. Risk Preferences and the Third Risk-Neutral Return Cumulant
5.1. Oil Futures Risk Premiums
5.2. Sign of (Theoretical Counterpart to ) in Theoretical Economies
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alquist, R.; Kilian, L. What do we learn from the price of crude oil futures? J. Appl. Econom. 2010, 25, 539–573. [Google Scholar] [CrossRef]
- Alquist, R.; Kilian, L.; Vigfusson, R. Forecasting the price of oil. In Handbook of Economic Forecasting; Elsevier: Amsterdam, The Netherlands, 2013; Volume 2, pp. 427–507. [Google Scholar]
- Miao, H.; Ramchander, S.; Wang, T.; Yang, D. Influential factors in crude oil price forecasting. Energy Econ. 2017, 68, 77–88. [Google Scholar] [CrossRef]
- Funk, C. Forecasting the real price of oil—Time-variation and forecast combination. Energy Econ. 2018, 76, 288–302. [Google Scholar] [CrossRef]
- Cotter, J.; Eyiah-Donkor, E.; Poti, V. Commodity Futures Return Predictability and Intertemporal Asset Pricing; Working Paper; University College Dublin: Dublin, Ireland, 2020. [Google Scholar]
- Ellwanger, R.; Snudden, S. Forecasts of the real price of oil revisited: Do they beat the random walk? J. Bank. Financ. 2023, 154, 106962. [Google Scholar] [CrossRef]
- Conlon, T.; Cotter, J.; Eyiah-Donkor, E. Forecasting the price of oil: A cautionary note. J. Commod. Mark. 2024, 33, 100378. [Google Scholar] [CrossRef]
- Killian, L. Not all oil price shocks are alike: Disentangling demand and supply shocks in the crude oil market. Am. Econ. Rev. 2009, 99, 1053–1069. [Google Scholar] [CrossRef]
- Baumeister, C.; Hamilton, J. Structural interpretation of vector autoregressions with incomplete identification: Revisiting the role of oil supply and demand shocks. Am. Econ. Rev. 2019, 109, 1873–1910. [Google Scholar] [CrossRef]
- Routledge, B.; Seppi, D.; Spatt, C. Equilibrium forward curves for commodities. J. Financ. 2000, 55, 1297–1338. [Google Scholar] [CrossRef]
- Trolle, A.; Schwartz, E. Unspanned stochastic volatility and the pricing of commodity derivatives. Rev. Financ. Stud. 2009, 22, 4423–4461. [Google Scholar] [CrossRef]
- Chiang, I.; Hughen, K.; Sagi, J. Estimating Oil Risk Factors Using Information from Equity and Derivatives Markets. J. Financ. 2015, 70, 769–804. [Google Scholar] [CrossRef]
- Ready, R. Oil consumption, economic growth, and oil futures: The impact of long-run oil supply uncertainty on asset prices. J. Monet. Econ. 2018, 94, 1–26. [Google Scholar] [CrossRef]
- Christoffersen, P.; Jacobs, K.; Pan, X. The State Price Density Implied by Crude Oil Futures and Option Prices. Rev. Financ. Stud. 2022, 35, 1064–1103. [Google Scholar] [CrossRef]
- Gao, L.; Hitzemann, S.; Shaliastovich, I.; Xu, L. Oil Volatility Risk. J. Financ. Econ. 2022, 144, 456–494. [Google Scholar] [CrossRef]
