The Framingham Study on Cardiovascular Disease Risk and Stress-Defenses: A Historical Review
Abstract
:1. Introduction
2. The Framingham Heart Study
3. Cardiovascular Risk (CVD-R)
4. Cardiovascular Risk Calculation
5. Age
6. Gender
7. Cigarettes
8. Coronary Atherosclerosis
9. Hypertension and Its Determinants
10. Hyperlipidemia and Dyslipidemia
11. Lipoproteins
12. Apolipoproteins
13. Enzymes or Lipoprotein Metabolism
14. Cholesterol as a Marker of CVD-R
15. Statin Therapy of Hypercholesterolemia
16. Type II Diabetes
17. Systemic Inflammatory Conditions
18. HIV
19. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ahmad, T.; Mora, S. Providing patients with global cardiovascular risk information: Is knowledge power? Arch. Intern. Med. 2010, 170, 227–228. [Google Scholar] [CrossRef] [PubMed]
- Badawy, M.A.E.M.D.; Naing, L.; Johar, S.; Ong, S.; Rahman, H.A.; Tengah, D.S.N.A.P.; Chong, C.L.; Tuah, N.A.A. Evaluation of cardiovascular diseases risk calculators for CVDs prevention and management: Scoping review. BMC Public Health 2022, 22, 1742. [Google Scholar] [CrossRef] [PubMed]
- Cho, S.-Y.; Kim, S.-H.; Kang, S.-H.; Lee, K.J.; Choi, D.; Kang, S.; Park, S.J.; Kim, T.; Yoon, C.-H.; Youn, T.-J.; et al. Pre-existing and machine learning-based models for cardiovascular risk prediction. Sci. Rep. 2021, 11, 8886. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.; Ying, T.W.; Chin, W.L.C.; Baskaran, L.; Marcus, O.E.H.; Yeo, K.K.; Kiong, N.S. Application of ensemble machine learning algorithms on lifestyle factors and wearables for cardiovascular risk prediction. Sci. Rep. 2022, 12, 1033. [Google Scholar] [CrossRef] [PubMed]
- Hoyert, D.L.; Xu, J. Deaths: Preliminary data for 2011. Natl. Vital Stat. Rep. 2012, 61, 1–51. [Google Scholar]
- Dawber, T.R.; Meadors, G.F.; Moore, F.E., Jr. Epidemiological approaches to heart disease: The Framingham Study. Am. J. Public Health Nations Health 1951, 41, 279–281. [Google Scholar] [CrossRef]
- Dawber, T.R.; Kannel, W.B.; Revotskie, N.; Stokes, J., III; Kagan, A.; Gordon, T. Some factors associated with the development of coronary heart disease: Six years’ follow-up experience in the Framingham study. Am. J. Public Health Nations Health 1959, 49, 1349–1356. [Google Scholar] [CrossRef]
- Kannel, W.B. Habitual level of physical activity and risk of coronary heart disease: The Framingham study. Can. Med. Assoc. J. 1967, 96, 811–812. [Google Scholar]
- Kannel, W.B.; Gordon, T.; Dawber, T.R. Role of lipids in the development of brain infarction: The Framingham study. Stroke 1974, 5, 679–685. [Google Scholar] [CrossRef] [Green Version]
- Gordon, T.; Castelli, W.P.; Hjortland, M.C.; Kannel, W.B.; Dawber, T.R. High density lipoprotein as a protective factor against coronary heart disease. The Framingham Study. Am. J. Med. 1977, 62, 707–714. [Google Scholar] [CrossRef]
- Kannel, W.B.; Gordan, T. Evaluation of cardiovascular risk in the elderly: The Framingham study. Bull. N. Y. Acad. Med. 1978, 54, 573–591. [Google Scholar] [PubMed]
- Kannel, W.B.; Gordon, T.; Castelli, W.P. Obesity, lipids, and glucose intolerance. The Framingham Study. Am. J. Clin. Nutr. 1979, 32, 1238–1245. [Google Scholar] [CrossRef] [PubMed]
- Kannel, W.B. Framingham study insights into hypertensive risk of cardiovascular disease. Hypertens. Res. 1995, 18, 181–196. [Google Scholar] [CrossRef] [Green Version]
- Singh, J.P.; Larson, M.G.; Tsuji, H.; Evans, J.C.; O’Donnell, C.J.; Levy, D. Reduced heart rate variability and new-onset hypertension: Insights into pathogenesis of hypertension: The Framingham Heart Study. Hypertension 1998, 32, 293–297. [Google Scholar] [CrossRef] [Green Version]
- Harris, T.; Cook, E.F.; Garrison, R.; Higgins, M.; Kannel, W.; Goldman, L. Body mass index and mortality among nonsmoking older persons. The Framingham Heart Study. JAMA 1988, 259, 1520–1524. [Google Scholar] [CrossRef] [PubMed]
- Benjamin, E.J.; Wolf, P.A.; D’Agostino, R.B.; Silbershatz, H.; Kannel, W.B.; Levy, D. Impact of atrial fibrillation on the risk of death: The Framingham Heart Study. Circulation 1998, 98, 946–952. [Google Scholar] [CrossRef] [Green Version]
- Singh, J.P.; Larson, M.G.; Manolio, T.A.; O’Donnell, C.J.; Lauer, M.; Evans, J.C.; Levy, D. Blood pressure response during treadmill testing as a risk factor for new-onset hypertension. The Framingham heart study. Circulation 1999, 99, 1831–1836. [Google Scholar] [CrossRef]
- Seman, L.J.; DeLuca, C.; Jenner, J.L.; Cupples, L.A.; McNamara, J.R.; Wilson, P.W.; Castelli, W.P.; Ordovas, J.M.; Schaefer, E.J. Lipoprotein(a)-cholesterol and coronary heart disease in the Framingham Heart Study. Clin. Chem. 1999, 45, 1039–1046. [Google Scholar] [CrossRef]
- Russo, G.T.; Meigs, J.B.; Cupples, L.A.; Demissie, S.; Otvos, J.D.; Wilson, P.W.; Lahoz, C.; Cucinotta, D.; Couture, P.; Mallory, T.; et al. Association of the Sst-I polymorphism at the APOC3 gene locus with variations in lipid levels, lipoprotein subclass profiles and coronary heart disease risk: The Framingham offspring study. Atherosclerosis 2001, 158, 173–181. [Google Scholar] [CrossRef]
- Rost, N.S.; Wolf, P.A.; Kase, C.S.; Kelly-Hayes, M.; Silbershatz, H.; Massaro, J.M.; D’Agostino, R.B.; Franzblau, C.; Wilson, P.W. Plasma concentration of C-reactive protein and risk of ischemic stroke and transient ischemic attack: The Framingham study. Stroke 2001, 32, 2575–2579. [Google Scholar] [CrossRef]
- Nanchahal, K.; Duncan, J.R.; Durrington, P.N.; Jackson, R.T. Analysis of predicted coronary heart disease risk in England based on Framingham study risk appraisal models published in 1991 and 2000. BMJ 2002, 325, 194–195. [Google Scholar] [CrossRef] [Green Version]
- Lloyd-Jones, D.M.; Larson, M.G.; Leip, E.P.; Beiser, A.; D’Agostino, R.B.; Kannel, W.B.; Murabito, J.M.; Vasan, R.S.; Benjamin, E.J.; Levy, D.; et al. Lifetime risk for developing congestive heart failure: The Framingham Heart Study. Circulation 2002, 106, 3068–3072. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rutter, M.K.; Parise, H.; Benjamin, E.J.; Levy, D.; Larson, M.G.; Meigs, J.B.; Nesto, R.W.; Wilson, P.W.; Vasan, R.S. Impact of glucose intolerance and insulin resistance on cardiac structure and function: Sex-related differences in the Framingham Heart Study. Circulation 2003, 107, 448–454. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Keaney, J.F., Jr.; Larson, M.G.; Vasan, R.S.; Wilson, P.W.; Lipinska, I.; Corey, D.; Massaro, J.M.; Sutherland, P.; Vita, J.A.; Benjamin, E.J.; et al. Obesity and systemic oxidative stress: Clinical correlates of oxidative stress in the Framingham Study. Arterioscler. Thromb. Vasc. Biol. 2003, 23, 434–439. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vasan, R.S.; Sullivan, L.M.; Roubenoff, R.; Dinarello, C.A.; Harris, T.; Benjamin, E.J.; Sawyer, D.B.; Levy, D.; Wilson, P.W.; D’Agostino, R.B.; et al. Inflammatory markers and risk of heart failure in elderly subjects without prior myocardial infarction: The Framingham Heart Study. Circulation 2003, 107, 1486–1491. [Google Scholar] [CrossRef]
- Karamohamed, S.; Demissie, S.; Volcjak, J.; Liu, C.; Heard-Costa, N.; Liu, J.; Shoemaker, C.M.; Panhuysen, C.I.; Meigs, J.B.; Wilson, P.; et al. Polymorphisms in the insulin-degrading enzyme gene are associated with type 2 diabetes in men from the NHLBI Framingham Heart Study. Diabetes 2003, 52, 1562–1567. [Google Scholar] [CrossRef]
- Albert, M.A.; Glynn, R.J.; Ridker, P.M. Plasma concentration of C-reactive protein and the calculated Framingham Coronary Heart Disease Risk Score. Circulation 2003, 108, 161–165. [Google Scholar] [CrossRef] [Green Version]
- Meigs, J.B.; Wilson, P.W.; Nathan, D.M.; D’Agostino, R.B., Sr.; Williams, K.; Haffner, S.M. Prevalence and characteristics of the metabolic syndrome in the San Antonio Heart and Framingham Offspring Studies. Diabetes 2003, 52, 2160–2167. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Geller, F.; Dempfle, A.; Gorg, T.; Framingham Heart, S. Genome scan for body mass index and height in the Framingham Heart Study. BMC Genet. 2003, 4 (Suppl. 1), S91. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koenig, W.; Lowel, H.; Baumert, J.; Meisinger, C. C-reactive protein modulates risk prediction based on the Framingham Score: Implications for future risk assessment: Results from a large cohort study in southern Germany. Circulation 2004, 109, 1349–1353. [Google Scholar] [CrossRef] [Green Version]
- Freedman, D.S.; Otvos, J.D.; Jeyarajah, E.J.; Shalaurova, I.; Cupples, L.A.; Parise, H.; D’Agostino, R.B.; Wilson, P.W.; Schaefer, E.J. Sex and age differences in lipoprotein subclasses measured by nuclear magnetic resonance spectroscopy: The Framingham Study. Clin. Chem. 2004, 50, 1189–1200. [Google Scholar] [CrossRef]
- Rutter, M.K.; Meigs, J.B.; Sullivan, L.M.; D’Agostino, R.B., Sr.; Wilson, P.W. C-reactive protein, the metabolic syndrome, and prediction of cardiovascular events in the Framingham Offspring Study. Circulation 2004, 110, 380–385. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fox, C.S.; Evans, J.C.; Larson, M.G.; Kannel, W.B.; Levy, D. Temporal trends in coronary heart disease mortality and sudden cardiac death from 1950 to 1999: The Framingham Heart Study. Circulation 2004, 110, 522–527. [Google Scholar] [CrossRef] [Green Version]
- Mainous, A.G., III; Wells, B.J.; Koopman, R.J.; Everett, C.J.; Gill, J.M. Iron, lipids, and risk of cancer in the Framingham Offspring cohort. Am. J. Epidemiol. 2005, 161, 1115–1122. [Google Scholar] [CrossRef] [Green Version]
- McDermott, D.H.; Yang, Q.; Kathiresan, S.; Cupples, L.A.; Massaro, J.M.; Keaney, J.F., Jr.; Larson, M.G.; Vasan, R.S.; Hirschhorn, J.N.; O’Donnell, C.J.; et al. CCL2 polymorphisms are associated with serum monocyte chemoattractant protein-1 levels and myocardial infarction in the Framingham Heart Study. Circulation 2005, 112, 1113–1120. [Google Scholar] [CrossRef] [Green Version]
- Meigs, J.B.; O’Donnell, C.J.; Tofler, G.H.; Benjamin, E.J.; Fox, C.S.; Lipinska, I.; Nathan, D.M.; Sullivan, L.M.; D’Agostino, R.B.; Wilson, P.W.F. Hemostatic markers of endothelial dysfunction and risk of incident type 2 diabetes: The Framingham Offspring Study. Diabetes 2006, 55, 530–537. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lloyd-Jones, D.M.; Leip, E.P.; Larson, M.G.; D’Agostino, R.B.; Beiser, A.; Wilson, P.W.; Wolf, P.A.; Levy, D. Prediction of lifetime risk for cardiovascular disease by risk factor burden at 50 years of age. Circulation 2006, 113, 791–798. [Google Scholar] [CrossRef] [PubMed]
- Fox, C.S.; Pencina, M.J.; Meigs, J.B.; Vasan, R.S.; Levitzky, Y.S.; D’Agostino, R.B., Sr. Trends in the incidence of type 2 diabetes mellitus from the 1970s to the 1990s: The Framingham Heart Study. Circulation 2006, 113, 2914–2918. [Google Scholar] [CrossRef] [PubMed]
- Cupples, L.A.; Arruda, H.T.; Benjamin, E.J.; D’Agostino, R.B., Sr.; Demissie, S.; DeStefano, A.L.; Dupuis, J.; Falls, K.M.; Fox, C.S.; Gottlieb, D.J.; et al. The Framingham Heart Study 100K SNP genome-wide association study resource: Overview of 17 phenotype working group reports. BMC Med. Genet. 2007, 8 (Suppl. 1), S1. [Google Scholar] [CrossRef] [Green Version]
- Lee, D.S.; Evans, J.C.; Robins, S.J.; Wilson, P.W.; Albano, I.; Fox, C.S.; Wang, T.J.; Benjamin, E.J.; D’Agostino, R.B.; Vasan, R.S. Gamma glutamyl transferase and metabolic syndrome, cardiovascular disease, and mortality risk: The Framingham Heart Study. Arterioscler. Thromb. Vasc. Biol. 2007, 27, 127–133. [Google Scholar] [CrossRef] [Green Version]
- Fox, C.S.; Massaro, J.M.; Hoffmann, U.; Pou, K.M.; Maurovich-Horvat, P.; Liu, C.Y.; Vasan, R.S.; Murabito, J.M.; Meigs, J.B.; Cupples, L.A.; et al. Abdominal visceral and subcutaneous adipose tissue compartments: Association with metabolic risk factors in the Framingham Heart Study. Circulation 2007, 116, 39–48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Levy, D. Hypertension from Framingham to ALLHAT: Translating clinical trials into practice. Clevel. Clin. J. Med. 2007, 74, 672–678. [Google Scholar] [CrossRef] [PubMed]
- Florez, J.C.; Manning, A.K.; Dupuis, J.; McAteer, J.; Irenze, K.; Gianniny, L.; Mirel, D.B.; Fox, C.S.; Cupples, L.A.; Meigs, J.B. A 100K genome-wide association scan for diabetes and related traits in the Framingham Heart Study: Replication and integration with other genome-wide datasets. Diabetes 2007, 56, 3063–3074. [Google Scholar] [CrossRef] [Green Version]
- D’Agostino, R.B., Sr.; Vasan, R.S.; Pencina, M.J.; Wolf, P.A.; Cobain, M.; Massaro, J.M.; Kannel, W.B. General cardiovascular risk profile for use in primary care: The Framingham Heart Study. Circulation 2008, 117, 743–753. [Google Scholar] [CrossRef] [Green Version]
- Speliotes, E.K.; Massaro, J.M.; Hoffmann, U.; Foster, M.C.; Sahani, D.V.; Hirschhorn, J.N.; O’Donnell, C.J.; Fox, C.S. Liver fat is reproducibly measured using computed tomography in the Framingham Heart Study. J. Gastroenterol. Hepatol. 2008, 23, 894–899. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lewis, G.D.; Gona, P.; Larson, M.G.; Plehn, J.F.; Benjamin, E.J.; O’Donnell, C.J.; Levy, D.; Vasan, R.S.; Wang, T.J. Exercise blood pressure and the risk of incident cardiovascular disease (from the Framingham Heart Study). Am. J. Cardiol. 2008, 101, 1614–1620. [Google Scholar] [CrossRef] [Green Version]
- Fox, C.S.; Pencina, M.J.; Wilson, P.W.; Paynter, N.P.; Vasan, R.S.; D’Agostino, R.B., Sr. Lifetime risk of cardiovascular disease among individuals with and without diabetes stratified by obesity status in the Framingham heart study. Diabetes Care 2008, 31, 1582–1584. [Google Scholar] [CrossRef] [Green Version]
- Preis, S.R.; Hwang, S.J.; Coady, S.; Pencina, M.J.; D’Agostino, R.B., Sr.; Savage, P.J.; Levy, D.; Fox, C.S. Trends in all-cause and cardiovascular disease mortality among women and men with and without diabetes mellitus in the Framingham Heart Study, 1950 to 2005. Circulation 2009, 119, 1728–1735. [Google Scholar] [CrossRef] [Green Version]
- Pencina, M.J.; D’Agostino, R.B., Sr.; Larson, M.G.; Massaro, J.M.; Vasan, R.S. Predicting the 30-year risk of cardiovascular disease: The framingham heart study. Circulation 2009, 119, 3078–3084. [Google Scholar] [CrossRef] [Green Version]
- Velagaleti, R.S.; Massaro, J.; Vasan, R.S.; Robins, S.J.; Kannel, W.B.; Levy, D. Relations of lipid concentrations to heart failure incidence: The Framingham Heart Study. Circulation 2009, 120, 2345–2351. [Google Scholar] [CrossRef] [Green Version]