- Kang, W.; Rouwenhorst, G.; Tang, K. A tale of two premiums: The role of hedgers and speculators in commodity futures markets. J. Financ. 2014, 75, 377–417. [Google Scholar] [CrossRef]
- Fernandez-Perez, A.; Frijns, B.; Fuertes, A.M.; Miffre, J. The skewness of commodity futures returns. J. Bank. Financ. 2018, 86, 143–158. [Google Scholar] [CrossRef]
- Mastroeni, L.; Mazzoccoli, A.; Quaresima, G.; Vellucci, P. Decoupling and recoupling in the crude oil price benchmarks: An investigation of similarity patterns. Energy Econ. 2021, 94, 105036. [Google Scholar] [CrossRef]
- Le, T.H.; Boubaker, S.; Bui, M.T.; Park, D. On the volatility of WTI crude oil prices: A time-varying approach with stochastic volatility. Energy Econ. 2023, 117, 106474. [Google Scholar] [CrossRef]
- Bakshi, G.; Madan, D. Spanning and Derivative-Security Valuation. J. Financ. Econ. 2000, 55, 205–238. [Google Scholar] [CrossRef]
- Bakshi, G.; Kapadia, N.; Madan, D. Stock Return Characteristics, Skew Laws, and the Differential Pricing of Individual Equity Options. Rev. Financ. Stud. 2003, 16, 101–143. [Google Scholar] [CrossRef]
- Prokopczuk, M.; Symeonidis, L.; Simen, C. Variance risk in commodity markets. J. Bank. Financ. 2017, 81, 136–149. [Google Scholar] [CrossRef]
- Ruan, X.; Zhang, J. Risk-neutral moments in the crude oil market. Energy Econ. 2018, 72, 583–600. [Google Scholar] [CrossRef]
- Wong, P. Predicting intraday crude oil returns with higher order risk-neutral moments. J. Commod. Mark. 2023, 100331. [Google Scholar] [CrossRef]
- Campbell, J.; Thompson, S. Predicting Excess Stock Returns Out of Sample: Can Anything Beat the Historical Average? Rev. Financ. Stud. 2008, 21, 1509–1531. [Google Scholar] [CrossRef]
- Fuertes, A.M.; Miffre, J.; Rallis, G. Tactical allocation in commodity futures markets: Combining momentum and term structure signals. J. Bank. Financ. 2010, 34, 2530–2548. [Google Scholar] [CrossRef]
- Casassus, J.; Liu, P.; Tang, K. Economic Linkages, Relative Scarcity, and Commodity Futures Returns. Rev. Financ. Stud. 2013, 26, 1324–1362. [Google Scholar] [CrossRef]
- Ahmed, S.; Tsvetanov, D. The predictive performance of commodity futures risk factors. J. Bank. Financ. 2016, 71, 20–36. [Google Scholar] [CrossRef]
- Gao, X.; Li, B.; Liu, R. The relative pricing of WTI and Brent crude oil futures: Expectations or risk premia? J. Commod. Mark. 2023, 30, 100274. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, J.; Chen, S. Information effects of monetary policy announcements on oil price. J. Commod. Mark. 2023, 30, 100268. [Google Scholar] [CrossRef]
- Chang, C.L. Extreme events, economic uncertainty and speculation on occurrences of price bubbles in crude oil futures. Energy Econ. 2024, 130, 107318. [Google Scholar] [CrossRef]
- Cui, J.; Maghyereh, A. Unveiling interconnectedness: Exploring higher-order moments among energy, precious metals, industrial metals, and agricultural commodities in the context of geopolitical risks and systemic stress. J. Commod. Mark. 2024, 33, 100380. [Google Scholar] [CrossRef]
- Dai, Z.; Zhang, X.; Liang, C. Efficient predictability of oil price: The role of VIX-based panic index shadow line difference. Energy Econ. 2024, 129, 107234. [Google Scholar] [CrossRef]
- Gronwald, M.; Jin, X. Measuring world oil market integration with a Thick Pen. Energy Econ. 2024, 130, 107315. [Google Scholar] [CrossRef]
- Gupta, R.; Nielsen, J.; Pierdzioch, C. Stock market bubbles and the realized volatility of oil price returns. Energy Econ. 2024, 132, 107432. [Google Scholar] [CrossRef]
- Luo, Q.; Ma, F.; Wang, J.; Wu, Y. Changing determinant driver and oil volatility forecasting: A comprehensive analysis. Energy Econ. 2024, 129, 107187. [Google Scholar] [CrossRef]
- Zhang, L.; Chen, Y.; Bouri, E. Time-varying jump intensity and volatility forecasting of crude oil returns. Energy Econ. 2024, 129, 107236. [Google Scholar] [CrossRef]
- Bakshi, G.; Gao, X.; Xue, J. Recovery with Applications to Forecasting Equity Disaster Probability and Testing the Spanning Hypothesis in the Treasury Market. J. Financ. Quant. Anal. 2023, 58, 1808–1842. [Google Scholar] [CrossRef]
- Bakshi, G.; Crosby, J.; Gao, X.; Zhou, W. A New Formula for the Expected Excess Return of the Market; Working Paper; Temple University: Philadelphia, PA, USA, 2024. [Google Scholar]
Mean | SD | Min. | 5th | 25th | 50th | 75th | 95th | Max. | |
---|---|---|---|---|---|---|---|---|---|
WTI crude oil futures: Number of OTM puts | 45 | 29 | 8 | 12 | 19 | 46 | 65 | 95 | 182 |
WTI crude oil futures: Number of OTM calls | 46 | 32 | 11 | 13 | 20 | 44 | 62 | 101 | 203 |
S&P 500 equity index: Number of OTM puts | 98 | 53 | 14 | 36 | 57 | 83 | 136 | 193 | 322 |
S&P 500 equity index: Number of OTM calls | 35 | 24 | 8 | 14 | 19 | 26 | 44 | 87 | 158 |
Mean (%) | SD (%) | Block Bootstrap | NW[] | Min. | Max. | Acf | Skewness | Kurtosis | (%) | ||
---|---|---|---|---|---|---|---|---|---|---|---|
Lower | Upper | ||||||||||
Panel A: Oil futures returns, (weekly, %) | |||||||||||
WTI futures | 0.24 | 5.86 | ⌊−0.32 | 0.78⌋ | 0.46 | −32.3 | 24.7 | 0.11 | −0.7 | 5.9 | 55 |
Brent futures | 0.30 | 5.08 | ⌊−0.18 | 0.74⌋ | 0.29 | −20.9 | 23.3 | 0.00 | 0.0 | 2.9 | 56 |
Dubai futures | 0.31 | 4.89 | ⌊−0.26 | 0.85⌋ | 0.32 | −20.9 | 35.6 | 0.11 | 1.2 | 13.1 | 55 |
Heating Oil futures | 0.34 | 5.31 | ⌊−0.11 | 0.80⌋ | 0.23 | −24.1 | 33.3 | −0.01 | 0.5 | 6.3 | 53 |
RBOB Gasoline futures | 0.40 | 6.13 | ⌊−0.22 | 0.97⌋ | 0.27 | −33.0 | 24.4 | 0.08 | −0.4 | 5.2 | 53 |
Equal weight basket | 0.32 | 4.84 | ⌊−0.18 | 0.81⌋ | 0.28 | −22.4 | 25.1 | 0.09 | 0.01 | 4.1 | 55 |