- Baker, A.R.; Goodloe, R.J.; Larkin, E.K.; Baechle, D.J.; Song, Y.E.; Phillips, L.S.; Gray-McGuire, C.L. Multivariate association analysis of the components of metabolic syndrome from the Framingham Heart Study. BMC Proc. 2009, 3 (Suppl. 7), S42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Speliotes, E.K.; Massaro, J.M.; Hoffmann, U.; Vasan, R.S.; Meigs, J.B.; Sahani, D.V.; Hirschhorn, J.N.; O’Donnell, C.J.; Fox, C.S. Fatty liver is associated with dyslipidemia and dysglycemia independent of visceral fat: The Framingham Heart Study. Hepatology 2010, 51, 1979–1987. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dhingra, R.; Gona, P.; Wang, T.J.; Fox, C.S.; D’Agostino, R.B., Sr.; Vasan, R.S. Serum gamma-glutamyl transferase and risk of heart failure in the community. Arterioscler. Thromb. Vasc. Biol. 2010, 30, 1855–1860. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, G.; McAlister, F.A.; Walker, R.L.; Hemmelgarn, B.R.; Campbell, N.R. Cardiovascular outcomes in framingham participants with diabetes: The importance of blood pressure. Hypertension 2011, 57, 891–897. [Google Scholar] [CrossRef] [Green Version]
- Robins, S.J.; Lyass, A.; Zachariah, J.P.; Massaro, J.M.; Vasan, R.S. Insulin resistance and the relationship of a dyslipidemia to coronary heart disease: The Framingham Heart Study. Arterioscler. Thromb. Vasc. Biol. 2011, 31, 1208–1214. [Google Scholar] [CrossRef] [Green Version]
- Bhasin, S.; Jasjua, G.K.; Pencina, M.; D’Agostino, R., Sr.; Coviello, A.D.; Vasan, R.S.; Travison, T.G. Sex hormone-binding globulin, but not testosterone, is associated prospectively and independently with incident metabolic syndrome in men: The framingham heart study. Diabetes Care 2011, 34, 2464–2470. [Google Scholar] [CrossRef] [Green Version]
- Haring, R.; Travison, T.G.; Bhasin, S.; Vasan, R.S.; Wallaschofski, H.; Davda, M.N.; Coviello, A.; Murabito, J.M. Relation between sex hormone concentrations, peripheral arterial disease, and change in ankle-brachial index: Findings from the Framingham Heart Study. J. Clin. Endocrinol. Metab. 2011, 96, 3724–3732. [Google Scholar] [CrossRef] [PubMed]
- Hivert, M.F.; Sullivan, L.M.; Shrader, P.; Fox, C.S.; Nathan, D.M.; D’Agostino, R.B., Sr.; Wilson, P.W.; Kowall, B.; Herder, C.; Meisinger, C.; et al. Insulin resistance influences the association of adiponectin levels with diabetes incidence in two population-based cohorts: The Cooperative Health Research in the Region of Augsburg (KORA) S4/F4 study and the Framingham Offspring Study. Diabetologia 2011, 54, 1019–1024. [Google Scholar] [CrossRef] [Green Version]
- Dallmeier, D.; Larson, M.G.; Vasan, R.S.; Keaney, J.F., Jr.; Fontes, J.D.; Meigs, J.B.; Fox, C.S.; Benjamin, E.J. Metabolic syndrome and inflammatory biomarkers: A community-based cross-sectional study at the Framingham Heart Study. Diabetol. Metab. Syndr. 2012, 4, 28. [Google Scholar] [CrossRef] [Green Version]
- Dallmeier, D.; Larson, M.G.; Wang, N.; Fontes, J.D.; Benjamin, E.J.; Fox, C.S. Addition of inflammatory biomarkers did not improve diabetes prediction in the community: The framingham heart study. J. Am. Heart Assoc. 2012, 1, e000869. [Google Scholar] [CrossRef] [Green Version]
- Tsao, C.W.; Preis, S.R.; Peloso, G.M.; Hwang, S.J.; Kathiresan, S.; Fox, C.S.; Cupples, L.A.; Hoffmann, U.; O’Donnell, C.J. Relations of long-term and contemporary lipid levels and lipid genetic risk scores with coronary artery calcium in the framingham heart study. J. Am. Coll. Cardiol. 2012, 60, 2364–2371. [Google Scholar] [CrossRef] [PubMed]
- Weinstein, G.; Wolf, P.A.; Beiser, A.S.; Au, R.; Seshadri, S. Risk estimations, risk factors, and genetic variants associated with Alzheimer’s disease in selected publications from the Framingham Heart Study. J. Alzheimers Dis. 2013, 33 (Suppl. 1), S439–S445. [Google Scholar] [CrossRef] [PubMed]
- Levitzky, Y.S.; Guo, C.Y.; Rong, J.; Larson, M.G.; Walter, R.E.; Keaney, J.F., Jr.; Sutherland, P.A.; Vasan, A.; Lipinska, I.; Evans, J.C.; et al. Relation of smoking status to a panel of inflammatory markers: The framingham offspring. Atherosclerosis 2008, 201, 217–224. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Awasthi, S.; Singhal, S.S.; Sharma, R.; Zimniak, P.; Awasthi, Y.C. Transport of glutathione conjugates and chemotherapeutic drugs by RLIP76 (RALBP1): A novel link between G-protein and tyrosine kinase signaling and drug resistance. Int. J. Cancer 2003, 106, 635–646. [Google Scholar] [CrossRef]
- Awasthi, S.; Singhal, S.S.; Yadav, S.; Singhal, J.; Drake, K.; Nadkar, A.; Zajac, E.; Wickramarachchi, D.; Rowe, N.; Yacoub, A.; et al. RLIP76 is a major determinant of radiation sensitivity. Cancer Res. 2005, 65, 6022–6028. [Google Scholar] [CrossRef] [Green Version]
- Yadav, S.; Zajac, E.; Singhal, S.S.; Awasthi, S. Linking stress-signaling, glutathione metabolism, signaling pathways and xenobiotic transporters. Cancer Metastasis Rev. 2007, 26, 59–69. [Google Scholar] [CrossRef]
- Singhal, J.; Singhal, S.S.; Yadav, S.; Suzuki, S.; Warnke, M.M.; Yacoub, A.; Dent, P.; Bae, S.; Sharma, R.; Awasthi, Y.C.; et al. RLIP76 in defense of radiation poisoning. Int. J. Radiat. Oncol. Biol. Phys. 2008, 72, 553–561. [Google Scholar] [CrossRef] [Green Version]
- Awasthi, S.; Singhal, S.S.; Yadav, S.; Singhal, J.; Vatsyayan, R.; Zajac, E.; Luchowski, R.; Borvak, J.; Gryczynski, K.; Awasthi, Y.C. A central role of RLIP76 in regulation of glycemic control. Diabetes 2010, 59, 714–725. [Google Scholar] [CrossRef] [Green Version]
- Singhal, J.; Nagaprashantha, L.; Vatsyayan, R.; Awasthi, S.; Singhal, S.S. RLIP76, a Glutathione-Conjugate Transporter, Plays a Major Role in the Pathogenesis of Metabolic Syndrome. PLoS ONE 2011, 6, e24688. [Google Scholar] [CrossRef] [Green Version]
- Goff, D.C., Jr.; Lloyd-Jones, D.M.; Bennett, G.; Coady, S.; D’Agostino, R.B.; Gibbons, R.; Greenland, P.; Lackland, D.T.; Levy, D.; O’Donnell, C.J.; et al. 2013 ACC/AHA guideline on the assessment of cardiovascular risk: A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. Circulation 2014, 129, S49–S73. [Google Scholar] [CrossRef] [Green Version]
- National Heart, Lung, and Blood Institute. Assessing Cardiovascular Risk: Systematic Evidence Review from the Risk Assessment Work Group. Available online: http://cvdrisk.nhlbi.nih.gov/ (accessed on 24 December 2022).
- Ridker, P.M.; Buring, J.E.; Rifai, N.; Cook, N.R. Development and validation of improved algorithms for the assessment of global cardiovascular risk in women: The Reynolds Risk Score. JAMA 2007, 297, 611–619. [Google Scholar] [CrossRef]
- Tan, K.C.; Chow, W.S.; Tam, S.C.; Ai, V.H.; Lam, C.H.; Lam, K.S. Atorvastatin lowers C-reactive protein and improves endothelium-dependent vasodilation in type 2 diabetes mellitus. J. Clin. Endocrinol. Metab. 2002, 87, 563–568. [Google Scholar] [CrossRef]
- Stone, N.J.; Robinson, J.G.; Lichtenstein, A.H.; Bairey Merz, C.N.; Blum, C.B.; Eckel, R.H.; Goldberg, A.C.; Gordon, D.; Levy, D.; Lloyd-Jones, D.M.; et al. 2013 ACC/AHA guideline on the treatment of blood cholesterol to reduce atherosclerotic cardiovascular risk in adults: A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. Circulation 2014, 129, S1–S45. [Google Scholar] [CrossRef] [Green Version]
- ACC/AHA. ASCVD Risk Estimator. Available online: http://tools.cardiosource.org/ASCVD-Risk-Estimator (accessed on 24 December 2022).
- Mayo Clinic Health System. Heart Disease Risk Calculator. Available online: http://www.mayoclinic.org/heart-disease-risk/itt-20084942 (accessed on 24 December 2022).
- Perk, J.; De Backer, G.; Gohlke, H.; Graham, I.; Reiner, Z.; Verschuren, M.; Albus, C.; Benlian, P.; Boysen, G.; Cifkova, R.; et al. European Guidelines on cardiovascular disease prevention in clinical practice (version 2012). The Fifth Joint Task Force of the European Society of Cardiology and Other Societies on Cardiovascular Disease Prevention in Clinical Practice (constituted by representatives of nine societies and by invited experts). Eur Heart J. 2012, 33, 1635–1701. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- European Society of Cardiology. HeartScore. Available online: http://www.heartscore.org/Pages/welcome.aspx (accessed on 24 December 2022).
- Broedl, U.C.; Geiss, H.C.; Parhofer, K.G. Comparison of current guidelines for primary prevention of coronary heart disease: Risk assessment and lipid-lowering therapy. J. Gen. Intern. Med. 2003, 18, 190–195. [Google Scholar] [CrossRef] [Green Version]
- Geritse, A.; Muller, G.; Trompetter, T.; Schulte, H.; Assmann, G. Risk factor calculator for medical underwriting of life insurers based on the PROCAM study. Versicherungsmedizin 2008, 60, 74–77. [Google Scholar] [PubMed]
- Ruperez, M.; Lorenzo, O.; Blanco-Colio, L.M.; Esteban, V.; Egido, J.; Ruiz-Ortega, M. Connective tissue growth factor is a mediator of angiotensin II-induced fibrosis. Circulation 2003, 108, 1499–1505. [Google Scholar] [CrossRef] [Green Version]
- Hippisley-Cox, J.; Coupland, C.; Vinogradova, Y.; Robson, J.; Minhas, R.; Sheikh, A.; Brindle, P. Predicting cardiovascular risk in England and Wales: Prospective derivation and validation of QRISK2. BMJ 2008, 336, 1475–1482. [Google Scholar] [CrossRef] [Green Version]
- Bellacosa, A.; Testa; Staal, S.; Tsichlis, P. A retroviral oncogene, akt, encoding a serine-threonine kinase containing an SH2-like region. Science 1991, 254, 274–277. [Google Scholar] [CrossRef]
- Hurley, L.P.; Dickinson, L.M.; Estacio, R.O.; Steiner, J.F.; Havranek, E.P. Prediction of cardiovascular death in racial/ethnic minorities using Framingham risk factors. Circ. Cardiovasc. Qual. Outcomes 2010, 3, 181–187. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brindle, P.M.; McConnachie, A.; Upton, M.N.; Hart, C.L.; Davey Smith, G.; Watt, G.C. The accuracy of the Framingham risk-score in different socioeconomic groups: A prospective study. Br. J. Gen. Pr. 2005, 55, 838–845. [Google Scholar]
- Beswick, A.D.; Brindle, P.; Fahey, T.; Ebrahim, S. A Systematic Review of Risk Scoring Methods and Clinical Decision Aids Used in the Primary Prevention of Coronary Heart Disease (Supplement); National Institute for Health and Clinical Excellence: London, UK, 2008. [Google Scholar]
- Lebovitz, H.E. Insulin resistance: Definition and consequences. Exp. Clin. Endocrinol. Diabetes 2001, 109 (Suppl. 2), S135–S148. [Google Scholar] [CrossRef] [Green Version]
- Vrentzos, G.E.; Papadakis, J.A.; Ganotakis, E.S.; Paraskevas, K.I.; Gazi, I.F.; Tzanakis, N.; Nair, D.R.; Mikhailidis, D.P. Predicting coronary heart disease risk using the Framingham and PROCAM equations in dyslipidaemic patients without overt vascular disease. Int. J. Clin. Pr. 2007, 61, 1643–1653. [Google Scholar] [CrossRef]
- Allan, G.M.; Nouri, F.; Korownyk, C.; Kolber, M.R.; Vandermeer, B.; McCormack, J. Agreement among cardiovascular disease risk calculators. Circulation 2013, 127, 1948–1956. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bartlett, C.; Davey, P.; Dieppe, P.; Doyal, L.; Ebrahim, S.; Egger, M. Women, older persons, and ethnic minorities: Factors associated with their inclusion in randomised trials of statins 1990 to 2001. Heart 2003, 89, 327–328. [Google Scholar] [CrossRef]
- Carretero, O.A.; Oparil, S. Essential hypertension. Part I: Definition and etiology. Circulation 2000, 101, 329–335. [Google Scholar] [CrossRef] [Green Version]
- Garbers, D.L.; Dubois, S.K. The molecular basis of hypertension. Annu. Rev. Biochem. 1999, 68, 127–155. [Google Scholar] [CrossRef]
- Hilfiker, H.; Strehler-Page, M.A.; Stauffer, T.P.; Carafoli, E.; Strehler, E.E. Structure of the gene encoding the human plasma membrane calcium pump isoform 1. J. Biol. Chem. 1993, 268, 19717–19725. [Google Scholar] [CrossRef]
- Caris, T.N. Pathogenesis of essential hypertension. In A Clinical Guide to Hypertension; PSG: Littleton, MA, USA, 1985; pp. 11–34. [Google Scholar]
- Brindle, P.; Beswick, A.; Fahey, T.; Ebrahim, S. Accuracy and impact of risk assessment in the primary prevention of cardiovascular disease: A systematic review. Heart 2006, 92, 1752–1759. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Youssef, G.; Budoff, M.J. Coronary artery calcium scoring, what is answered and what questions remain. Cardiovasc. Diagn. 2012, 2, 94–105. [Google Scholar] [CrossRef]
- Pitt, B.; Waters, D.; Brown, W.V.; van Boven, A.J.; Schwartz, L.; Title, L.M.; Eisenberg, D.; Shurzinske, L.; McCormick, L.S. Aggressive lipid-lowering therapy compared with angioplasty in stable coronary artery disease. Atorvastatin versus Revascularization Treatment Investigators. N. Engl. J. Med. 1999, 341, 70–76. [Google Scholar] [CrossRef]
- Kavsak, P.A.; Hill, S.A.; Bhanich Supapol, W.; Devereaux, P.J.; Worster, A. Biomarkers for predicting serious cardiac outcomes at 72 hours in patients presenting early after chest pain onset with symptoms of acute coronary syndromes. Clin. Chem. 2012, 58, 298–302. [Google Scholar] [CrossRef] [Green Version]
- Hsia, S.H.; Pan, D.; Berookim, P.; Lee, M.L. A population-based, cross-sectional comparison of lipid-related indexes for symptoms of atherosclerotic disease. Am. J. Cardiol. 2006, 98, 1047–1052. [Google Scholar] [CrossRef]
- Aengevaeren, W.R.; Uijen, G.J.; Jukema, J.W.; Bruschke, A.V.; van der Werf, T. Functional evaluation of lipid-lowering therapy by pravastatin in the Regression Growth Evaluation Statin Study (REGRESS). Circulation 1997, 96, 429–435. [Google Scholar] [CrossRef]
- Weiner, P.; Waizman, J.; Weiner, M.; Rabner, M.; Magadle, R.; Zamir, D. Smoking and first acute myocardial infarction: Age, mortality and smoking cessation rate. Isr. Med. Assoc. J. 2000, 2, 446–449. [Google Scholar]
- Sacks, F.M.; Tonkin, A.M.; Craven, T.; Pfeffer, M.A.; Shepherd, J.; Keech, A.; Furberg, C.D.; Braunwald, E. Coronary heart disease in patients with low LDL-cholesterol: Benefit of pravastatin in diabetics and enhanced role for HDL-cholesterol and triglycerides as risk factors. Circulation 2002, 105, 1424–1428. [Google Scholar] [CrossRef] [Green Version]
- Soares, P.R.; Hueb, W.A.; Lemos, P.A.; Lopes, N.; Martinez, E.E.; Cesar, L.A.; Oliveira, S.A.; Ramires, J.A. Coronary revascularization (surgical or percutaneous) decreases mortality after the first year in diabetic subjects but not in nondiabetic subjects with multivessel disease: An analysis from the Medicine, Angioplasty, or Surgery Study (MASS II). Circulation 2006, 114, I420–I424. [Google Scholar] [CrossRef] [Green Version]
- Kones, R. Rosuvastatin, inflammation, C-reactive protein, JUPITER, and primary prevention of cardiovascular disease--a perspective. Drug Des. Devel. 2010, 4, 383–413. [Google Scholar] [CrossRef] [Green Version]
- Gotto, A.M., Jr.; Whitney, E.; Stein, E.A.; Shapiro, D.R.; Clearfield, M.; Weis, S.; Jou, J.Y.; Langendorfer, A.; Beere, P.A.; Watson, D.J.; et al. Relation between baseline and on-treatment lipid parameters and first acute major coronary events in the Air Force/Texas Coronary Atherosclerosis Prevention Study (AFCAPS/TexCAPS). Circulation 2000, 101, 477–484. [Google Scholar] [CrossRef]
- Grundy, S.M.; Cleeman, J.I.; Merz, C.N.; Brewer, H.B., Jr.; Clark, L.T.; Hunninghake, D.B.; Pasternak, R.C.; Smith, S.C., Jr.; Stone, N.J.; National Heart, L.; et al. Implications of recent clinical trials for the National Cholesterol Education Program Adult Treatment Panel III guidelines. Circulation 2004, 110, 227–239. [Google Scholar] [CrossRef] [Green Version]
- Heart Protection Study, C.; Mihaylova, B.; Briggs, A.; Armitage, J.; Parish, S.; Gray, A.; Collins, R. Lifetime cost effectiveness of simvastatin in a range of risk groups and age groups derived from a randomised trial of 20,536 people. BMJ 2006, 333, 1145. [Google Scholar] [CrossRef] [Green Version]
- Heart Protection Study Collaborative Group. Statin cost-effectiveness in the United States for people at different vascular risk levels. Circ. Cardiovasc. Qual. Outcomes 2009, 2, 65–72. [Google Scholar] [CrossRef] [Green Version]
- Caro, J.; Klittich, W.; McGuire, A.; Ford, I.; Norrie, J.; Pettitt, D.; McMurray, J.; Shepherd, J. The West of Scotland coronary prevention study: Economic benefit analysis of primary prevention with pravastatin. BMJ 1997, 315, 1577–1582. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Turnbull, F. Managing cardiovascular risk factors: The gap between evidence and practice. PLoS Med. 2005, 2, e131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wildman, R.P.; McGinn, A.P.; Lin, J.; Wang, D.; Muntner, P.; Cohen, H.W.; Reynolds, K.; Fonseca, V.; Sowers, M.R. Cardiovascular disease risk of abdominal obesity vs. metabolic abnormalities. Obesity 2011, 19, 853–860. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grundy, S.M.; Brewer, H.B., Jr.; Cleeman, J.I.; Smith, S.C., Jr.; Lenfant, C.; the Conference Participant. Definition of metabolic syndrome: Report of the National Heart, Lung, and Blood Institute/American Heart Association conference on scientific issues related to definition. Circulation 2004, 109, 433–438. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harper, C.R.; Jacobson, T.A. Using apolipoprotein B to manage dyslipidemic patients: Time for a change? Mayo Clin. Proc. 2010, 85, 440–445. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kreisberg, R.A.; Oberman, A. Clinical review 141: Lipids and atherosclerosis: Lessons learned from randomized controlled trials of lipid lowering and other relevant studies. J. Clin. Endocrinol. Metab. 2002, 87, 423–437. [Google Scholar] [CrossRef]
- Libby, P. The forgotten majority: Unfinished business in cardiovascular risk reduction. J. Am. Coll. Cardiol. 2005, 46, 1225–1228. [Google Scholar] [CrossRef]
- Ray, K.; Wainwright, N.W.; Visser, L.; Witteman, J.; Breteler, M.; Ambegaonkar, B.; Hofman, A.; Stricker, B.; Wareham, N.; Khaw, K.T.; et al. Changes in HDL cholesterol and cardiovascular outcomes after lipid modification therapy. Heart 2012, 98, 780–785. [Google Scholar] [CrossRef]
- Ballantyne, C.M.; Herd, J.A.; Ferlic, L.L.; Dunn, J.K.; Farmer, J.A.; Jones, P.H.; Schein, J.R.; Gotto, A.M., Jr. Influence of low HDL on progression of coronary artery disease and response to fluvastatin therapy. Circulation 1999, 99, 736–743. [Google Scholar] [CrossRef] [Green Version]
- Sattar, N.; Murray, H.M.; McConnachie, A.; Blauw, G.J.; Bollen, E.L.; Buckley, B.M.; Cobbe, S.M.; Ford, I.; Gaw, A.; Hyland, M.; et al. C-reactive protein and prediction of coronary heart disease and global vascular events in the Prospective Study of Pravastatin in the Elderly at Risk (PROSPER). Circulation 2007, 115, 981–989. [Google Scholar] [CrossRef] [Green Version]
- Bielicki, J.K.; Forte, T.M.; McCall, M.R. Gas-phase cigarette smoke inhibits plasma lecithin-cholesterol acyltransferase activity by modification of the enzyme’s free thiols. Biochim. Biophys. Acta 1995, 1258, 35–40. [Google Scholar] [CrossRef]
- De Parscau, L.; Fielding, C.J. Abnormal plasma cholesterol metabolism in cigarette smokers. Metabolism 1986, 35, 1070–1073. [Google Scholar] [CrossRef] [PubMed]
- Gomez-Sanchez, E.; Gomez-Sanchez, C.E. The multifaceted mineralocorticoid receptor. Compr. Physiol. 2014, 4, 965–994. [Google Scholar] [CrossRef] [Green Version]
- Bruder-Nascimento, T.; da Silva, M.A.; Tostes, R.C. The involvement of aldosterone on vascular insulin resistance: Implications in obesity and type 2 diabetes. Diabetol. Metab. Syndr. 2014, 6, 90. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bender, S.B.; McGraw, A.P.; Jaffe, I.Z.; Sowers, J.R. Mineralocorticoid receptor-mediated vascular insulin resistance: An early contributor to diabetes-related vascular disease? Diabetes 2013, 62, 313–319. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferroni, P.; Martini, F.; Cardarello, C.M.; Gazzaniga, P.P.; Davi, G.; Basili, S. Enhanced interleukin-1beta in hypercholesterolemia: Effects of simvastatin and low-dose aspirin. Circulation 2003, 108, 1673–1675. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Houben, H.; Thien, T.; Van, T.L.A. Haemodynamic effects of cigarette smoking during chronic selective and non-selective beta-adrenoceptor blockade in patients with hypertension. Br. J. Clin. Pharm. 1981, 12, 67–72. [Google Scholar] [CrossRef] [Green Version]
- Nicholson, J.P.; Teichman, S.L.; Alderman, M.H.; Sos, T.A.; Pickering, T.G.; Laragh, J.H. Cigarette smoking and renovascular hypertension. Lancet 1983, 2, 765–766. [Google Scholar] [CrossRef]
- Chow, C.K.; Jolly, S.; Rao-Melacini, P.; Fox, K.A.; Anand, S.S.; Yusuf, S. Association of diet, exercise, and smoking modification with risk of early cardiovascular events after acute coronary syndromes. Circulation 2010, 121, 750–758. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parish, S.; Collins, R.; Peto, R.; Youngman, L.; Barton, J.; Jayne, K.; Clarke, R.; Appleby, P.; Lyon, V.; Cederholm-Williams, S.; et al. Cigarette smoking, tar yields, and non-fatal myocardial infarction: 14,000 cases and 32,000 controls in the United Kingdom. The International Studies of Infarct Survival (ISIS) Collaborators. BMJ 1995, 311, 471–477. [Google Scholar] [CrossRef] [PubMed]
- Sugiishi, M.; Takatsu, F. Cigarette smoking is a major risk factor for coronary spasm. Circulation 1993, 87, 76–79. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barua, R.S.; Ambrose, J.A. Mechanisms of coronary thrombosis in cigarette smoke exposure. Arterioscler. Thromb. Vasc. Biol. 2013, 33, 1460–1467. [Google Scholar] [CrossRef] [Green Version]
- Hung, J.; Lam, J.Y.; Lacoste, L.; Letchacovski, G. Cigarette smoking acutely increases platelet thrombus formation in patients with coronary artery disease taking aspirin. Circulation 1995, 92, 2432–2436. [Google Scholar] [CrossRef]
- Kimura, S.; Nishinaga, M.; Ozawa, T.; Shimada, K. Thrombin generation as an acute effect of cigarette smoking. Am. Heart J. 1994, 128, 7–11. [Google Scholar] [CrossRef]
- Liu, J.; Liang, Q.; Frost-Pineda, K.; Muhammad-Kah, R.; Rimmer, L.; Roethig, H.; Mendes, P.; Sarkar, M. Relationship between biomarkers of cigarette smoke exposure and biomarkers of inflammation, oxidative stress, and platelet activation in adult cigarette smokers. Cancer Epidemiol. Biomark. Prev. 2011, 20, 1760–1769. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Resch, U.; Tatzber, F.; Budinsky, A.; Sinzinger, H. Reduction of oxidative stress and modulation of autoantibodies against modified low-density lipoprotein after rosuvastatin therapy. Br. J. Clin. Pharm. 2006, 61, 262–274. [Google Scholar] [CrossRef] [Green Version]
- Agewall, S.; Hernberg, A. Atorvastatin normalizes endothelial function in healthy smokers. Clin. Sci. 2006, 111, 87–91. [Google Scholar] [CrossRef] [Green Version]
- Miri, R.; Saadati, H.; Ardi, P.; Firuzi, O. Alterations in oxidative stress biomarkers associated with mild hyperlipidemia and smoking. Food Chem. Toxicol. Int. J. Publ. Br. Ind. Biol. Res. Assoc. 2012, 50, 920–926. [Google Scholar] [CrossRef]
- Chen, C.; Loo, G. Inhibition of lecithin: Cholesterol acyltransferase activity in human blood plasma by cigarette smoke extract and reactive aldehydes. J. Biochem. Toxicol. 1995, 10, 121–128. [Google Scholar] [CrossRef] [PubMed]
- Ohsawa, M.; Okayama, A.; Nakamura, M.; Onoda, T.; Kato, K.; Itai, K.; Yoshida, Y.; Ogawa, A.; Kawamura, K.; Hiramori, K. CRP levels are elevated in smokers but unrelated to the number of cigarettes and are decreased by long-term smoking cessation in male smokers. Prev. Med. 2005, 41, 651–656. [Google Scholar] [CrossRef] [PubMed]
- Mannan, H.; Stevenson, C.; Peeters, A.; Walls, H.; McNeil, J. Framingham risk prediction equations for incidence of cardiovascular disease using detailed measures for smoking. Heart Int. 2010, 5, e11. [Google Scholar] [CrossRef]
- Muscat, J.E.; Harris, R.E.; Haley, N.J.; Wynder, E.L. Cigarette smoking and plasma cholesterol. Am. Heart J. 1991, 121, 141–147. [Google Scholar] [CrossRef]
- Erhardt, L. Cigarette smoking: An undertreated risk factor for cardiovascular disease. Atherosclerosis 2009, 205, 23–32. [Google Scholar] [CrossRef]
- Pletcher, M.J.; Tice, J.A.; Pignone, M.; McCulloch, C.; Callister, T.Q.; Browner, W.S. What does my patient’s coronary artery calcium score mean? Combining information from the coronary artery calcium score with information from conventional risk factors to estimate coronary heart disease risk. BMC Med. 2004, 2, 31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patti, G.; Chello, M.; Candura, D.; Pasceri, V.; D’Ambrosio, A.; Covino, E.; Di Sciascio, G. Randomized trial of atorvastatin for reduction of postoperative atrial fibrillation in patients undergoing cardiac surgery: Results of the ARMYDA-3 (Atorvastatin for Reduction of MYocardial Dysrhythmia After cardiac surgery) study. Circulation 2006, 114, 1455–1461. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paniagua, J.A.; Lopez-Miranda, J.; Escribano, A.; Berral, F.J.; Marin, C.; Bravo, D.; Paz-Rojas, E.; Gomez, P.; Barcos, M.; Moreno, J.A.; et al. Cerivastatin improves insulin sensitivity and insulin secretion in early-state obese type 2 diabetes. Diabetes 2002, 51, 2596–2603. [Google Scholar] [CrossRef] [Green Version]
- Cholesterol Treatment Trialists' (CTT) Collaborators; Mihaylova, B.; Emberson, J.; Blackwell, L.; Keech, A.; Simes, J.; Barnes, E.H.; Voysey, M.; Gray, A.; Collins, R.; et al. The effects of lowering LDL cholesterol with statin therapy in people at low risk of vascular disease: Meta-analysis of individual data from 27 randomised trials. Lancet 2012, 380, 581–590. [Google Scholar] [CrossRef]
- Ridker, P.M.; Rifai, N.; Pfeffer, M.A.; Sacks, F.M.; Moye, L.A.; Goldman, S.; Flaker, G.C.; Braunwald, E. Inflammation, pravastatin, and the risk of coronary events after myocardial infarction in patients with average cholesterol levels. Cholesterol and Recurrent Events (CARE) Investigators. Circulation 1998, 98, 839–844. [Google Scholar] [CrossRef]
- Byington, R.P.; Jukema, J.W.; Salonen, J.T.; Pitt, B.; Bruschke, A.V.; Hoen, H.; Furberg, C.D.; Mancini, G.B. Reduction in cardiovascular events during pravastatin therapy. Pooled analysis of clinical events of the Pravastatin Atherosclerosis Intervention Program. Circulation 1995, 92, 2419–2425. [Google Scholar] [CrossRef] [PubMed]
- Nicholls, S.J.; Ballantyne, C.M.; Barter, P.J.; Chapman, M.J.; Erbel, R.M.; Libby, P.; Raichlen, J.S.; Uno, K.; Borgman, M.; Wolski, K.; et al. Effect of two intensive statin regimens on progression of coronary disease. N. Engl. J. Med. 2011, 365, 2078–2087. [Google Scholar] [CrossRef] [Green Version]
- Kim, K.N.; Kim, K.M.; Lee, D.J.; Joo, N.S. Serum gamma-glutamyltransferase concentration correlates with Framingham risk score in Koreans. J. Korean Med. Sci. 2011, 26, 1305–1309. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beckman, K.B.; Ames, B.N. The free radical theory of aging matures. Physiol. Rev. 1998, 78, 547–581. [Google Scholar] [CrossRef] [Green Version]
- Stankovic, M.; Mladenovic, D.; Ninkovic, M.; Vucevic, D.; Tomasevic, T.; Radosavljevic, T. Effects of caloric restriction on oxidative stress parameters. Gen. Physiol. Biophys. 2013, 32, 277–283. [Google Scholar] [CrossRef] [Green Version]
- Tan, H.Y.; Wang, N.; Li, S.; Hong, M.; Wang, X.; Feng, Y. The Reactive Oxygen Species in Macrophage Polarization: Reflecting Its Dual Role in Progression and Treatment of Human Diseases. Oxid. Med. Cell. Longev. 2016, 2016, 2795090. [Google Scholar] [CrossRef] [Green Version]
- Cruz, C.M.; Rinna, A.; Forman, H.J.; Ventura, A.L.; Persechini, P.M.; Ojcius, D.M. ATP activates a reactive oxygen species-dependent oxidative stress response and secretion of proinflammatory cytokines in macrophages. J. Biol. Chem. 2007, 282, 2871–2879. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhong, S.; Xu, J.; Li, P.; Tsukamoto, H. Caveosomal oxidative stress causes Src-p21ras activation and lysine 63 TRAF6 protein polyubiquitination in iron-induced M1 hepatic macrophage activation. J. Biol. Chem. 2012, 287, 32078–32084. [Google Scholar] [CrossRef] [Green Version]
- Nakao, N.; Kurokawa, T.; Nonami, T.; Tumurkhuu, G.; Koide, N.; Yokochi, T. Hydrogen peroxide induces the production of tumor necrosis factor-alpha in RAW 264.7 macrophage cells via activation of p38 and stress-activated protein kinase. Innate Immun. 2008, 14, 190–196. [Google Scholar] [CrossRef]
- Jaramillo, M.; Godbout, M.; Olivier, M. Hemozoin induces macrophage chemokine expression through oxidative stress-dependent and -independent mechanisms. J. Immunol. 2005, 174, 475–484. [Google Scholar] [CrossRef] [Green Version]
- Hartupee, J.; Mann, D.L. Role of inflammatory cells in fibroblast activation. J. Mol. Cell. Cardiol. 2016, 93, 143–148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Slowikowski, K.; Wei, K.; Brenner, M.B.; Raychaudhuri, S. Functional genomics of stromal cells in chronic inflammatory diseases. Curr. Opin. Rheumatol. 2018, 30, 65–71. [Google Scholar] [CrossRef]
- Florentin, J.; Dutta, P. Origin and production of inflammatory perivascular macrophages in pulmonary hypertension. Cytokine 2017, 100, 11–15. [Google Scholar] [CrossRef] [PubMed]
- Halliwell, B.; Gutteridge, J.M. Role of free radicals and catalytic metal ions in human disease: An overview. Methods Enzymol. 1990, 186, 1–85. [Google Scholar]
- Barja, G. Updating the mitochondrial free radical theory of aging: An integrated view, key aspects, and confounding concepts. Antioxid. Redox Signal. 2013, 19, 1420–1445. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Awasthi, Y.C.; Singhal, S.S.; Awasthi, S. Mechanisms of anti-carcinogenic effects of antioxidant nutrients. In Nutrition and Cancer Prevention; CRC Press: Boca Raton, FL, USA, 1996; pp. 139–172. [Google Scholar]
- Marchal, J.; Pifferi, F.; Aujard, F. Resveratrol in mammals: Effects on aging biomarkers, age-related diseases, and life span. Ann. N. Y. Acad. Sci. 2013, 1290, 67–73. [Google Scholar] [CrossRef] [PubMed]
- Wilson, P.W.; D’Agostino, R.B.; Parise, H.; Sullivan, L.; Meigs, J.B. Metabolic syndrome as a precursor of cardiovascular disease and type 2 diabetes mellitus. Circulation 2005, 112, 3066–3072. [Google Scholar] [CrossRef]
- Port, S.C.; Boyle, N.G.; Hsueh, W.A.; Quinones, M.J.; Jennrich, R.I.; Goodarzi, M.O. The predictive role of blood glucose for mortality in subjects with cardiovascular disease. Am. J. Epidemiol. 2006, 163, 342–351. [Google Scholar] [CrossRef] [Green Version]
- Ballantyne, C.M.; Olsson, A.G.; Cook, T.J.; Mercuri, M.F.; Pedersen, T.R.; Kjekshus, J. Influence of low high-density lipoprotein cholesterol and elevated triglyceride on coronary heart disease events and response to simvastatin therapy in 4S. Circulation 2001, 104, 3046–3051. [Google Scholar] [CrossRef] [Green Version]