Panel B: Volatility of oil futures returns (from intraday returns, annualized (%)) | |||||||||||
WTI futures | 29.0 | 32.8 | ⌊24.6 | 35.0⌋ | 0.00 | 9.9 | 539.2 | 0.47 | 11.9 | 175.4 | |
Brent futures | 27.0 | 15.4 | ⌊24.3 | 30.3⌋ | 0.00 | 10.9 | 163.6 | 0.73 | 4.7 | 31.4 | |
Dubai futures | 27.7 | 34.3 | ⌊23.1 | 33.5⌋ | 0.00 | 1.2 | 349.6 | 0.36 | 4.4 | 28.4 | |
Heating Oil futures | 24.6 | 13.1 | ⌊22.0 | 27.3⌋ | 0.00 | 11.7 | 121.4 | 0.79 | 3.3 | 15.8 | |
RBOB Gasoline futures | 27.6 | 17.2 | ⌊24.5 | 31.5⌋ | 0.00 | 13.9 | 155.8 | 0.88 | 4.8 | 28.4 | |
Panel C: Return correlations | Panel D: Correlation between return volatilities | ||||||||||
WTI | Brent | Dubai | Heating Oil | WTI | Brent | Dubai | Heating Oil | ||||
Brent futures | 0.86 | 0.81 | |||||||||
Dubai futures | 0.61 | 0.58 | 0.48 | 0.70 | |||||||
Heating Oil futures | 0.85 | 0.77 | 0.62 | 0.71 | 0.91 | 0.70 | |||||
RBOB Gasoline futures | 0.81 | 0.81 | 0.57 | 0.79 | 0.76 | 0.92 | 0.65 | 0.87 |
Mean | SD | Bootstrap Block | NW[] | Min. | Max. | Acf | Skewness | Kurtosis | (%) | ||
---|---|---|---|---|---|---|---|---|---|---|---|
Lower | Upper | ||||||||||
0.0042 | 0.0105 | ⌊0.0026 | 0.0065⌋ | 0.00 | 0.0003 | 0.1328 | 0.66 | 8.12 | 80.3 | ||
−0.00012 | 0.00185 | ⌊−0.00033 | 0.00001⌋ | 0.24 | −0.03211 | 0.00581 | 0.17 | −15.10 | 263.6 | 32 | |
0.00032 | 0.00360 | ⌊0.00003 | 0.00083⌋ | 0.20 | −0.00121 | 0.06442 | 0.21 | 16.92 | 299.9 | ||
−0.1773 | 0.47 | ⌊−0.26 | −0.09⌋ | 0.00 | −1.37 | 1.87 | 0.62 | 0.43 | 1.27 | 32 | |
6.2 | 2.4 | ⌊5.8 | 6.5⌋ | 0.00 | 2.8 | 26.2 | 0.43 | 3.56 | 21.15 | ||
0.0037 | 0.0306 | ⌊0.0013 | 0.0077⌋ | 0.059 | 0.0002 | 0.5591 | 0.12 | 17.76 | 322.81 | ||
−0.1209 | 1.25 | ⌊−0.25 | −0.02⌋ | 0.08 | −9.32 | 6.63 | −0.02 | −0.60 | 12.51 | 44 | |
0.00065 | 0.00116 | ⌊0.00047 | 0.00089⌋ | 0.00 | 0.00006 | 0.01359 | 0.78 | 6.87 | 61.56 | ||
−0.000027 | 0.00010 | ⌊−0.00005 | −0.00001⌋ | 0.00 | −0.00107 | 0.00000 | 0.71 | −8.54 | 79.77 | 0 | |
0.0000024 | 0.00001 | ⌊0.00000 | 0.00000⌋ | 0.02 | 0.00000 | 0.00021 | 0.51 | 13.20 | 200.50 | ||
−1.3 | 0.5 | ⌊−1.3 | −1.2⌋ | 0.00 | −2.7 | −0.1 | 0.61 | −0.66 | 0.22 | 0 | |
7.4 | 4.8 | ⌊6.6 | 8.2⌋ | 0.00 | 2.1 | 48.3 | 0.51 | 3.35 | 18.49 | ||
0.00048 | 0.00116 | ⌊0.00032 | 0.00071⌋ | 0.00 | 0.00002 | 0.01443 | 0.79 | 8.33 | 84.51 | ||
−0.17 | 0.66 | ⌊−0.24 | −0.11⌋ | 0.00 | −4.78 | 1.71 | 0.05 | −2.41 | 14.55 | 40 | |
−0.10 | 0.56 | ⌊−0.18 | −0.02⌋ | 0.03 | −1.72 | 2.26 | 0.37 | 0.61 | 1.44 | 41 | |
0.11 | 2.23 | ⌊−0.02 | 0.23⌋ | 0.19 | −13.98 | 12.31 | −0.20 | −0.85 | 16.02 | 45 | |
−0.10 | 9.64 | ⌊−0.42 | 0.28⌋ | 0.70 | −28.38 | 32.60 | −0.53 | 0.22 | 0.52 | 47 |
Predictor (Univariate) | Constant | NW[p] | NW[p] | (%) | CORR | Predict (Yes or No) | |
---|---|---|---|---|---|---|---|
Panel A: Three 7DTE higher-order risk-neutral return cumulants from oil market | |||||||