- Yu, D.; Murdoch, S.J.; Parikh, S.J.; Marcovina, S.M.; Cobitz, A.; Chen, H.; Brunzell, J.D. Rosiglitazone increases LDL particle size and buoyancy and decreases C-reactive protein in patients with type 2 diabetes on statin therapy. Diab. Vasc. Dis. Res. 2006, 3, 189–196. [Google Scholar] [CrossRef] [Green Version]
- Pischon, T.; Girman, C.J.; Sacks, F.M.; Rifai, N.; Stampfer, M.J.; Rimm, E.B. Non-high-density lipoprotein cholesterol and apolipoprotein B in the prediction of coronary heart disease in men. Circulation 2005, 112, 3375–3383. [Google Scholar] [CrossRef] [Green Version]
- Hoang, K.C.; Ghandehari, H.; Lopez, V.A.; Barboza, M.G.; Wong, N.D. Global coronary heart disease risk assessment of individuals with the metabolic syndrome in the U.S. Diabetes Care 2008, 31, 1405–1409. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Balady, G.J.; Larson, M.G.; Vasan, R.S.; Leip, E.P.; O’Donnell, C.J.; Levy, D. Usefulness of exercise testing in the prediction of coronary disease risk among asymptomatic persons as a function of the Framingham risk score. Circulation 2004, 110, 1920–1925. [Google Scholar] [CrossRef]
- Fadel, P.J.; Farias Iii, M.; Gallagher, K.M.; Wang, Z.; Thomas, G.D. Oxidative stress and enhanced sympathetic vasoconstriction in contracting muscles of nitrate-tolerant rats and humans. J. Physiol. 2012, 590, 395–407. [Google Scholar] [CrossRef]
- Picciotto, M.R.; Kenny, P.J. Molecular mechanisms underlying behaviors related to nicotine addiction. Cold Spring Harb. Perspect. Med. 2013, 3, a012112. [Google Scholar] [CrossRef]
- Ribisl, K.M.; Kim, A.E.; Williams, R.S. Are the sales practices of internet cigarette vendors good enough to prevent sales to minors? Am. J. Public Health 2002, 92, 940–941. [Google Scholar] [CrossRef]
- Clattenburg, E.J.; Elf, J.L.; Apelberg, B.J. Unplanned cigarette purchases and tobacco point of sale advertising: A potential barrier to smoking cessation. Tob. Control 2013, 22, 376–381. [Google Scholar] [CrossRef]
- Warner, K.E. Cigarette advertising and media coverage of smoking and health. N. Engl. J. Med. 1985, 312, 384–388. [Google Scholar] [CrossRef] [PubMed]
- Mackay, J. US tobacco export to Third World: Third World War. J. Natl. Cancer Inst. Monogr. 1992, 12, 25–28. [Google Scholar]
- Wallack, L.; Montgomery, K. Advertising for all by the year 2000: Public health implications for less developed countries. J. Public Health Policy 1992, 13, 204–223. [Google Scholar] [CrossRef]
- Rennard, S.I.; Daughton, D.M. Smoking cessation. Clin. Chest Med. 2014, 35, 165–176. [Google Scholar] [CrossRef] [PubMed]
- Tahiri, M.; Mottillo, S.; Joseph, L.; Pilote, L.; Eisenberg, M.J. Alternative smoking cessation aids: A meta-analysis of randomized controlled trials. Am. J. Med. 2012, 125, 576–584. [Google Scholar] [CrossRef]
- Cahill, K.; Stevens, S.; Perera, R.; Lancaster, T. Pharmacological interventions for smoking cessation: An overview and network meta-analysis. Cochrane Database Syst. Rev. 2013, 5, CD009329. [Google Scholar] [CrossRef] [PubMed]
- Humair, J.P.; Garin, N.; Gerstel, E.; Carballo, S.; Carballo, D.; Keller, P.F.; Guessous, I. Acute respiratory and cardiovascular admissions after a public smoking ban in Geneva, Switzerland. PLoS ONE 2014, 9, e90417. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yankelevitz, D.F.; Henschke, C.I.; Yip, R.; Boffetta, P.; Shemesh, J.; Cham, M.D.; Narula, J.; Hecht, H.S.; Investigators, F.-I. Second-hand tobacco smoke in never smokers is a significant risk factor for coronary artery calcification. JACC Cardiovasc. Imaging 2013, 6, 651–657. [Google Scholar] [CrossRef]
- Amin-Shokravi, F.; Rajabi, R.; Ziaee, N. Exercise Effects on Risk of Cardiovascular Disease among Iranian Women. Asian J. Sport. Med. 2011, 2, 37–43. [Google Scholar] [CrossRef] [Green Version]
- Goto, K.; Lansky, A.J.; Fahy, M.; Cristea, E.; Feit, F.; Ohman, E.M.; White, H.D.; Alexander, K.P.; Bertrand, M.E.; Desmet, W.; et al. Predictors of outcomes in medically treated patients with acute coronary syndromes after angiographic triage: An Acute Catheterization And Urgent Intervention Triage Strategy (ACUITY) substudy. Circulation 2010, 121, 853–862. [Google Scholar] [CrossRef] [Green Version]
- Dewey, M.; Zimmermann, E.; Deissenrieder, F.; Laule, M.; Dubel, H.P.; Schlattmann, P.; Knebel, F.; Rutsch, W.; Hamm, B. Noninvasive coronary angiography by 320-row computed tomography with lower radiation exposure and maintained diagnostic accuracy: Comparison of results with cardiac catheterization in a head-to-head pilot investigation. Circulation 2009, 120, 867–875. [Google Scholar] [CrossRef] [Green Version]
- Patel, M.R.; Peterson, E.D.; Dai, D.; Brennan, J.M.; Redberg, R.F.; Anderson, H.V.; Brindis, R.G.; Douglas, P.S. Low diagnostic yield of elective coronary angiography. N. Engl. J. Med. 2010, 362, 886–895. [Google Scholar] [CrossRef] [Green Version]
- Simonson, M.A.; Wills, A.G.; Keller, M.C.; McQueen, M.B. Recent methods for polygenic analysis of genome-wide data implicate an important effect of common variants on cardiovascular disease risk. BMC Med. Genet. 2011, 12, 146. [Google Scholar] [CrossRef] [Green Version]
- O’Donnell, C.J.; Kavousi, M.; Smith, A.V.; Kardia, S.L.; Feitosa, M.F.; Hwang, S.J.; Sun, Y.V.; Province, M.A.; Aspelund, T.; Dehghan, A.; et al. Genome-wide association study for coronary artery calcification with follow-up in myocardial infarction. Circulation 2011, 124, 2855–2864. [Google Scholar] [CrossRef] [PubMed]
- Maitland-van der Zee, A.H.; Peters, B.J.; Lynch, A.I.; Boerwinkle, E.; Arnett, D.K.; Cheng, S.; Davis, B.R.; Leiendecker-Foster, C.; Ford, C.E.; Eckfeldt, J.H. The effect of nine common polymorphisms in coagulation factor genes (F2, F5, F7, F12 and F13 ) on the effectiveness of statins: The GenHAT study. Pharm. Genom. 2009, 19, 338–344. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Polak, J.F.; Szklo, M.; Kronmal, R.A.; Burke, G.L.; Shea, S.; Zavodni, A.E.; O’Leary, D.H. The value of carotid artery plaque and intima-media thickness for incident cardiovascular disease: The multi-ethnic study of atherosclerosis. J. Am. Heart Assoc. 2013, 2, e000087. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weber, M.A.; Schiffrin, E.L.; White, W.B.; Mann, S.; Lindholm, L.H.; Kenerson, J.G.; Flack, J.M.; Carter, B.L.; Materson, B.J.; Ram, C.V.; et al. Clinical practice guidelines for the management of hypertension in the community: A statement by the American Society of Hypertension and the International Society of Hypertension. J. Clin. Hypertens. 2014, 16, 14–26. [Google Scholar] [CrossRef] [PubMed]
- Caris, T.N. An overview of hypertension. In A Clinical Guide to Hypertension; PSG: Littleton, MA, USA, 1985; pp. 1–10. [Google Scholar]
- Khan, N.A.; Hemmelgarn, B.; Padwal, R.; Larochelle, P.; Mahon, J.L.; Lewanczuk, R.Z.; McAlister, F.A.; Rabkin, S.W.; Hill, M.D.; Feldman, R.D.; et al. The 2007 Canadian Hypertension Education Program recommendations for the management of hypertension: Part 2—Therapy. Can. J. Cardiol. 2007, 23, 539–550. [Google Scholar] [CrossRef] [Green Version]
- Ferrier, K.E.; Muhlmann, M.H.; Baguet, J.P.; Cameron, J.D.; Jennings, G.L.; Dart, A.M.; Kingwell, B.A. Intensive cholesterol reduction lowers blood pressure and large artery stiffness in isolated systolic hypertension. J. Am. Coll. Cardiol. 2002, 39, 1020–1025. [Google Scholar] [CrossRef] [Green Version]
- O’Donnell, C.J.; Kannel, W.B. Epidemiologic appraisal of hypertension as a coronary risk factor in the elderly. Am. J. Geriatr. Cardiol. 2002, 11, 86–92. [Google Scholar] [CrossRef]
- Osende, J.I.; Ruiz-Ortega, M.; Blanco-Colio, L.M.; Egido, J. Statins to prevent cardiovascular events in hypertensive patients. The ASCOT-LLA study. Nephrol. Dial. Transp. Publ. Eur. Dial. Transpl. Assoc. Eur. Ren. Assoc. 2004, 19, 528–531. [Google Scholar] [CrossRef] [Green Version]
- Parkes, J.; Bryant, J.; Milne, R. Implantable cardioverter-defibrillators in arrhythmias: A rapid and systematic review of effectiveness. Heart 2002, 87, 438–442. [Google Scholar] [CrossRef] [Green Version]
- Van den Berg, M.P.; Tuinenburg, A.E.; Crijns, H.J.; Van Gelder, I.C.; Gosselink, A.T.; Lie, K.I. Heart failure and atrial fibrillation: Current concepts and controversies. Heart 1997, 77, 309–313. [Google Scholar] [CrossRef]
- Taal, M.W.; Brenner, B.M.; Rector, F.C. Brenner & Rector’s the Kidney, 9th ed.; Elsevier/Saunders: Philadelphia, PA, USA, 2012. [Google Scholar]
- Van Gaal, L.F.; Wauters, M.A.; De Leeuw, I.H. The beneficial effects of modest weight loss on cardiovascular risk factors. Int. J. Obes. Relat. Metab. Disord. 1997, 21 (Suppl. 1), S5–S9. [Google Scholar] [PubMed]
- Wing, R.R.; Lang, W.; Wadden, T.A.; Safford, M.; Knowler, W.C.; Bertoni, A.G.; Hill, J.O.; Brancati, F.L.; Peters, A.; Wagenknecht, L.; et al. Benefits of modest weight loss in improving cardiovascular risk factors in overweight and obese individuals with type 2 diabetes. Diabetes Care 2011, 34, 1481–1486. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wadden, T.A.; Butryn, M.L.; Byrne, K.J. Efficacy of lifestyle modification for long-term weight control. Obes. Res. 2004, 12, 151S–162S. [Google Scholar] [CrossRef] [PubMed]
- Braunwald, E.; Bonow, R.O. Braunwald’s Heart Disease: A Textbook of Cardiovascular Medicine, 9th ed.; Elsevier/Saunders: Philadelphia, PA, USA, 2012. [Google Scholar]
- Hall, J.E.; Guyton, A.C. Guyton and Hall Textbook of Medical Physiology, 12th ed.; Saunders/Elsevier: Philadelphia, PA, USA, 2011; p. 1091. [Google Scholar]
- Caris, T.N. Secondary hypertension. In A Clinical Guide to Hypertension; PSG: Littleton, MA, USA, 1985; pp. 47–68. [Google Scholar]
- Pinnaduwage, D.; Beyene, J.; Fallah, S. Genome-wide linkage analysis of systolic blood pressure slope using the Genetic Analysis Workshop 13 data sets. BMC Genet. 2003, 4 (Suppl. 1), S86. [Google Scholar] [CrossRef] [Green Version]
- Levy, D.; Ehret, G.B.; Rice, K.; Verwoert, G.C.; Launer, L.J.; Dehghan, A.; Glazer, N.L.; Morrison, A.C.; Johnson, A.D.; Aspelund, T.; et al. Genome-wide association study of blood pressure and hypertension. Nat. Genet. 2009, 41, 677–687. [Google Scholar] [CrossRef] [Green Version]
- Hota, S.K.; Hota, K.B.; Prasad, D.; Ilavazhagan, G.; Singh, S.B. Oxidative-stress-induced alterations in Sp factors mediate transcriptional regulation of the NR1 subunit in hippocampus during hypoxia. Free Radic. Biol. Med. 2010, 49, 178–191. [Google Scholar] [CrossRef]
- Hirsch, A.; Hahn, D.; Kempna, P.; Hofer, G.; Nuoffer, J.M.; Mullis, P.E.; Fluck, C.E. Metformin inhibits human androgen production by regulating steroidogenic enzymes HSD3B2 and CYP17A1 and complex I activity of the respiratory chain. Endocrinology 2012, 153, 4354–4366. [Google Scholar] [CrossRef] [Green Version]
- Jakubowicz, D.; Barnea, M.; Wainstein, J.; Froy, O. Effects of caloric intake timing on insulin resistance and hyperandrogenism in lean women with polycystic ovary syndrome. Clin. Sci. 2013, 125, 423–432. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Gu, Z.P.; Bo, Q.M.; Wang, D.; Yang, X.S.; Cai, G.H. Association of CYP17A1 gene -34T/C polymorphism with polycystic ovary syndrome in Han Chinese population. Gynecol. Endocrinol. 2015, 31, 40–43. [Google Scholar] [CrossRef]
- Endres, B.T.; Priestley, J.R.; Palygin, O.; Flister, M.J.; Hoffman, M.J.; Weinberg, B.D.; Grzybowski, M.; Lombard, J.H.; Staruschenko, A.; Moreno, C.; et al. Mutation of Plekha7 attenuates salt-sensitive hypertension in the rat. Proc. Natl. Acad. Sci. USA 2014, 111, 12817–12822. [Google Scholar] [CrossRef] [Green Version]
- Kamiyama, M.; Urushihara, M.; Morikawa, T.; Konishi, Y.; Imanishi, M.; Nishiyama, A.; Kobori, H. Oxidative stress/angiotensinogen/renin-angiotensin system axis in patients with diabetic nephropathy. Int. J. Mol. Sci. 2013, 14, 23045–23062. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Su, Q.; Qin, D.N.; Wang, F.X.; Ren, J.; Li, H.B.; Zhang, M.; Yang, Q.; Miao, Y.W.; Yu, X.J.; Qi, J.; et al. Inhibition of reactive oxygen species in hypothalamic paraventricular nucleus attenuates the renin-angiotensin system and proinflammatory cytokines in hypertension. Toxicol. Appl. Pharm. 2014, 276, 115–120. [Google Scholar] [CrossRef]
- Ocaranza, M.P.; Moya, J.; Barrientos, V.; Alzamora, R.; Hevia, D.; Morales, C.; Pinto, M.; Escudero, N.; Garcia, L.; Novoa, U.; et al. Angiotensin-(1–9) reverses experimental hypertension and cardiovascular damage by inhibition of the angiotensin converting enzyme/Ang II axis. J. Hypertens. 2014, 32, 771–783. [Google Scholar] [CrossRef] [PubMed]
- Zhou, M.S.; Jaimes, E.A.; Raij, L. Inhibition of oxidative stress and improvement of endothelial function by amlodipine in angiotensin II-infused rats. Am. J. Hypertens. 2004, 17, 167–171. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Ortega, M.; Ruperez, M.; Esteban, V.; Egido, J. Molecular mechanisms of angiotensin II-induced vascular injury. Curr. Hypertens. Rep. 2003, 5, 73–79. [Google Scholar] [CrossRef] [PubMed]
- Huang, B.S.; Zheng, H.; Tan, J.; Patel, K.P.; Leenen, F.H. Regulation of hypothalamic renin-angiotensin system and oxidative stress by aldosterone. Exp. Physiol. 2011, 96, 1028–1038. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brewer, J.; Liu, R.; Lu, Y.; Scott, J.; Wallace, K.; Wallukat, G.; Moseley, J.; Herse, F.; Dechend, R.; Martin, J.N., Jr.; et al. Endothelin-1, oxidative stress, and endogenous angiotensin II: Mechanisms of angiotensin II type I receptor autoantibody-enhanced renal and blood pressure response during pregnancy. Hypertension 2013, 62, 886–892. [Google Scholar] [CrossRef] [PubMed]
- Baykal, Y.; Yilmaz, M.I.; Celik, T.; Gok, F.; Rehber, H.; Akay, C.; Kocar, I.H. Effects of antihypertensive agents, alpha receptor blockers, beta blockers, angiotensin-converting enzyme inhibitors, angiotensin receptor blockers and calcium channel blockers, on oxidative stress. J. Hypertens. 2003, 21, 1207–1211. [Google Scholar] [CrossRef]
- Morawietz, H.; Erbs, S.; Holtz, J.; Schubert, A.; Krekler, M.; Goettsch, W.; Kuss, O.; Adams, V.; Lenk, K.; Mohr, F.W.; et al. Endothelial Protection, AT1 blockade and Cholesterol-Dependent Oxidative Stress: The EPAS trial. Circulation 2006, 114, I296–I301. [Google Scholar] [CrossRef] [Green Version]
- Wassmann, S.; Laufs, U.; Baumer, A.T.; Muller, K.; Ahlbory, K.; Linz, W.; Itter, G.; Rosen, R.; Bohm, M.; Nickenig, G. HMG-CoA reductase inhibitors improve endothelial dysfunction in normocholesterolemic hypertension via reduced production of reactive oxygen species. Hypertension 2001, 37, 1450–1457. [Google Scholar] [CrossRef]
- Henriksen, E.J.; Prasannarong, M. The role of the renin-angiotensin system in the development of insulin resistance in skeletal muscle. Mol. Cell. Endocrinol. 2013, 378, 15–22. [Google Scholar] [CrossRef]
- Aksnes, T.A.; Reims, H.M.; Guptha, S.; Moan, A.; Os, I.; Kjeldsen, S.E. Improved insulin sensitivity with the angiotensin II-receptor blocker losartan in patients with hypertension and other cardiovascular risk factors. J. Hum. Hypertens. 2006, 20, 860–866. [Google Scholar] [CrossRef] [Green Version]
- Montani, J.P.; Antic, V.; Yang, Z.; Dulloo, A. Pathways from obesity to hypertension: From the perspective of a vicious triangle. Int. J. Obes. Relat. Metab. Disord. 2002, 26 (Suppl. 2), S28–S38. [Google Scholar] [CrossRef] [Green Version]
- Hayashi, M.; Takeshita, K.; Uchida, Y.; Yamamoto, K.; Kikuchi, R.; Nakayama, T.; Nomura, E.; Cheng, X.W.; Matsushita, T.; Nakamura, S.; et al. Angiotensin II receptor blocker ameliorates stress-induced adipose tissue inflammation and insulin resistance. PLoS ONE 2014, 9, e116163. [Google Scholar] [CrossRef] [Green Version]
- Kamide, K. Role of Renin-Angiotensin-Aldosterone System in Metabolic Syndrome and Obesity-related Hypertension. Curr. Hypertens. Rev. 2014, 9, 4. [Google Scholar] [CrossRef]
- De Vito, P.; Incerpi, S.; Pedersen, J.Z.; Luly, P. Atrial natriuretic peptide and oxidative stress. Peptides 2010, 31, 1412–1419. [Google Scholar] [CrossRef] [PubMed]
- Talha, S.; Bouitbir, J.; Charles, A.L.; Zoll, J.; Goette-Di Marco, P.; Meziani, F.; Piquard, F.; Geny, B. Pretreatment with brain natriuretic peptide reduces skeletal muscle mitochondrial dysfunction and oxidative stress after ischemia-reperfusion. J. Appl. Physiol. 2013, 114, 172–179. [Google Scholar] [CrossRef] [Green Version]
- Houshmand, F.; Faghihi, M.; Zahediasl, S. Role of atrial natriuretic Peptide in oxytocin induced cardioprotection. Heart Lung Circ. 2015, 24, 86–93. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Woodard, G.E.; Rosado, J.A. Natriuretic peptides in vascular physiology and pathology. Int. Rev. Cell Mol. Biol. 2008, 268, 59–93. [Google Scholar] [CrossRef]
- Schlueter, N.; de Sterke, A.; Willmes, D.M.; Spranger, J.; Jordan, J.; Birkenfeld, A.L. Metabolic actions of natriuretic peptides and therapeutic potential in the metabolic syndrome. Pharmacol. Ther. 2014, 144, 12–27. [Google Scholar] [CrossRef] [Green Version]
- Abouchacra, S.; Baines, A.D.; Zinman, B.; Skorecki, K.L.; Logan, A.G. Insulin blunts the natriuretic action of atrial natriuretic peptide in hypertension. Hypertension 1994, 23, 1054–1058. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jain, A. Endothelin-1-induced endoplasmic reticulum stress in disease. J. Pharmacol. Exp. Ther. 2013, 346, 163–172. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prieto, D.; Contreras, C.; Sanchez, A. Endothelial dysfunction, obesity and insulin resistance. Curr. Vasc. Pharm. 2014, 12, 412–426. [Google Scholar] [CrossRef]
- Wilkes, J.J.; Hevener, A.; Olefsky, J. Chronic endothelin-1 treatment leads to insulin resistance in vivo. Diabetes 2003, 52, 1904–1909. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lungu, C.; Dias, J.P.; Franca, C.E.; Ongali, B.; Regoli, D.; Moldovan, F.; Couture, R. Involvement of kinin B1 receptor and oxidative stress in sensory abnormalities and arterial hypertension in an experimental rat model of insulin resistance. Neuropeptides 2007, 41, 375–387. [Google Scholar] [CrossRef] [PubMed]
- Oeseburg, H.; Iusuf, D.; van der Harst, P.; van Gilst, W.H.; Henning, R.H.; Roks, A.J. Bradykinin protects against oxidative stress-induced endothelial cell senescence. Hypertension 2009, 53, 417–422. [Google Scholar] [CrossRef] [Green Version]
- Kayashima, Y.; Smithies, O.; Kakoki, M. The kallikrein-kinin system and oxidative stress. Curr. Opin. Nephrol. Hypertens. 2012, 21, 92–96. [Google Scholar] [CrossRef] [Green Version]
- Duka, I.; Shenouda, S.; Johns, C.; Kintsurashvili, E.; Gavras, I.; Gavras, H. Role of the B(2) receptor of bradykinin in insulin sensitivity. Hypertension 2001, 38, 1355–1360. [Google Scholar] [CrossRef] [Green Version]
- Gayen, J.R.; Zhang, K.; RamachandraRao, S.P.; Mahata, M.; Chen, Y.; Kim, H.S.; Naviaux, R.K.; Sharma, K.; Mahata, S.K.; O’Connor, D.T. Role of reactive oxygen species in hyperadrenergic hypertension: Biochemical, physiological, and pharmacological evidence from targeted ablation of the chromogranin a (Chga) gene. Circ. Cardiovasc. Genet. 2010, 3, 414–425. [Google Scholar] [CrossRef] [Green Version]
- Castoldi, G.; Antolini, L.; Bombardi, C.; Perego, L.; Mariani, P.; Vigano, M.R.; Torti, G.; Casati, M.; Corti, A.; Zerbini, G.; et al. Oxidative stress biomarkers and chromogranin A in uremic patients: Effects of dialytic treatment. Clin. Biochem. 2010, 43, 1387–1392. [Google Scholar] [CrossRef]
- Gayen, J.R.; Saberi, M.; Schenk, S.; Biswas, N.; Vaingankar, S.M.; Cheung, W.W.; Najjar, S.M.; O’Connor, D.T.; Bandyopadhyay, G.; Mahata, S.K. A novel pathway of insulin sensitivity in chromogranin A null mice: A crucial role for pancreastatin in glucose homeostasis. J. Biol. Chem. 2009, 284, 28498–28509. [Google Scholar] [CrossRef] [Green Version]
- Taupenot, L.; Harper, K.L.; O’Connor, D.T. The chromogranin-secretogranin family. N. Engl. J. Med. 2003, 348, 1134–1149. [Google Scholar] [CrossRef] [PubMed]
- Feng, W.; Xu, X.; Zhao, G.; Zhao, J.; Dong, R.; Ma, B.; Zhang, Y.; Long, G.; Wang, D.W.; Tu, L. Increased Age-Related Cardiac Dysfunction in Bradykinin B2 Receptor-Deficient Mice. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2016, 71, 178–187. [Google Scholar] [CrossRef]
- Dong, R.; Xu, X.; Li, G.; Feng, W.; Zhao, G.; Zhao, J.; Wang, D.W.; Tu, L. Bradykinin inhibits oxidative stress-induced cardiomyocytes senescence via regulating redox state. PLoS ONE 2013, 8, e77034. [Google Scholar] [CrossRef] [PubMed]
- Catalioto, R.M.; Valenti, C.; Liverani, L.; Giuliani, S.; Maggi, C.A. Characterization of a novel proinflammatory effect mediated by BK and the kinin B(2) receptor in human preadipocytes. Biochem. Pharmacol. 2013, 86, 508–520. [Google Scholar] [CrossRef]
- Cuevas, S.; Villar, V.A.; Jose, P.A.; Armando, I. Renal dopamine receptors, oxidative stress, and hypertension. Int. J. Mol. Sci. 2013, 14, 17553–17572. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cassar, M.; Issa, A.R.; Riemensperger, T.; Petitgas, C.; Rival, T.; Coulom, H.; Iche-Torres, M.; Han, K.A.; Birman, S. A dopamine receptor contributes to paraquat-induced neurotoxicity in Drosophila. Hum. Mol. Genet. 2015, 24, 197–212. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Cuevas, S.; Yang, S.; Villar, V.A.; Escano, C.; Asico, L.; Yu, P.; Jiang, X.; Weinman, E.J.; Armando, I.; et al. Sestrin2 decreases renal oxidative stress, lowers blood pressure, and mediates dopamine D2 receptor-induced inhibition of reactive oxygen species production. Hypertension 2014, 64, 825–832. [Google Scholar] [CrossRef] [Green Version]
- Garcia-Tornadu, I.; Ornstein, A.M.; Chamson-Reig, A.; Wheeler, M.B.; Hill, D.J.; Arany, E.; Rubinstein, M.; Becu-Villalobos, D. Disruption of the dopamine d2 receptor impairs insulin secretion and causes glucose intolerance. Endocrinology 2010, 151, 1441–1450. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, C.; Wang, Z.; Han, Y.; Liu, Y.; Wang, W.E.; Chen, C.; Wang, H.; Jose, P.A.; Zeng, C. Dopamine D(4) receptors inhibit proliferation and migration of vascular smooth muscle cells induced by insulin via down-regulation of insulin receptor expression. Cardiovasc. Diabetol. 2014, 13, 97. [Google Scholar] [CrossRef] [Green Version]
- De Weijer, B.A.; van de Giessen, E.; Janssen, I.; Berends, F.J.; van de Laar, A.; Ackermans, M.T.; Fliers, E.; la Fleur, S.E.; Booij, J.; Serlie, M.J. Striatal dopamine receptor binding in morbidly obese women before and after gastric bypass surgery and its relationship with insulin sensitivity. Diabetologia 2014, 57, 1078–1080. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yan, L.; Vatner, S.F.; Vatner, D.E. Disruption of type 5 adenylyl cyclase prevents beta-adrenergic receptor cardiomyopathy: A novel approach to beta-adrenergic receptor blockade. Am. J. Physiol. Heart Circ. Physiol. 2014, 307, H1521–H1528. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rizzi, E.; Guimaraes, D.A.; Ceron, C.S.; Prado, C.M.; Pinheiro, L.C.; Martins-Oliveira, A.; Gerlach, R.F.; Tanus-Santos, J.E. beta1-Adrenergic blockers exert antioxidant effects, reduce matrix metalloproteinase activity, and improve renovascular hypertension-induced cardiac hypertrophy. Free Radic. Biol. Med. 2014, 73, 308–317. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Girouard, H.; de Champlain, J. Acute and chronic effects of free radicals on alpha1-adrenergic-induced vasoconstriction in mesenteric beds of spontaneously hypertensive rats. J. Hypertens. 2005, 23, 807–814. [Google Scholar] [CrossRef]
- Abramson, E.A.; Arky, R.A. Role of beta-adrenergic receptors in counterregulation to insulin-induced hypoglycemia. Diabetes 1968, 17, 141–146. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Zhang, Q.; Ye, E.A.; Steinle, J.J. Etanercept restores normal insulin signal transduction in beta2-adrenergic receptor knockout mice. J. Neuroinflamm. 2014, 11, 137. [Google Scholar] [CrossRef] [Green Version]
- Borst, S.E.; Hennessy, M. beta-3 adrenergic agonist restores skeletal muscle insulin responsiveness in Sprague-Dawley rats. Biochem. Biophys. Res. Commun. 2001, 289, 1188–1191. [Google Scholar] [CrossRef]
- Deibert, D.C.; DeFronzo, R.A. Epinephrine-induced insulin resistance in man. J. Clin. Investig. 1980, 65, 717–721. [Google Scholar] [CrossRef]
- James, D.E.; Burleigh, K.M.; Kraegen, E.W. In vivo glucose metabolism in individual tissues of the rat. Interaction between epinephrine and insulin. J. Biol. Chem. 1986, 261, 6366–6374. [Google Scholar] [CrossRef]
- Gekle, M.; Bretschneider, M.; Meinel, S.; Ruhs, S.; Grossmann, C. Rapid mineralocorticoid receptor trafficking. Steroids 2014, 81, 103–108. [Google Scholar] [CrossRef]
- Brand, S.; Amann, K.; Mandel, P.; Zimnol, A.; Schupp, N. Oxidative DNA damage in kidneys and heart of hypertensive mice is prevented by blocking angiotensin II and aldosterone receptors. PLoS ONE 2014, 9, e115715. [Google Scholar] [CrossRef]
- Queisser, N.; Happ, K.; Link, S.; Jahn, D.; Zimnol, A.; Geier, A.; Schupp, N. Aldosterone induces fibrosis, oxidative stress and DNA damage in livers of male rats independent of blood pressure changes. Toxicol. Appl. Pharm. 2014, 280, 399–407. [Google Scholar] [CrossRef]
- Luther, J.M. Effects of aldosterone on insulin sensitivity and secretion. Steroids 2014, 91, 54–60. [Google Scholar] [CrossRef] [Green Version]
- Gonzalez, J.; Valls, N.; Brito, R.; Rodrigo, R. Essential hypertension and oxidative stress: New insights. World J. Cardiol. 2014, 6, 353–366. [Google Scholar] [CrossRef]
- Barhoumi, T.; Briet, M.; Kasal, D.A.; Fraulob-Aquino, J.C.; Idris-Khodja, N.; Laurant, P.; Paradis, P.; Schiffrin, E.L. Erythropoietin-induced hypertension and vascular injury in mice overexpressing human endothelin-1: Exercise attenuated hypertension, oxidative stress, inflammation and immune response. J. Hypertens. 2014, 32, 784–794. [Google Scholar] [CrossRef]
- Tian, J.; Wong, W.T.; Tian, X.Y.; Zhang, P.; Huang, Y.; Wang, N. Rosiglitazone attenuates endothelin-1-induced vasoconstriction by upregulating endothelial expression of endothelin B receptor. Hypertension 2010, 56, 129–135. [Google Scholar] [CrossRef] [Green Version]
- Jin, C.; Jeon, Y.; Kleven, D.T.; Pollock, J.S.; White, J.J.; Pollock, D.M. Combined endothelin a blockade and chlorthalidone treatment in a rat model of metabolic syndrome. J. Pharmacol. Exp. Ther. 2014, 351, 467–473. [Google Scholar] [CrossRef] [Green Version]
- Ho, L.T.; Hsu, Y.P.; Hsiao, C.F.; Ting, C.T.; Shih, K.C.; Chuang, L.M.; Masaki, K.; Grove, J.; Quertermous, T.; Juan, C.C.; et al. Endothelin Type A Receptor Genotype is a Determinant of Quantitative Traits of Metabolic Syndrome in Asian Hypertensive Families: A SAPPHIRe Study. Front. Endocrinol. 2013, 4, 172. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Sarkar, O.; Brochu, M.; Anand-Srivastava, M.B. Natriuretic peptide receptor-C attenuates hypertension in spontaneously hypertensive rats: Role of nitroxidative stress and Gi proteins. Hypertension 2014, 63, 846–855. [Google Scholar] [CrossRef] [Green Version]
- Ogawa, Y.; Mukoyama, M.; Yokoi, H.; Kasahara, M.; Mori, K.; Kato, Y.; Kuwabara, T.; Imamaki, H.; Kawanishi, T.; Koga, K.; et al. Natriuretic peptide receptor guanylyl cyclase-A protects podocytes from aldosterone-induced glomerular injury. J. Am. Soc. Nephrol. 2012, 23, 1198–1209. [Google Scholar] [CrossRef] [Green Version]
- Qi, Y.; Raizada, M.K. Is natriuretic peptide receptor C a new target for hypertension therapeutics? Hypertension 2014, 63, 661–662. [Google Scholar] [CrossRef] [Green Version]
- Pivovarova, O.; Gogebakan, O.; Kloting, N.; Sparwasser, A.; Weickert, M.O.; Haddad, I.; Nikiforova, V.J.; Bergmann, A.; Kruse, M.; Seltmann, A.C.; et al. Insulin up-regulates natriuretic peptide clearance receptor expression in the subcutaneous fat depot in obese subjects: A missing link between CVD risk and obesity? J. Clin. Endocrinol. Metab. 2012, 97, E731–E739. [Google Scholar] [CrossRef] [Green Version]
- Saulnier, P.J.; Roussel, R.; Halimi, J.M.; Lebrec, J.; Dardari, D.; Maimaitiming, S.; Guilloteau, G.; Prugnard, X.; Marechaud, R.; Ragot, S.; et al. Impact of natriuretic peptide clearance receptor (NPR3) gene variants on blood pressure in type 2 diabetes. Diabetes Care 2011, 34, 1199–1204. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garg, R.; Hurwitz, S.; Williams, G.H.; Hopkins, P.N.; Adler, G.K. Aldosterone production and insulin resistance in healthy adults. J. Clin. Endocrinol. Metab. 2010, 95, 1986–1990. [Google Scholar] [CrossRef] [Green Version]
- Gilbert, K.C.; Brown, N.J. Aldosterone and inflammation. Curr. Opin. Endocrinol. Diabetes Obes. 2010, 17, 199–204. [Google Scholar] [CrossRef] [Green Version]
- Russo, P.; Lauria, F.; Loguercio, M.; Barba, G.; Arnout, J.; Cappuccio, F.P.; de Lorgeril, M.; Donati, M.B.; Iacoviello, L.; Krogh, V.; et al. 344C/T Variant in the promoter of the aldosterone synthase gene (CYP11B2) is associated with metabolic syndrome in men. Am. J. Hypertens. 2007, 20, 218–222. [Google Scholar] [CrossRef] [Green Version]
- Lamounier-Zepter, V.; Bornstein, S.R.; Kunes, J.; Zicha, J.; Krsek, M.; Ehrhart-Bornstein, M.; Ziegler, C.G.; Kiessling, A.; Funk, R.H.; Haluzik, M. Adrenocortical changes and arterial hypertension in lipoatrophic A-ZIP/F-1 mice. Mol. Cell. Endocrinol. 2008, 280, 39–46. [Google Scholar] [CrossRef] [Green Version]
- Rochette, L.; Lorin, J.; Zeller, M.; Guilland, J.C.; Lorgis, L.; Cottin, Y.; Vergely, C. Nitric oxide synthase inhibition and oxidative stress in cardiovascular diseases: Possible therapeutic targets? Pharmacol. Ther. 2013, 140, 239–257. [Google Scholar] [CrossRef]
- Li, H.; Forstermann, U. Nitric oxide in the pathogenesis of vascular disease. J. Pathol. 2000, 190, 244–254. [Google Scholar] [CrossRef]
- Inserte, J.; Hernando, V.; Vilardosa, U.; Abad, E.; Poncelas-Nozal, M.; Garcia-Dorado, D. Activation of cGMP/protein kinase G pathway in postconditioned myocardium depends on reduced oxidative stress and preserved endothelial nitric oxide synthase coupling. J. Am. Heart Assoc. 2013, 2, e005975. [Google Scholar] [CrossRef] [Green Version]