0.00 | 0.45 | 0.07 | 0.88 | −0.28 | 0.01 | No | |
0.00 | 0.55 | −3.57 | 0.01 | 0.98 | −0.11 | Yes | |
0.00 | 0.52 | 0.95 | 0.01 | 0.05 | 0.06 | Yes | |
Panel B: Other predictors from oil markets | |||||||
0.00 | 0.64 | −0.01 | 0.40 | −0.11 | −0.04 | No | |
−0.01 | 0.48 | 0.00 | 0.21 | 0.04 | 0.06 | No | |
0.00 | 0.56 | 0.08 | 0.07 | −0.13 | 0.04 | Yes | |
0.00 | 0.57 | −0.00 | 0.33 | −0.10 | −0.05 | No | |
Panel C: Predictors from equity markets | |||||||
0.01 | 0.11 | −4.75 | 0.33 | 0.59 | −0.09 | No | |
0.00 | 0.11 | 88.92 | 0.14 | 1.88 | 0.15 | No | |
0.00 | 0.32 | −295.6 | 0.30 | 0.13 | −0.07 | No | |
−0.01 | 0.16 | −0.01 | 0.02 | 0.40 | −0.08 | Yes | |
−0.00 | 0.58 | 0.00 | 0.14 | 0.14 | 0.07 | No | |
0.01 | 0.09 | −6.2 | 0.23 | 1.22 | −0.12 | No | |
0.00 | 0.49 | 0.00 | 0.81 | −0.29 | 0.01 | No | |
Panel D: Predictors from the Energy Information Administration (EIA) | |||||||
0.00 | 0.79 | −1.39 | 0.03 | 1.51 | −0.15 | Yes | |
0.00 | 0.48 | −0.06 | 0.69 | −0.25 | −0.02 | No | |
0.00 | 0.50 | −0.03 | 0.29 | 0.01 | −0.06 | No |
Alternative Predictor | Constant | NW[ ] | Predictor Is | Alternative | (%) | Joint | (%) | ||
---|---|---|---|---|---|---|---|---|---|
NW[] | NW[] | ||||||||
0.00 0.15 | −5.41 | 0.01 | −0.52 | 0.28 | 1.23 | 0.01 | 0.39 | ||
0.00 0.48 | −9.46 | 0.00 | −3.40 | 0.01 | 1.58 | 0.00 | 2.78 | ||
0.00 | 0.64 | −3.43 | 0.01 | 0.00 | 0.65 | 0.74 | 0.02 | 0.52 | |
−0.01 | 0.46 | −3.56 | 0.01 | 0.00 | 0.21 | 1.02 | 0.01 | 1.25 | |
0.00 | 0.32 | −16.1 | 0.00 | −0.82 | 0.00 | 3.47 | 0.00 | 4.10 | |
0.00 | 0.64 | −3.45 | 0.01 | 0.00 | 0.53 | 0.79 | 0.03 | 1.08 | |
0.01 | 0.11 | −3.97 | 0.01 | −5.52 | 0.26 | 1.88 | 0.04 | 0.90 | |
0.00 | 0.13 | −4.08 | 0.02 | 97.1 | 0.10 | 3.28 | 0.04 | 1.23 | |
0.00 | 0.38 | −3.84 | 0.02 | −357.9 | 0.21 | 1.32 | 0.04 | 1.21 | |
−0.01 | 0.12 | −3.65 | 0.01 | −0.01 | 0.02 | 1.46 | 0.00 | 0.96 | |
−0.00 | 0.50 | −3.63 | 0.01 | 0.00 | 0.12 | 1.19 | 0.01 | 1.00 | |
0.01 | 0.10 | −3.98 | 0.02 | −6.88 | 0.19 | 2.53 | 0.05 | 1.08 | |
0.00 | 0.56 | −3.57 | 0.01 | 0.00 | 0.74 | 0.72 | 0.03 | 1.18 | |
−0.00 | 0.90 | −3.97 | 0.00 | −0.78 | 0.01 | 3.37 | 0.00 | 0.95 | |
0.00 | 0.59 | −3.55 | 0.01 | −0.06 | 0.68 | 0.75 | 0.03 | 1.12 | |
0.00 | 0.62 | −3.64 | 0.01 | −0.04 | 0.23 | 1.08 | 0.03 | 1.25 |
Alternative Predictor | Constant | Predictor Is | Alternative | NW[] | (%) | Joint | |||
---|---|---|---|---|---|---|---|---|---|
NW[] | NW[] | ||||||||
0.00 | 0.15 | −4.92 | 0.01 | −0.27 | 0.52 | 1.96 | 0.00 | 0.51 | |
0.00 | 0.33 | −6.52 | 0.00 | −1.46 | 0.21 | 2.00 | 0.00 | 1.56 | |
0.00 | 0.40 | −3.91 | 0.00 | 0.00 | 0.75 | 1.79 | 0.00 | 0.25 | |
−0.01 | 0.47 | −3.99 | 0.00 | 0.00 | 0.17 | 2.20 | 0.00 | 1.13 | |
0.00 | 0.25 | −11.10 | 0.00 | −0.47 | 0.00 | 3.10 | 0.00 | 2.21 | |