- Doronzo, G.; Viretto, M.; Russo, I.; Mattiello, L.; Di Martino, L.; Cavalot, F.; Anfossi, G.; Trovati, M. Nitric oxide activates PI3-K and MAPK signalling pathways in human and rat vascular smooth muscle cells: Influence of insulin resistance and oxidative stress. Atherosclerosis 2011, 216, 44–53. [Google Scholar] [CrossRef]
- Roe, N.D.; He, E.Y.; Wu, Z.; Ren, J. Folic acid reverses nitric oxide synthase uncoupling and prevents cardiac dysfunction in insulin resistance: Role of Ca2+/calmodulin-activated protein kinase II. Free Radic. Biol. Med. 2013, 65, 234–243. [Google Scholar] [CrossRef] [Green Version]
- Sugita, H.; Fujimoto, M.; Yasukawa, T.; Shimizu, N.; Sugita, M.; Yasuhara, S.; Martyn, J.A.; Kaneki, M. Inducible nitric-oxide synthase and NO donor induce insulin receptor substrate-1 degradation in skeletal muscle cells. J. Biol. Chem. 2005, 280, 14203–14211. [Google Scholar] [CrossRef] [Green Version]
- Sydow, K.; Mondon, C.E.; Cooke, J.P. Insulin resistance: Potential role of the endogenous nitric oxide synthase inhibitor ADMA. Vasc. Med. 2005, 10 (Suppl. 1), S35–S43. [Google Scholar] [CrossRef] [Green Version]
- Russo, I.; Del Mese, P.; Doronzo, G.; Mattiello, L.; Viretto, M.; Bosia, A.; Anfossi, G.; Trovati, M. Resistance to the nitric oxide/cyclic guanosine 5’-monophosphate/protein kinase G pathway in vascular smooth muscle cells from the obese Zucker rat, a classical animal model of insulin resistance: Role of oxidative stress. Endocrinology 2008, 149, 1480–1489. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.C.; Fry, N.A.; Hamilton, E.J.; Chia, K.K.; Garcia, A.; Karimi Galougahi, K.; Figtree, G.A.; Clarke, R.J.; Bundgaard, H.; Rasmussen, H.H. Redox-dependent regulation of the Na(+)-K(+) pump: New twists to an old target for treatment of heart failure. J. Mol. Cell. Cardiol. 2013, 61, 94–101. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Ji, J.; Yan, G.; Wu, J.; Sun, X.; Shen, J.; Jiang, H.; Wang, H. Sildenafil promotes adipogenesis through a PKG pathway. Biochem. Biophys. Res. Commun. 2010, 396, 1054–1059. [Google Scholar] [CrossRef]
- Birschmann, I.; Walter, U. Physiology and pathophysiology of vascular signaling controlled by guanosine 3’,5’-cyclic monophosphate-dependent protein kinase. Acta Biochim. Pol. 2004, 51, 397–404. [Google Scholar] [CrossRef]
- Yan, Y.; Shapiro, A.P.; Haller, S.; Katragadda, V.; Liu, L.; Tian, J.; Basrur, V.; Malhotra, D.; Xie, Z.J.; Abraham, N.G.; et al. Involvement of reactive oxygen species in a feed-forward mechanism of Na/K-ATPase-mediated signaling transduction. J. Biol. Chem. 2013, 288, 34249–34258. [Google Scholar] [CrossRef] [Green Version]
- Ho, K. A critically swift response: Insulin-stimulated potassium and glucose transport in skeletal muscle. Clin. J. Am. Soc. Nephrol. 2011, 6, 1513–1516. [Google Scholar] [CrossRef] [Green Version]
- Bober, J.; Kedzierska, K.; Kwiatkowska, E.; Stachowska, E.; Golembiewska, E.; Mazur, O.; Staniewicz, Z.; Ciechanowski, K.; Chlubek, D. Does oxidative stress affect the activity of the sodium-proton exchanger? Ann. Acad. Med. Stetin. 2010, 56, 5–12. [Google Scholar]
- Muro, S.; Mateescu, M.; Gajewski, C.; Robinson, M.; Muzykantov, V.R.; Koval, M. Control of intracellular trafficking of ICAM-1-targeted nanocarriers by endothelial Na+/H+ exchanger proteins. Am. J. Physiol. Lung Cell. Mol. Physiol. 2006, 290, L809–L817. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lang, F.; Stournaras, C.; Alesutan, I. Regulation of transport across cell membranes by the serum- and glucocorticoid-inducible kinase SGK1. Mol. Membr. Biol. 2014, 31, 29–36. [Google Scholar] [CrossRef] [PubMed]
- Ghigo, D.; Alessio, P.; Burzacca, S.; Costamagna, C.; Anfossi, G.; Cavalot, F.; Bosia, A.; Trovati, M. Na+/H+ antiporter activity in peripheral blood lymphocytes of obese and type 2 diabetic patients is increased only in the presence of arterial hypertension. Eur. J. Clin. Investig. 1994, 24, 166–172. [Google Scholar] [CrossRef] [PubMed]
- Mahnensmith, R.L.; Aronson, P.S. The plasma membrane sodium-hydrogen exchanger and its role in physiological and pathophysiological processes. Circ. Res. 1985, 56, 773–788. [Google Scholar] [CrossRef] [Green Version]
- Shi, W.W.; Yang, Y.; Shi, Y.; Jiang, C. K(ATP) channel action in vascular tone regulation: From genetics to diseases. Sheng Li Xue Bao 2012, 64, 1–13. [Google Scholar]
- Jin, X.; Yu, L.; Wu, Y.; Zhang, S.; Shi, Z.; Chen, X.; Yang, Y.; Zhang, X.; Jiang, C. S-Glutathionylation underscores the modulation of the heteromeric Kir4.1-Kir5.1 channel in oxidative stress. J. Physiol. 2012, 590, 5335–5348. [Google Scholar] [CrossRef]
- Desir, G.V. Kv1.3 potassium channel blockade as an approach to insulin resistance. Expert Opin. Ther. Targets 2005, 9, 571–579. [Google Scholar] [CrossRef]
- Xu, J.; Wang, P.; Li, Y.; Li, G.; Kaczmarek, L.K.; Wu, Y.; Koni, P.A.; Flavell, R.A.; Desir, G.V. The voltage-gated potassium channel Kv1.3 regulates peripheral insulin sensitivity. Proc. Natl. Acad. Sci. USA 2004, 101, 3112–3117. [Google Scholar] [CrossRef] [Green Version]
- Remillard, C.V.; Yuan, J.X. ClC-3: More than just a volume-sensitive Cl- channel. Br. J. Pharmacol. 2005, 145, 1–2. [Google Scholar] [CrossRef] [Green Version]
- Averaimo, S.; Milton, R.H.; Duchen, M.R.; Mazzanti, M. Chloride intracellular channel 1 (CLIC1): Sensor and effector during oxidative stress. FEBS Lett. 2010, 584, 2076–2084. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deriy, L.V.; Gomez, E.A.; Jacobson, D.A.; Wang, X.; Hopson, J.A.; Liu, X.Y.; Zhang, G.; Bindokas, V.P.; Philipson, L.H.; Nelson, D.J. The granular chloride channel ClC-3 is permissive for insulin secretion. Cell Metab. 2009, 10, 316–323. [Google Scholar] [CrossRef] [Green Version]
- Puljak, L.; Pagliassotti, M.J.; Wei, Y.; Qadri, I.; Parameswara, V.; Esser, V.; Fitz, J.G.; Kilic, G. Inhibition of cellular responses to insulin in a rat liver cell line. A role for PKC in insulin resistance. J. Physiol. 2005, 563, 471–482. [Google Scholar] [CrossRef] [PubMed]
- Flatman, P.W. Cotransporters, WNKs and hypertension: An update. Curr. Opin. Nephrol. Hypertens. 2008, 17, 186–192. [Google Scholar] [CrossRef] [PubMed]
- Sengupta, S.; Tu, S.W.; Wedin, K.; Earnest, S.; Stippec, S.; Luby-Phelps, K.; Cobb, M.H. Interactions with WNK (with no lysine) family members regulate oxidative stress response 1 and ion co-transporter activity. J. Biol. Chem. 2012, 287, 37868–37879. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Horita, S.; Seki, G.; Yamada, H.; Suzuki, M.; Koike, K.; Fujita, T. Insulin resistance, obesity, hypertension, and renal sodium transport. Int. J. Hypertens. 2011, 2011, 391762. [Google Scholar] [CrossRef] [Green Version]
- Riazi, S.; Tiwari, S.; Sharma, N.; Rash, A.; Ecelbarger, C.M. Abundance of the Na-K-2Cl cotransporter NKCC2 is increased by high-fat feeding in Fischer 344 X Brown Norway (F1) rats. Am. J. Physiol. Ren. Physiol. 2009, 296, F762–F770. [Google Scholar] [CrossRef] [Green Version]
- ALLHAT Officers and Coordinators for the ALLHAT Collaborative Research Group, The Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial. Major outcomes in high-risk hypertensive patients randomized to angiotensin-converting enzyme inhibitor or calcium channel blocker vs diuretic: The Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial (ALLHAT). Jama 2002, 288, 2981–2997. [Google Scholar] [CrossRef] [Green Version]
- Salvetti, A.; Ghiadoni, L. Guidelines for antihypertensive treatment: An update after the ALLHAT study. J. Am. Soc. Nephrol. 2004, 15 (Suppl. 1), S51–S54. [Google Scholar] [CrossRef] [Green Version]
- Saez, G.T.; Tormos, C.; Giner, V.; Chaves, J.; Lozano, J.V.; Iradi, A.; Redon, J. Factors related to the impact of antihypertensive treatment in antioxidant activities and oxidative stress by-products in human hypertension. Am. J. Hypertens. 2004, 17, 809–816. [Google Scholar] [CrossRef] [Green Version]
- Gorman, J.M. A plausible mechanism for a non-pharmacological therapy for hypertension. Clin. Auton. Res. 2015, 25, 85–86. [Google Scholar] [CrossRef] [Green Version]
- Hummel, S.L.; Seymour, E.M.; Brook, R.D.; Kolias, T.J.; Sheth, S.S.; Rosenblum, H.R.; Wells, J.M.; Weder, A.B. Low-sodium dietary approaches to stop hypertension diet reduces blood pressure, arterial stiffness, and oxidative stress in hypertensive heart failure with preserved ejection fraction. Hypertension 2012, 60, 1200–1206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pizzi, C.; Manfrini, O.; Fontana, F.; Bugiardini, R. Angiotensin-converting enzyme inhibitors and 3-hydroxy-3-methylglutaryl coenzyme A reductase in cardiac Syndrome X: Role of superoxide dismutase activity. Circulation 2004, 109, 53–58. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luscher, T.F.; Pieper, M.; Tendera, M.; Vrolix, M.; Rutsch, W.; van den Branden, F.; Gil, R.; Bischoff, K.O.; Haude, M.; Fischer, D.; et al. A randomized placebo-controlled study on the effect of nifedipine on coronary endothelial function and plaque formation in patients with coronary artery disease: The ENCORE II study. Eur. Heart J. 2009, 30, 1590–1597. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taddei, S.; Virdis, A.; Ghiadoni, L.; Magagna, A.; Pasini, A.F.; Garbin, U.; Cominacini, L.; Salvetti, A. Effect of calcium antagonist or beta blockade treatment on nitric oxide-dependent vasodilation and oxidative stress in essential hypertensive patients. J. Hypertens. 2001, 19, 1379–1386. [Google Scholar] [CrossRef] [PubMed]
- Glorioso, N.; Troffa, C.; Filigheddu, F.; Dettori, F.; Soro, A.; Parpaglia, P.P.; Collatina, S.; Pahor, M. Effect of the HMG-CoA reductase inhibitors on blood pressure in patients with essential hypertension and primary hypercholesterolemia. Hypertension 1999, 34, 1281–1286. [Google Scholar] [CrossRef] [PubMed]
- Ikeda, T.; Sakurai, J.; Nakayama, D.; Takahashi, Y.; Matsuo, K.; Shibuya, Y.; Gomi, T.; Moriya, H.; Kobayashi, S. Pravastatin has an additional depressor effect in patients undergoing long-term treatment with antihypertensive drugs. Am. J. Hypertens. 2004, 17, 502–506. [Google Scholar] [CrossRef] [Green Version]
- Kristianson, K.; Fyhrquist, F.; Devereux, R.B.; Kjeldsen, S.E.; Lindholm, L.H.; Lyle, P.A.; Nieminen, M.S.; Snapinn, S.M. An analysis of cholesterol control and statin use in the Losartan Intervention for Endpoint Reduction in Hypertension Study. Clin. Ther. 2003, 25, 1186–1199. [Google Scholar] [CrossRef]
- Khan, M.U.; Zhao, W.; Zhao, T.; Al Darazi, F.; Ahokas, R.A.; Sun, Y.; Bhattacharya, S.K.; Gerling, I.C.; Weber, K.T. Nebivolol: A multifaceted antioxidant and cardioprotectant in hypertensive heart disease. J. Cardiovasc. Pharm. 2013, 62, 445–451. [Google Scholar] [CrossRef]
- Mak, I.T.; Weglicki, W.B. Potent antioxidant properties of 4-hydroxyl-propranolol. J. Pharmacol. Exp. Ther. 2004, 308, 85–90. [Google Scholar] [CrossRef] [Green Version]
- Noguchi, N.; Nishino, K.; Niki, E. Antioxidant action of the antihypertensive drug, carvedilol, against lipid peroxidation. Biochem. Pharmacol. 2000, 59, 1069–1076. [Google Scholar] [CrossRef]
- Okamoto, L.E.; Gamboa, A.; Shibao, C.A.; Arnold, A.C.; Choi, L.; Black, B.K.; Raj, S.R.; Robertson, D.; Biaggioni, I. Nebivolol, but not metoprolol, lowers blood pressure in nitric oxide-sensitive human hypertension. Hypertension 2014, 64, 1241–1247. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Skalska, A.; Gasowski, J.; Stepniewski, M.; Grodzicki, T. Antioxidative protection in hypertensive patients treated with diuretics. Am. J. Hypertens. 2005, 18, 1130–1132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grossman, E. Does increased oxidative stress cause hypertension? Diabetes Care 2008, 31 (Suppl. 2), S185–S189. [Google Scholar] [CrossRef] [Green Version]
- Ceriello, A. Possible role of oxidative stress in the pathogenesis of hypertension. Diabetes Care 2008, 31 (Suppl. 2), S181–S184. [Google Scholar] [CrossRef] [Green Version]
- Patki, P.S.; Singh, J.; Gokhale, S.V.; Bulakh, P.M.; Shrotri, D.S.; Patwardhan, B. Efficacy of potassium and magnesium in essential hypertension: A double-blind, placebo controlled, crossover study. BMJ 1990, 301, 521–523. [Google Scholar] [CrossRef] [Green Version]
- Pikilidou, M.I.; Befani, C.D.; Sarafidis, P.A.; Nilsson, P.M.; Koliakos, G.G.; Tziolas, I.M.; Kazakos, K.A.; Yovos, J.G.; Lasaridis, A.N. Oral calcium supplementation ambulatory blood pressure and relation to changes in intracellular ions and sodium-hydrogen exchange. Am. J. Hypertens. 2009, 22, 1263–1269. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sacks, F.M.; Brown, L.E.; Appel, L.; Borhani, N.O.; Evans, D.; Whelton, P. Combinations of potassium, calcium, and magnesium supplements in hypertension. Hypertension 1995, 26, 950–956. [Google Scholar] [CrossRef]
- Sarkkinen, E.S.; Kastarinen, M.J.; Niskanen, T.H.; Karjalainen, P.H.; Venalainen, T.M.; Udani, J.K.; Niskanen, L.K. Feasibility and antihypertensive effect of replacing regular salt with mineral salt -rich in magnesium and potassium- in subjects with mildly elevated blood pressure. Nutr. J. 2011, 10, 88. [Google Scholar] [CrossRef] [Green Version]
- Wu, G.; Tian, H.; Han, K.; Xi, Y.; Yao, Y.; Ma, A. Potassium magnesium supplementation for four weeks improves small distal artery compliance and reduces blood pressure in patients with essential hypertension. Clin. Exp. Hypertens. 2006, 28, 489–497. [Google Scholar] [CrossRef] [PubMed]
- Sacks, F.M.; Willett, W.C.; Smith, A.; Brown, L.E.; Rosner, B.; Moore, T.J. Effect on blood pressure of potassium, calcium, and magnesium in women with low habitual intake. Hypertension 1998, 31, 131–138. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lagerpusch, M.; Enderle, J.; Eggeling, B.; Braun, W.; Johannsen, M.; Pape, D.; Muller, M.J.; Bosy-Westphal, A. Carbohydrate quality and quantity affect glucose and lipid metabolism during weight regain in healthy men. J. Nutr. 2013, 143, 1593–1601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- The sixth report of the Joint National Committee on prevention, detection, evaluation, and treatment of high blood pressure. Arch. Intern. Med. 1997, 157, 2413–2446. [CrossRef]
- Schotte, D.E.; Stunkard, A.J. The effects of weight reduction on blood pressure in 301 obese patients. Arch. Intern. Med. 1990, 150, 1701–1704. [Google Scholar] [CrossRef]
- Reaven, G. Insulin resistance, type 2 diabetes mellitus, and cardiovascular disease: The end of the beginning. Circulation 2005, 112, 3030–3032. [Google Scholar] [CrossRef]
- Lehr, S.; Hartwig, S.; Sell, H. Adipokines: A treasure trove for the discovery of biomarkers for metabolic disorders. Proteom. Clin. Appl. 2012, 6, 91–101. [Google Scholar] [CrossRef]
- Qi, Q.; Chu, A.Y.; Kang, J.H.; Huang, J.; Rose, L.M.; Jensen, M.K.; Liang, L.; Curhan, G.C.; Pasquale, L.R.; Wiggs, J.L.; et al. Fried food consumption, genetic risk, and body mass index: Gene-diet interaction analysis in three US cohort studies. BMJ 2014, 348, g1610. [Google Scholar] [CrossRef] [Green Version]