0.00 | 0.44 | −3.86 | 0.00 | 0.00 | 0.39 | 1.94 | 0.00 | 0.88 | |
0.01 | 0.03 | −4.35 | 0.00 | −4.97 | 0.19 | 3.23 | 0.00 | 0.68 | |
0.00 | 0.06 | −4.42 | 0.00 | 80.79 | 0.06 | 4.45 | 0.00 | 0.97 | |
0.00 | 0.24 | −4.20 | 0.00 | −268.28 | 0.18 | 2.33 | 0.00 | 1.06 | |
−0.01 | 0.11 | −4.07 | 0.00 | −0.01 | 0.01 | 2.81 | 0.00 | 0.60 | |
0.00 | 0.48 | −4.06 | 0.00 | 0.00 | 0.09 | 2.62 | 0.00 | 0.95 | |
0.01 | 0.04 | −4.34 | 0.00 | −5.84 | 0.12 | 3.77 | 0.00 | 0.95 | |
0.00 | 0.39 | −4.01 | 0.00 | 0.00 | 0.65 | 1.86 | 0.00 | 0.76 | |
0.00 | 0.60 | −4.19 | 0.00 | −0.88 | 0.09 | 2.85 | 0.00 | 0.81 | |
0.00 | 0.38 | −3.99 | 0.00 | −0.03 | 0.77 | 1.80 | 0.00 | 0.82 | |
0.00 | 0.40 | −4.08 | 0.00 | −0.04 | 0.10 | 2.49 | 0.00 | 1.04 |
Alternative Predictor | Constant | Predictor Is | Alternative | NW[] | (%) | Joint | ||
---|---|---|---|---|---|---|---|---|
NW[] | NW[] | |||||||
0.00 0.11 | −3.59 | 0.08 | −0.42 | 0.18 | 0.46 | 0.21 | ||
0.00 0.28 | −9.97 | 0.00 | −4.53 | 0.00 | 2.11 | 0.00 | ||
0.00 | 0.51 | −1.90 | 0.20 | −0.01 | 0.38 | 0.23 | 0.22 | |
0.00 | 0.69 | −2.12 | 0.17 | 0.00 | 0.34 | 0.20 | 0.28 | |
0.00 | 0.16 | −15.59 | 0.00 | −0.88 | 0.00 | 4.30 | 0.00 | |
0.00 | 0.41 | −2.02 | 0.18 | 0.00 | 0.44 | 0.12 | 0.32 | |
0.00 | 0.17 | −2.30 | 0.17 | −2.37 | 0.61 | 0.31 | 0.37 | |
0.00 | 0.11 | −2.40 | 0.18 | 52.12 | 0.34 | 1.01 | 0.28 | |
0.00 | 0.26 | −2.26 | 0.17 | −172.5 | 0.49 | 0.21 | 0.32 | |
−0.01 | 0.09 | −2.21 | 0.15 | −0.01 | 0.01 | 1.00 | 0.01 | |
0.00 | 0.54 | −2.19 | 0.15 | 0.00 | 0.13 | 0.59 | 0.15 | |
0.00 | 0.09 | −2.36 | 0.17 | −3.94 | 0.37 | 0.82 | 0.28 | |
0.00 | 0.32 | −2.16 | 0.16 | 0.00 | 0.36 | 0.19 | 0.26 | |
0.00 | 0.55 | −2.30 | 0.12 | −0.75 | 0.14 | 0.72 | 0.12 | |
0.00 | 0.36 | −2.13 | 0.17 | −0.02 | 0.87 | 0.02 | 0.37 | |
0.00 | 0.38 | −2.22 | 0.15 | −0.05 | 0.05 | 0.87 | 0.06 |
Alternative Predictor | Constant | Predictor Is | Alternative | NW[] | (%) | Joint | ||
---|---|---|---|---|---|---|---|---|
NW[] | NW[] | |||||||
0.01 | 0.04 | −10.45 | 0.00 | −0.82 | 0.12 | 9.56 | 0.00 | |
0.00 | 0.45 | −9.43 | 0.01 | −1.07 | 0.56 | 7.81 | 0.00 | |
0.00 | 0.36 | −7.74 | 0.00 | 0.00 | 0.48 | 7.80 | 0.00 | |
0.00 | 0.59 | −7.57 | 0.00 | 0.00 | 0.24 | 7.95 | 0.00 | |
0.00 | 0.40 | −11.48 | 0.00 | −0.26 | 0.25 | 8.10 | 0.00 | |
0.00 | 0.58 | −7.38 | 0.00 | 0.00 | 0.31 | 8.06 | 0.00 | |
0.01 | 0.00 | −8.35 | 0.00 | −10.46 | 0.00 | 13.79 | 0.00 | |
0.01 | 0.05 | −8.25 | 0.00 | 123.5 | 0.00 | 13.69 | 0.00 | |
0.00 | 0.24 | −8.04 | 0.00 | −595.8 | 0.00 | 10.22 | 0.00 | |
−0.01 | 0.08 | −7.68 | 0.00 | −0.01 | 0.01 | 9.16 | 0.00 | |
−0.01 | 0.28 | −7.68 | 0.00 | 0.00 | 0.04 | 9.05 | 0.00 | |
0.01 | 0.02 | −8.12 | 0.00 | −8.79 | 0.00 | 12.03 | 0.00 | |
0.00 | 0.68 | −7.55 | 0.00 | 0.00 | 0.67 | 7.86 | 0.00 | |