- Wozniak, S.E.; Gee, L.L.; Wachtel, M.S.; Frezza, E.E. Adipose tissue: The new endocrine organ? A review article. Dig. Dis. Sci. 2009, 54, 1847–1856. [Google Scholar] [CrossRef]
- Yang, W.; Kelly, T.; He, J. Genetic epidemiology of obesity. Epidemiol. Rev. 2007, 29, 49–61. [Google Scholar] [CrossRef] [Green Version]
- Palomaki, G.E.; Melillo, S.; Bradley, L.A. Association between 9p21 genomic markers and heart disease: A meta-analysis. JAMA 2010, 303, 648–656. [Google Scholar] [CrossRef] [Green Version]
- Samani, N.J.; Erdmann, J.; Hall, A.S.; Hengstenberg, C.; Mangino, M.; Mayer, B.; Dixon, R.J.; Meitinger, T.; Braund, P.; Wichmann, H.E.; et al. Genomewide association analysis of coronary artery disease. N. Engl. J. Med. 2007, 357, 443–453. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gu, F.; Pfeiffer, R.M.; Bhattacharjee, S.; Han, S.S.; Taylor, P.R.; Berndt, S.; Yang, H.; Sigurdson, A.J.; Toro, J.; Mirabello, L.; et al. Common genetic variants in the 9p21 region and their associations with multiple tumours. Br. J. Cancer 2013, 108, 1378–1386. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Helgadottir, A.; Manolescu, A.; Thorleifsson, G.; Gretarsdottir, S.; Jonsdottir, H.; Thorsteinsdottir, U.; Samani, N.J.; Gudmundsson, G.; Grant, S.F.; Thorgeirsson, G.; et al. The gene encoding 5-lipoxygenase activating protein confers risk of myocardial infarction and stroke. Nat. Genet. 2004, 36, 233–239. [Google Scholar] [CrossRef] [PubMed]
- Hakonarson, H.; Thorvaldsson, S.; Helgadottir, A.; Gudbjartsson, D.; Zink, F.; Andresdottir, M.; Manolescu, A.; Arnar, D.O.; Andersen, K.; Sigurdsson, A.; et al. Effects of a 5-lipoxygenase-activating protein inhibitor on biomarkers associated with risk of myocardial infarction: A randomized trial. JAMA 2005, 293, 2245–2256. [Google Scholar] [CrossRef] [PubMed]
- Harrison, S.C.; Cooper, J.A.; Li, K.; Talmud, P.J.; Sofat, R.; Stephens, J.W.; Hamsten, A.; Sanders, J.; Montgomery, H.; Neil, A.; et al. Association of a sequence variant in DAB2IP with coronary heart disease. Eur. Heart J. 2012, 33, 881–888. [Google Scholar] [CrossRef]
- Chasman, D.I.; Giulianini, F.; MacFadyen, J.; Barratt, B.J.; Nyberg, F.; Ridker, P.M. Genetic determinants of statin-induced low-density lipoprotein cholesterol reduction: The Justification for the Use of Statins in Prevention: An Intervention Trial Evaluating Rosuvastatin (JUPITER) trial. Circ. Cardiovasc. Genet. 2012, 5, 257–264. [Google Scholar] [CrossRef] [Green Version]
- Mega, J.L.; Morrow, D.A.; Brown, A.; Cannon, C.P.; Sabatine, M.S. Identification of genetic variants associated with response to statin therapy. Arterioscler. Thromb. Vasc. Biol. 2009, 29, 1310–1315. [Google Scholar] [CrossRef] [Green Version]
- Corsetti, J.P.; Ryan, D.; Rainwater, D.L.; Moss, A.J.; Zareba, W.; Sparks, C.E. Cholesteryl ester transfer protein polymorphism (TaqIB) associates with risk in postinfarction patients with high C-reactive protein and high-density lipoprotein cholesterol levels. Arterioscler. Thromb. Vasc. Biol. 2010, 30, 1657–1664. [Google Scholar] [CrossRef] [Green Version]
- Dullaart, R.P. Increased coronary heart disease risk determined by high high-density lipoprotein cholesterol and C-reactive protein: Modulation by variation in the CETP gene. Arterioscler. Thromb. Vasc. Biol. 2010, 30, 1502–1503. [Google Scholar] [CrossRef] [Green Version]
- Heart Protection Study Collaborative Group. Lipoprotein-associated phospholipase A(2) activity and mass in relation to vascular disease and nonvascular mortality. J. Intern. Med. 2010, 268, 348–358. [Google Scholar] [CrossRef]
- Gaudet, D.; Methot, J.; Kastelein, J. Gene therapy for lipoprotein lipase deficiency. Curr. Opin. Lipidol. 2012, 23, 310–320. [Google Scholar] [CrossRef] [PubMed]
- Yaghootkar, H.; Scott, R.A.; White, C.C.; Zhang, W.; Speliotes, E.; Munroe, P.B.; Ehret, G.B.; Bis, J.C.; Fox, C.S.; Walker, M.; et al. Genetic evidence for a normal-weight “metabolically obese” phenotype linking insulin resistance, hypertension, coronary artery disease, and type 2 diabetes. Diabetes 2014, 63, 4369–4377. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coviello, A.D.; Haring, R.; Wellons, M.; Vaidya, D.; Lehtimaki, T.; Keildson, S.; Lunetta, K.L.; He, C.; Fornage, M.; Lagou, V.; et al. A genome-wide association meta-analysis of circulating sex hormone-binding globulin reveals multiple Loci implicated in sex steroid hormone regulation. PLoS Genet. 2012, 8, e1002805. [Google Scholar] [CrossRef] [Green Version]
- Ding, E.L.; Song, Y.; Manson, J.E.; Hunter, D.J.; Lee, C.C.; Rifai, N.; Buring, J.E.; Gaziano, J.M.; Liu, S. Sex hormone-binding globulin and risk of type 2 diabetes in women and men. N. Engl. J. Med. 2009, 361, 1152–1163. [Google Scholar] [CrossRef] [Green Version]
- Abubaker, J.; Tiss, A.; Abu-Farha, M.; Al-Ghimlas, F.; Al-Khairi, I.; Baturcam, E.; Cherian, P.; Elkum, N.; Hammad, M.; John, J.; et al. DNAJB3/HSP-40 cochaperone is downregulated in obese humans and is restored by physical exercise. PLoS ONE 2013, 8, e69217. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hickman, I.J.; Whitehead, J.P. Structure, signalling and physiologic role of adiponectin-dietary and exercise- related variations. Curr. Med. Chem. 2012, 19, 5427–5443. [Google Scholar] [CrossRef]
- Lin, J.S.; O’Connor, E.; Whitlock, E.P.; Beil, T.L.; Zuber, S.P.; Perdue, L.A.; Plaut, D.; Lutz, K. Behavioral Counseling to Promote Physical Activity and a Healthful Diet to Prevent Cardiovascular Disease in Adults: Update of the Evidence for the U.S. Preventive Services Task Force; U.S. Preventive Services Task Force Evidence Syntheses, formerly Systematic Evidence Reviews; Agency for Healthcare Research and Quality: Rockville, MD, USA, 2010.
- Park, Y.M.; Myers, M.; Vieira-Potter, V.J. Adipose tissue inflammation and metabolic dysfunction: Role of exercise. Mo. Med. 2014, 111, 65–72. [Google Scholar]
- Flores, L.; Vidal, J.; Canivell, S.; Delgado, S.; Lacy, A.; Esmatjes, E. Hypertension remission 1 year after bariatric surgery: Predictive factors. Surg. Obes. Relat. Dis. 2014, 10, 661–665. [Google Scholar] [CrossRef]
- Kruger, R.S.; Pricolo, V.E.; Streeter, T.T.; Colacchio, D.A.; Andrade, U.A. A bariatric surgery center of excellence: Operative trends and long-term outcomes. J. Am. Coll. Surg. 2014, 218, 1163–1174. [Google Scholar] [CrossRef]
- Reedy, J.; Krebs-Smith, S.M.; Miller, P.E.; Liese, A.D.; Kahle, L.L.; Park, Y.; Subar, A.F. Higher diet quality is associated with decreased risk of all-cause, cardiovascular disease, and cancer mortality among older adults. J. Nutr. 2014, 144, 881–889. [Google Scholar] [CrossRef] [Green Version]
- Ortego, M.; Bustos, C.; Hernandez-Presa, M.A.; Tunon, J.; Diaz, C.; Hernandez, G.; Egido, J. Atorvastatin reduces NF-kappaB activation and chemokine expression in vascular smooth muscle cells and mononuclear cells. Atherosclerosis 1999, 147, 253–261. [Google Scholar] [CrossRef]
- Rolph, M.S.; Zimmer, S.; Bottazzi, B.; Garlanda, C.; Mantovani, A.; Hansson, G.K. Production of the long pentraxin PTX3 in advanced atherosclerotic plaques. Arterioscler. Thromb. Vasc. Biol. 2002, 22, e10–e14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silvestre-Roig, C.; de Winther, M.P.; Weber, C.; Daemen, M.J.; Lutgens, E.; Soehnlein, O. Atherosclerotic plaque destabilization: Mechanisms, models, and therapeutic strategies. Circ. Res. 2014, 114, 214–226. [Google Scholar] [CrossRef] [Green Version]
- Ross, R. Atherosclerosis--an inflammatory disease. N. Engl. J. Med. 1999, 340, 115–126. [Google Scholar] [CrossRef]
- Brown, M.S.; Goldstein, J.L. Receptor-mediated endocytosis: Insights from the lipoprotein receptor system. Proc. Natl. Acad. Sci. USA 1979, 76, 3330–3337. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brown, M.S.; Goldstein, J.L. A receptor-mediated pathway for cholesterol homeostasis. Science 1986, 232, 34–47. [Google Scholar] [CrossRef] [Green Version]
- Goldstein, J.L.; Brown, M.S. The LDL receptor defect in familial hypercholesterolemia. Implications for pathogenesis and therapy. Med. Clin. North Am. 1982, 66, 335–362. [Google Scholar] [CrossRef] [PubMed]
- Goldstein, J.L.; Brown, M.S. Regulation of the mevalonate pathway. Nature 1990, 343, 425–430. [Google Scholar] [CrossRef]
- Mahley, R.W.; Innerarity, T.L.; Rall, S.C., Jr.; Weisgraber, K.H. Plasma lipoproteins: Apolipoprotein structure and function. J. Lipid Res. 1984, 25, 1277–1294. [Google Scholar] [CrossRef] [PubMed]
- Ooi, E.M.; Watts, G.F.; Chan, D.C.; Chen, M.M.; Nestel, P.J.; Sviridov, D.; Barrett, P.H. Dose-dependent effect of rosuvastatin on VLDL-apolipoprotein C-III kinetics in the metabolic syndrome. Diabetes Care 2008, 31, 1656–1661. [Google Scholar] [CrossRef] [Green Version]
- Weisgraber, K.H.; Mahley, R.W.; Kowal, R.C.; Herz, J.; Goldstein, J.L.; Brown, M.S. Apolipoprotein C-I modulates the interaction of apolipoprotein E with beta-migrating very low density lipoproteins (beta-VLDL) and inhibits binding of beta-VLDL to low density lipoprotein receptor-related protein. J. Biol. Chem. 1990, 265, 22453–22459. [Google Scholar] [CrossRef] [PubMed]
- O’Donoghue, M.; Morrow, D.A.; Sabatine, M.S.; Murphy, S.A.; McCabe, C.H.; Cannon, C.P.; Braunwald, E. Lipoprotein-associated phospholipase A2 and its association with cardiovascular outcomes in patients with acute coronary syndromes in the PROVE IT-TIMI 22 (PRavastatin Or atorVastatin Evaluation and Infection Therapy-Thrombolysis In Myocardial Infarction) trial. Circulation 2006, 113, 1745–1752. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Robins, S.J.; Collins, D.; Nelson, J.J.; Bloomfield, H.E.; Asztalos, B.F. Cardiovascular events with increased lipoprotein-associated phospholipase A(2) and low high-density lipoprotein-cholesterol: The Veterans Affairs HDL Intervention Trial. Arterioscler. Thromb. Vasc. Biol. 2008, 28, 1172–1178. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soutar, A.K.; Myant, N.B.; Thompson, G.R. The metabolism of very low density and intermediate density lipoproteins in patients with familial hypercholesterolaemia. Atherosclerosis 1982, 43, 217–231. [Google Scholar] [CrossRef] [PubMed]
- Lamarche, B.; Moorjani, S.; Lupien, P.J.; Cantin, B.; Bernard, P.M.; Dagenais, G.R.; Despres, J.P. Apolipoprotein A-I and B levels and the risk of ischemic heart disease during a five-year follow-up of men in the Quebec cardiovascular study. Circulation 1996, 94, 273–278. [Google Scholar] [CrossRef]
- Van Lennep, J.E.; Westerveld, H.T.; van Lennep, H.W.; Zwinderman, A.H.; Erkelens, D.W.; van der Wall, E.E. Apolipoprotein concentrations during treatment and recurrent coronary artery disease events. Arterioscler. Thromb. Vasc. Biol. 2000, 20, 2408–2413. [Google Scholar] [CrossRef] [Green Version]
- Walldius, G.; Jungner, I. The apoB/apoA-I ratio: A strong, new risk factor for cardiovascular disease and a target for lipid-lowering therapy–A review of the evidence. J. Intern. Med. 2006, 259, 493–519. [Google Scholar] [CrossRef]
- Walldius, G.; Jungner, I.; Holme, I.; Aastveit, A.H.; Kolar, W.; Steiner, E. High apolipoprotein B, low apolipoprotein A-I, and improvement in the prediction of fatal myocardial infarction (AMORIS study): A prospective study. Lancet 2001, 358, 2026–2033. [Google Scholar] [CrossRef]
- Chien, K.L.; Hsu, H.C.; Su, T.C.; Chen, M.F.; Lee, Y.T.; Hu, F.B. Apolipoprotein B and non-high density lipoprotein cholesterol and the risk of coronary heart disease in Chinese. J. Lipid Res. 2007, 48, 2499–2505. [Google Scholar] [CrossRef] [Green Version]
- Barter, P.J.; Ballantyne, C.M.; Carmena, R.; Castro Cabezas, M.; Chapman, M.J.; Couture, P.; de Graaf, J.; Durrington, P.N.; Faergeman, O.; Frohlich, J.; et al. Apo B versus cholesterol in estimating cardiovascular risk and in guiding therapy: Report of the thirty-person/ten-country panel. J. Intern. Med. 2006, 259, 247–258. [Google Scholar] [CrossRef] [PubMed]
- Basu, S.K.; Goldstein, J.L.; Brown, M.S. Characterization of the low density lipoprotein receptor in membranes prepared from human fibroblasts. J. Biol. Chem. 1978, 253, 3852–3856. [Google Scholar] [CrossRef]
- Contois, J.H.; McConnell, J.P.; Sethi, A.A.; Csako, G.; Devaraj, S.; Hoefner, D.M.; Warnick, G.R.; AACC Lipoproteins and Vascular Diseases Division Working Group on Best Practices. Apolipoprotein B and cardiovascular disease risk: Position statement from the AACC Lipoproteins and Vascular Diseases Division Working Group on Best Practices. Clin. Chem. 2009, 55, 407–419. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martin, S.S.; Qasim, A.N.; Mehta, N.N.; Wolfe, M.; Terembula, K.; Schwartz, S.; Iqbal, N.; Schutta, M.; Bagheri, R.; Reilly, M.P. Apolipoprotein B but not LDL cholesterol is associated with coronary artery calcification in type 2 diabetic whites. Diabetes 2009, 58, 1887–1892. [Google Scholar] [CrossRef] [Green Version]
- Schaefer, E.J.; Gregg, R.E.; Ghiselli, G.; Forte, T.M.; Ordovas, J.M.; Zech, L.A.; Brewer, H.B., Jr. Familial apolipoprotein E deficiency. J. Clin. Investig. 1986, 78, 1206–1219. [Google Scholar] [CrossRef] [PubMed]
- Sniderman, A.D.; Marcovina, S.M. Apolipoprotein A1 and B. Clin. Lab. Med. 2006, 26, 733–750. [Google Scholar] [CrossRef] [PubMed]
- Breslow, J.L.; Ross, D.; McPherson, J.; Williams, H.; Kurnit, D.; Nussbaum, A.L.; Karathanasis, S.K.; Zannis, V.I. Isolation and characterization of cDNA clones for human apolipoprotein A-I. Proc. Natl. Acad. Sci. USA 1982, 79, 6861–6865. [Google Scholar] [CrossRef] [Green Version]
- Phillips, J.C.; Wriggers, W.; Li, Z.; Jonas, A.; Schulten, K. Predicting the structure of apolipoprotein A-I in reconstituted high-density lipoprotein disks. Biophys. J. 1997, 73, 2337–2346. [Google Scholar] [CrossRef] [Green Version]
- Verges, B.; Florentin, E.; Baillot-Rudoni, S.; Petit, J.M.; Brindisi, M.C.; Pais de Barros, J.P.; Lagrost, L.; Gambert, P.; Duvillard, L. Rosuvastatin 20 mg restores normal HDL-apoA-I kinetics in type 2 diabetes. J. Lipid Res. 2009, 50, 1209–1215. [Google Scholar] [CrossRef] [Green Version]
- Ooi, E.M.; Watts, G.F.; Nestel, P.J.; Sviridov, D.; Hoang, A.; Barrett, P.H. Dose-dependent regulation of high-density lipoprotein metabolism with rosuvastatin in the metabolic syndrome. J. Clin. Endocrinol. Metab. 2008, 93, 430–437. [Google Scholar] [CrossRef] [Green Version]
- Dallinga-Thie, G.M.; van Tol, A.; Hattori, H.; Rensen, P.C.; Sijbrands, E.J. Plasma phospholipid transfer protein activity is decreased in type 2 diabetes during treatment with atorvastatin: A role for apolipoprotein E? Diabetes 2006, 55, 1491–1496. [Google Scholar] [CrossRef] [Green Version]
- Denke, M.; Pearson, T.; McBride, P.; Gazzara, R.A.; Brady, W.E.; Tershakovec, A.M. Ezetimibe added to ongoing statin therapy improves LDL-C goal attainment and lipid profile in patients with diabetes or metabolic syndrome. Diab. Vasc. Dis. Res. 2006, 3, 93–102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Göran, W. The apoB/apoA-I Ratio is a Strong Predictor of Cardiovascular Risk. In Lipoproteins; Sasa, F., Gerhard, K., Eds.; IntechOpen: Rijeka, Croatia, 2012; Chapter 5. [Google Scholar]