0.00 | 0.71 | −7.76 | 0.00 | −0.81 | 0.25 | 8.59 | 0.00 | |
0.00 | 0.51 | −7.58 | 0.00 | 0.01 | 0.91 | 7.71 | 0.00 | |
0.00 | 0.51 | −7.65 | 0.00 | −0.04 | 0.24 | 8.24 | 0.00 |
Alternative Predictor | Constant | Predictor Is | Alternative | NW[] | (%) | Joint | ||
---|---|---|---|---|---|---|---|---|
NW[] | NW[] | |||||||
0.00 | 0.20 | −3.91 | 0.01 | −0.15 | 0.63 | 0.85 | 0.00 | |
0.00 | 0.26 | −6.41 | 0.03 | −1.76 | 0.20 | 1.09 | 0.00 | |
0.00 | 0.34 | −3.32 | 0.00 | 0.00 | 0.88 | 0.80 | 0.00 | |
0.00 | 0.54 | −3.36 | 0.00 | 0.00 | 0.21 | 1.10 | 0.00 | |
0.00 | 0.23 | −9.51 | 0.00 | −0.40 | 0.02 | 1.63 | 0.00 | |
0.00 | 0.38 | −3.16 | 0.00 | 0.00 | 0.17 | 1.13 | 0.00 | |
0.00 | 0.08 | −3.50 | 0.00 | −2.00 | 0.46 | 1.01 | 0.00 | |
0.00 | 0.11 | −3.56 | 0.00 | 38.39 | 0.21 | 1.31 | 0.00 | |
0.00 | 0.25 | −3.34 | 0.00 | 24.17 | 0.87 | 0.82 | 0.00 | |
−0.01 | 0.24 | −3.43 | 0.00 | −0.01 | 0.04 | 1.52 | 0.00 | |
0.00 | 0.72 | −3.42 | 0.00 | 0.00 | 0.16 | 1.23 | 0.00 | |
0.00 | 0.08 | −3.52 | 0.00 | −2.77 | 0.28 | 1.18 | 0.00 | |
0.00 | 0.26 | −3.38 | 0.00 | 0.00 | 0.58 | 0.89 | 0.00 | |
0.00 | 0.59 | −3.64 | 0.00 | −1.24 | 0.03 | 2.55 | 0.00 | |
0.00 | 0.32 | −3.36 | 0.00 | −0.03 | 0.82 | 0.82 | 0.00 | |
0.00 | 0.33 | −3.45 | 0.00 | −0.04 | 0.17 | 1.43 | 0.00 |
Alternative Predictor | Constant | Predictor Is | Alternative | NW[] | (%) | Joint | ||
---|---|---|---|---|---|---|---|---|
NW[] | NW[] | |||||||
0.00 | 0.68 | −1.26 | 0.63 | 0.58 | 0.40 | 1.03 | 0.00 | |
0.00 | 0.35 | 2.67 | 0.47 | 3.46 | 0.05 | 1.26 | 0.00 | |
0.00 | 0.38 | −3.17 | 0.00 | 0.00 | 0.62 | 0.48 | 0.00 | |
−0.01 | 0.32 | −3.31 | 0.00 | 0.00 | 0.08 | 1.10 | 0.00 | |
0.00 | 0.35 | −2.86 | 0.55 | 0.03 | 0.91 | 0.44 | 0.00 | |
0.00 | 0.37 | −3.30 | 0.00 | 0.00 | 0.91 | 0.43 | 0.00 | |
0.01 | 0.08 | −3.65 | 0.00 | −4.48 | 0.47 | 1.18 | 0.00 | |
0.01 | 0.05 | −3.82 | 0.00 | 92.8 | 0.18 | 2.66 | 0.00 | |
0.00 | 0.24 | −3.50 | 0.00 | −239.4 | 0.44 | 0.71 | 0.00 | |
−0.01 | 0.43 | −3.38 | 0.00 | −0.01 | 0.14 | 0.83 | 0.00 | |
0.00 | 0.57 | −3.40 | 0.00 | 0.00 | 0.16 | 1.08 | 0.00 | |
0.01 | 0.04 | −3.73 | 0.00 | −6.83 | 0.27 | 2.15 | 0.00 | |
0.00 | 0.33 | −3.37 | 0.00 | 0.00 | 0.34 | 0.66 | 0.00 | |
0.00 | 0.40 | −3.35 | 0.00 | −0.13 | 0.84 | 0.44 | 0.00 | |
0.00 | 0.34 | −3.31 | 0.00 | −0.08 | 0.57 | 0.51 | 0.00 | |
0.00 | 0.36 | −3.42 | 0.00 | −0.05 | 0.11 | 0.98 | 0.00 |
Panel A: | |||||||||
constant | NW[p] | NW[p] | NW[p] | NW[p] | (%) | ||||
WTI | 0.00 | 0.33 | −0.15 | 0.87 | −9.13 | 0.01 | −2.91 | 0.42 | 1.31 |
Oil basket | 0.00 | 0.20 | −0.13 | 0.84 | −6.23 | 0.01 | −1.02 | 0.65 | 1.74 |
Panel B: Regression with dummy variables | |||||||||
WTI | constant | NW[p] | NW[p] | NW[p] | NW[p] | ||||
−0.01 | 0.12 | 7.31 | 0.07 | −0.21 | 0.82 | 6.15 | 0.01 | ||
NW[p] | NW[p] | NW[p] | |||||||
53.07 | 0.62 | −7.96 | 0.04 | −27.94 | 0.00 | ||||
NW[p] | NW[p] | NW[p] | (%) | ||||||
−188.34 | 0.48 | −1.96 | 0.59 | −109.46 | 0.05 | 2.22 | |||
Oil basket | constant | NW[p] | NW[p] | NW[p] | NW[p] | ||||
−0.01 | 0.30 | 5.66 | 0.18 | −0.16 | 0.80 | 4.51 | 0.04 | ||
NW[p] | NW[p] | NW[p] | |||||||
83.03 | 0.39 | −4.95 | 0.05 | −24.38 | 0.01 | ||||
NW[p] | NW[p] | NW[p] | (%) | ||||||
−152.42 | 0.59 | −0.17 | 0.94 | −81.53 | 0.10 | 2.33 |
Weeks | Full Sample 12 August 2016, to 23 February 2023 Weekly Returns (%) | Subsample 12 August 2016, to 5 June 2020 Weekly Returns (%) | Subsample 5 June 2020, to 23 February 2023 Weekly Returns (%) | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Mean Return | Block Bootstrap | NW[] | (%) | Mean Return | Block Bootstrap | NW[] | (%) | Mean Return | Block Bootstrap | NW[] | (%) | Sharpe Ratio | ||||
8 | 0.13 | ⌊−0.39 | 0.67⌋ | 0.68 | 54 | −0.24 | ⌊−1.13 | 0.34⌋ | 0.58 | 48 | 0.63 | ⌊0.04 | 1.28⌋ | 0.10 | 63 | 0.90 |
7 | 0.09 | ⌊−0.42 | 0.61⌋ | 0.77 | 53 | −0.37 | ⌊−1.24 | 0.18⌋ | 0.39 | 47 | 0.71 | ⌊0.14 | 1.34⌋ | 0.06 | 63 | 1.01 |
6 | 0.33 | ⌊−0.17 | 0.85⌋ | 0.28 | 55 | 0.01 | ⌊−0.83 | 0.54⌋ | 0.98 | 50 | 0.77 | ⌊0.16 | 1.42⌋ | 0.05 | 62 | 1.09 |
5 | 0.22 | ⌊−0.31 | 0.75⌋ | 0.48 | 55 | −0.01 | ⌊−0.86 | 0.53⌋ | 0.97 | 50 | 0.54 | ⌊−0.16 | 1.28⌋ | 0.17 | 61 | 0.76 |
4 | 0.04 | ⌊−0.47 | 0.56⌋ | 0.89 | 52 | −0.19 | ⌊−1.03 | 0.35⌋ | 0.66 | 47 | 0.36 | ⌊−0.29 | 1.02⌋ | 0.33 | 60 | 0.51 |
3 | 0.14 | ⌊−0.38 | 0.65⌋ | 0.65 | 53 | 0.05 | ⌊−0.78 | 0.58⌋ | 0.90 | 51 | 0.25 | ⌊−0.40 | 0.91⌋ | 0.51 | 56 | 0.35 |
2 | 0.07 | ⌊−0.44 | 0.60⌋ | 0.83 | 54 | −0.13 | ⌊−0.98 | 0.43⌋ | 0.76 | 51 | 0.34 | ⌊−0.30 | 1.01⌋ | 0.36 | 58 | 0.48 |
1 | 0.09 | ⌊−0.41 | 0.64⌋ | 0.77 | 54 | −0.13 | ⌊−0.96 | 0.46⌋ | 0.76 | 51 | 0.40 | ⌊−0.26 | 1.09⌋ | 0.29 | 58 | 0.57 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bakshi, G.; Gao, X.; Zhang, Z. What Insights Do Short-Maturity (7DTE) Return Predictive Regressions Offer about Risk Preferences in the Oil Market? Commodities 2024, 3, 225-247. https://doi.org/10.3390/commodities3020014
Bakshi G, Gao X, Zhang Z. What Insights Do Short-Maturity (7DTE) Return Predictive Regressions Offer about Risk Preferences in the Oil Market? Commodities. 2024; 3(2):225-247. https://doi.org/10.3390/commodities3020014
Chicago/Turabian StyleBakshi, Gurdip, Xiaohui Gao, and Zhaowei Zhang. 2024. "What Insights Do Short-Maturity (7DTE) Return Predictive Regressions Offer about Risk Preferences in the Oil Market?" Commodities 3, no. 2: 225-247. https://doi.org/10.3390/commodities3020014
APA StyleBakshi, G., Gao, X., & Zhang, Z. (2024). What Insights Do Short-Maturity (7DTE) Return Predictive Regressions Offer about Risk Preferences in the Oil Market? Commodities, 3(2), 225-247. https://doi.org/10.3390/commodities3020014