- Yaseen, R.I.; El-Leboudy, M.H.; El-Deeb, H.M. The relation between ApoB/ApoA-1 ratio and the severity of coronary artery disease in patients with acute coronary syndrome. Egypt. Heart J. 2021, 73, 24. [Google Scholar] [CrossRef] [PubMed]
- Di Angelantonio, E.; Gao, P.; Pennells, L.; Kaptoge, S.; Caslake, M.; Thompson, A.; Butterworth, A.S.; Sarwar, N.; Wormser, D.; Saleheen, D.; et al. Lipid-related markers and cardiovascular disease prediction. JAMA 2012, 307, 2499–2506. [Google Scholar] [CrossRef] [Green Version]
- Huang, Y. Mechanisms linking apolipoprotein E isoforms with cardiovascular and neurological diseases. Curr. Opin. Lipidol. 2010, 21, 337–345. [Google Scholar] [CrossRef]
- Lauer, S.J.; Walker, D.; Elshourbagy, N.A.; Reardon, C.A.; Levy-Wilson, B.; Taylor, J.M. Two copies of the human apolipoprotein C-I gene are linked closely to the apolipoprotein E gene. J. Biol. Chem. 1988, 263, 7277–7286. [Google Scholar] [CrossRef]
- Van den Elzen, P.; Garg, S.; Leon, L.; Brigl, M.; Leadbetter, E.A.; Gumperz, J.E.; Dascher, C.C.; Cheng, T.Y.; Sacks, F.M.; Illarionov, P.A.; et al. Apolipoprotein-mediated pathways of lipid antigen presentation. Nature 2005, 437, 906–910. [Google Scholar] [CrossRef] [PubMed]
- Avery, C.L.; He, Q.; North, K.E.; Ambite, J.L.; Boerwinkle, E.; Fornage, M.; Hindorff, L.A.; Kooperberg, C.; Meigs, J.B.; Pankow, J.S.; et al. A phenomics-based strategy identifies loci on APOC1, BRAP, and PLCG1 associated with metabolic syndrome phenotype domains. PLoS Genet. 2011, 7, e1002322. [Google Scholar] [CrossRef] [Green Version]
- Pan, X.R.; Cheung, M.C.; Walden, C.E.; Hu, S.X.; Bierman, E.L.; Albers, J.J. Abnormal composition of apoproteins C-I, C-II, and C-III in plasma and very-low-density lipoproteins of non-insulin-dependent diabetic Chinese. Clin. Chem. 1986, 32, 1914–1920. [Google Scholar] [CrossRef]
- Liu, P.Y.; Liu, Y.W.; Lin, L.J.; Chen, J.H.; Liao, J.K. Evidence for statin pleiotropy in humans: Differential effects of statins and ezetimibe on rho-associated coiled-coil containing protein kinase activity, endothelial function, and inflammation. Circulation 2009, 119, 131–138. [Google Scholar] [CrossRef] [Green Version]
- Kei, A.A.; Filippatos, T.D.; Tsimihodimos, V.; Elisaf, M.S. A review of the role of apolipoprotein C-II in lipoprotein metabolism and cardiovascular disease. Metabolism 2012, 61, 906–921. [Google Scholar] [CrossRef]
- Havel, R.J.; Shore, V.G.; Shore, B.; Bier, D.M. Role of specific glycopeptides of human serum lipoproteins in the activation of lipoprotein lipase. Circ. Res. 1970, 27, 595–600. [Google Scholar] [CrossRef] [Green Version]
- Jackson, R.L.; Baker, H.N.; Gilliam, E.B.; Gotto, A.M., Jr. Primary structure of very low density apolipoprotein C-II of human plasma. Proc. Natl. Acad. Sci. USA 1977, 74, 1942–1945. [Google Scholar] [CrossRef] [Green Version]
- Kinnunen, P.K.; Jackson, R.L.; Smith, L.C.; Gotto, A.M., Jr.; Sparrow, J.T. Activation of lipoprotein lipase by native and synthetic fragments of human plasma apolipoprotein C-II. Proc. Natl. Acad. Sci. USA 1977, 74, 4848–4851. [Google Scholar] [CrossRef] [Green Version]
- Breckenridge, W.C.; Little, J.A.; Steiner, G.; Chow, A.; Poapst, M. Hypertriglyceridemia associated with deficiency of apolipoprotein C-II. N. Engl. J. Med. 1978, 298, 1265–1273. [Google Scholar] [CrossRef]
- Gaudet, D.; Brisson, D.; Tremblay, K.; Alexander, V.J.; Singleton, W.; Hughes, S.G.; Geary, R.S.; Baker, B.F.; Graham, M.J.; Crooke, R.M.; et al. Targeting APOC3 in the familial chylomicronemia syndrome. N. Engl. J. Med. 2014, 371, 2200–2206. [Google Scholar] [CrossRef]
- Jorgensen, A.B.; Frikke-Schmidt, R.; Nordestgaard, B.G.; Tybjaerg-Hansen, A. Loss-of-function mutations in APOC3 and risk of ischemic vascular disease. N. Engl. J. Med. 2014, 371, 32–41. [Google Scholar] [CrossRef] [Green Version]
- Kawakami, A.; Yoshida, M. Apolipoprotein CIII links dyslipidemia with atherosclerosis. J. Atheroscler. Thromb. 2009, 16, 6–11. [Google Scholar] [CrossRef] [Green Version]
- Hardardottir, I.; Doerrler, W.; Feingold, K.R.; Grunfeld, C. Cytokines stimulate lipolysis and decrease lipoprotein lipase activity in cultured fat cells by a prostaglandin independent mechanism. Biochem. Biophys. Res. Commun. 1992, 186, 237–243. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.C.; Jin, W.; Hussain, M.M. The impact of phospholipid transfer protein (PLTP) on lipoprotein metabolism. Nutr. Metab. 2012, 9, 75. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Calabresi, L.; Pisciotta, L.; Costantin, A.; Frigerio, I.; Eberini, I.; Alessandrini, P.; Arca, M.; Bon, G.B.; Boscutti, G.; Busnach, G.; et al. The molecular basis of lecithin:cholesterol acyltransferase deficiency syndromes: A comprehensive study of molecular and biochemical findings in 13 unrelated Italian families. Arterioscler. Thromb. Vasc. Biol. 2005, 25, 1972–1978. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cummings, R.D.; Kornfeld, S.; Schneider, W.J.; Hobgood, K.K.; Tolleshaug, H.; Brown, M.S.; Goldstein, J.L. Biosynthesis of N- and O-linked oligosaccharides of the low density lipoprotein receptor. J. Biol. Chem. 1983, 258, 15261–15273. [Google Scholar] [CrossRef] [PubMed]
- Spady, D.K.; Bilheimer, D.W.; Dietschy, J.M. Rates of receptor-dependent and -independent low density lipoprotein uptake in the hamster. Proc. Natl. Acad. Sci. USA 1983, 80, 3499–3503. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brown, M.S.; Goldstein, J.L. Familial hypercholesterolemia: Defective binding of lipoproteins to cultured fibroblasts associated with impaired regulation of 3-hydroxy-3-methylglutaryl coenzyme A reductase activity. Proc. Natl. Acad. Sci. USA 1974, 71, 788–792. [Google Scholar] [CrossRef] [Green Version]
- Goldstein, J.L.; Brown, M.S.; Stone, N.J. Genetics of the LDL receptor: Evidence that the mutations affecting binding and internalization are allelic. Cell 1977, 12, 629–641. [Google Scholar] [CrossRef]
- Russell, D.W.; Schneider, W.J.; Yamamoto, T.; Luskey, K.L.; Brown, M.S.; Goldstein, J.L. Domain map of the LDL receptor: Sequence homology with the epidermal growth factor precursor. Cell 1984, 37, 577–585. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, T.; Davis, C.G.; Brown, M.S.; Schneider, W.J.; Casey, M.L.; Goldstein, J.L.; Russell, D.W. The human LDL receptor: A cysteine-rich protein with multiple Alu sequences in its mRNA. Cell 1984, 39, 27–38. [Google Scholar] [CrossRef] [PubMed]
- Sudhof, T.C.; Russell, D.W.; Goldstein, J.L.; Brown, M.S.; Sanchez-Pescador, R.; Bell, G.I. Cassette of eight exons shared by genes for LDL receptor and EGF precursor. Science 1985, 228, 893–895. [Google Scholar] [CrossRef] [PubMed]
- Tolleshaug, H.; Hobgood, K.K.; Brown, M.S.; Goldstein, J.L. The LDL receptor locus in familial hypercholesterolemia: Multiple mutations disrupt transport and processing of a membrane receptor. Cell 1983, 32, 941–951. [Google Scholar] [CrossRef]
- Brown, M.S.; Goldstein, J.L. Analysis of a mutant strain of human fibroblasts with a defect in the internalization of receptor-bound low density lipoprotein. Cell 1976, 9, 663–674. [Google Scholar] [CrossRef]
- Anderson, R.G.; Brown, M.S.; Goldstein, J.L. Role of the coated endocytic vesicle in the uptake of receptor-bound low density lipoprotein in human fibroblasts. Cell 1977, 10, 351–364. [Google Scholar] [CrossRef]
- Crowther, R.A.; Finch, J.T.; Pearse, B.M. On the structure of coated vesicles. J. Mol. Biol. 1976, 103, 785–798. [Google Scholar] [CrossRef]
- Anderson, R.G.; Goldstein, J.L.; Brown, M.S. A mutation that impairs the ability of lipoprotein receptors to localise in coated pits on the cell surface of human fibroblasts. Nature 1977, 270, 695–699. [Google Scholar] [CrossRef]
- Terris, S.; Steiner, D.F. Binding and degradation of 125I-insulin by rat hepatocytes. J. Biol. Chem. 1975, 250, 8389–8398. [Google Scholar] [CrossRef]
- Carpenter, G.; Cohen, S. 125I-labeled human epidermal growth factor. Binding, internalization, and degradation in human fibroblasts. J. Cell Biol. 1976, 71, 159–171. [Google Scholar] [CrossRef] [Green Version]
- Carpentier, J.L.; Gorden, P.; Anderson, R.G.; Goldstein, J.L.; Brown, M.S.; Cohen, S.; Orci, L. Co-localization of 125I-epidermal growth factor and ferritin-low density lipoprotein in coated pits: A quantitative electron microscopic study in normal and mutant human fibroblasts. J. Cell Biol. 1982, 95, 73–77. [Google Scholar] [CrossRef] [Green Version]
- Maxfield, F.R.; Willingham, M.C.; Davies, P.J.; Pastan, I. Amines inhibit the clustering of alpha2-macroglobulin and EGF on the fibroblast cell surface. Nature 1979, 277, 661–663. [Google Scholar] [CrossRef] [PubMed]
- Ascoli, M.; Puett, D. Degradation of receptor-bound human choriogonadotropin by murine Leydig tumor cells. J. Biol. Chem. 1978, 253, 4892–4899. [Google Scholar] [CrossRef] [PubMed]
- Alberts, A.W.; Chen, J.; Kuron, G.; Hunt, V.; Huff, J.; Hoffman, C.; Rothrock, J.; Lopez, M.; Joshua, H.; Harris, E.; et al. Mevinolin: A highly potent competitive inhibitor of hydroxymethylglutaryl-coenzyme A reductase and a cholesterol-lowering agent. Proc. Natl. Acad. Sci. USA 1980, 77, 3957–3961. [Google Scholar] [CrossRef] [Green Version]
- Endo, A.; Kuroda, M.; Tanzawa, K. Competitive inhibition of 3-hydroxy-3-methylglutaryl coenzyme A reductase by ML-236A and ML-236B fungal metabolites, having hypocholesterolemic activity. FEBS Lett. 1976, 72, 323–326. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ridker, P.M.; Macfadyen, J.G.; Nordestgaard, B.G.; Koenig, W.; Kastelein, J.J.; Genest, J.; Glynn, R.J. Rosuvastatin for primary prevention among individuals with elevated high-sensitivity c-reactive protein and 5% to 10% and 10% to 20% 10-year risk. Implications of the Justification for Use of Statins in Prevention: An Intervention Trial Evaluating Rosuvastatin (JUPITER) trial for “intermediate risk”. Circ. Cardiovasc. Qual. Outcomes 2010, 3, 447–452. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bestehorn, H.P.; Rensing, U.F.; Roskamm, H.; Betz, P.; Benesch, L.; Schemeitat, K.; Blumchen, G.; Claus, J.; Mathes, P.; Kappenberger, L.; et al. The effect of simvastatin on progression of coronary artery disease. The Multicenter coronary Intervention Study (CIS). Eur. Heart J. 1997, 18, 226–234. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- LaRosa, J.C.; Pedersen, T.R.; Somaratne, R.; Wasserman, S.M. Safety and effect of very low levels of low-density lipoprotein cholesterol on cardiovascular events. Am. J. Cardiol. 2013, 111, 1221–1229. [Google Scholar] [CrossRef] [PubMed]
- Law, M.R.; Wald, N.J.; Rudnicka, A.R. Quantifying effect of statins on low density lipoprotein cholesterol, ischaemic heart disease, and stroke: Systematic review and meta-analysis. BMJ 2003, 326, 1423. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sacks, F.M.; Moye, L.A.; Davis, B.R.; Cole, T.G.; Rouleau, J.L.; Nash, D.T.; Pfeffer, M.A.; Braunwald, E. Relationship between plasma LDL concentrations during treatment with pravastatin and recurrent coronary events in the Cholesterol and Recurrent Events trial. Circulation 1998, 97, 1446–1452. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ray, K.K.; Bach, R.G.; Cannon, C.P.; Cairns, R.; Kirtane, A.J.; Wiviott, S.D.; McCabe, C.H.; Braunwald, E.; Gibson, C.M.; Investigators, P.I.-T. Benefits of achieving the NCEP optional LDL-C goal among elderly patients with ACS. Eur. Heart J. 2006, 27, 2310–2316. [Google Scholar] [CrossRef] [Green Version]
- Sacks, F.M.; Pfeffer, M.A.; Moye, L.A.; Rouleau, J.L.; Rutherford, J.D.; Cole, T.G.; Brown, L.; Warnica, J.W.; Arnold, J.M.; Wun, C.C.; et al. The effect of pravastatin on coronary events after myocardial infarction in patients with average cholesterol levels. Cholesterol and Recurrent Events Trial investigators. N. Engl. J. Med. 1996, 335, 1001–1009. [Google Scholar] [CrossRef]
- Nissen, S.E.; Tuzcu, E.M.; Schoenhagen, P.; Crowe, T.; Sasiela, W.J.; Tsai, J.; Orazem, J.; Magorien, R.D.; O’Shaughnessy, C.; Ganz, P.; et al. Statin therapy, LDL cholesterol, C-reactive protein, and coronary artery disease. N. Engl. J. Med. 2005, 352, 29–38. [Google Scholar] [CrossRef]
- Desideri, G.; Croce, G.; Tucci, M.; Passacquale, G.; Broccoletti, S.; Valeri, L.; Santucci, A.; Ferri, C. Effects of bezafibrate and simvastatin on endothelial activation and lipid peroxidation in hypercholesterolemia: Evidence of different vascular protection by different lipid-lowering treatments. J. Clin. Endocrinol. Metab. 2003, 88, 5341–5347. [Google Scholar] [CrossRef] [Green Version]
- Holvoet, P.; Harris, T.B.; Tracy, R.P.; Verhamme, P.; Newman, A.B.; Rubin, S.M.; Simonsick, E.M.; Colbert, L.H.; Kritchevsky, S.B. Association of high coronary heart disease risk status with circulating oxidized LDL in the well-functioning elderly: Findings from the Health, Aging, and Body Composition study. Arterioscler. Thromb. Vasc. Biol. 2003, 23, 1444–1448. [Google Scholar] [CrossRef] [Green Version]
- Airan-Javia, S.L.; Wolf, R.L.; Wolfe, M.L.; Tadesse, M.; Mohler, E.; Reilly, M.P. Atheroprotective lipoprotein effects of a niacin-simvastatin combination compared to low- and high-dose simvastatin monotherapy. Am. Heart J. 2009, 157, 687.e1–687.e8. [Google Scholar] [CrossRef] [Green Version]
- Ivanova, E.A.; Myasoedova, V.A.; Melnichenko, A.A.; Grechko, A.V.; Orekhov, A.N. Small Dense Low-Density Lipoprotein as Biomarker for Atherosclerotic Diseases. Oxidative Med. Cell. Longev. 2017, 2017, 1273042. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoogeveen, R.C.; Gaubatz, J.W.; Sun, W.; Dodge, R.C.; Crosby, J.R.; Jiang, J.; Couper, D.; Virani, S.S.; Kathiresan, S.; Boerwinkle, E.; et al. Small dense low-density lipoprotein-cholesterol concentrations predict risk for coronary heart disease: The Atherosclerosis Risk In Communities (ARIC) study. Arter. Thromb. Vasc. Biol. 2014, 34, 1069–1077. [Google Scholar] [CrossRef] [Green Version]
- Ikezaki, H.; Lim, E.; Cupples, L.A.; Liu, C.T.; Asztalos, B.F.; Schaefer, E.J. Small Dense Low-Density Lipoprotein Cholesterol Is the Most Atherogenic Lipoprotein Parameter in the Prospective Framingham Offspring Study. J. Am. Heart Assoc. 2021, 10, e019140. [Google Scholar] [CrossRef] [PubMed]
- Ridker, P.M.; Rifai, N.; Clearfield, M.; Downs, J.R.; Weis, S.E.; Miles, J.S.; Gotto, A.M., Jr.; Air Force/Texas Coronary Atherosclerosis Prevention Study, I. Measurement of C-reactive protein for the targeting of statin therapy in the primary prevention of acute coronary events. N. Engl. J. Med. 2001, 344, 1959–1965. [Google Scholar] [CrossRef] [PubMed]
- Ridker, P.M.; Glynn, R.J.; Hennekens, C.H. C-reactive protein adds to the predictive value of total and HDL cholesterol in determining risk of first myocardial infarction. Circulation 1998, 97, 2007–2011. [Google Scholar] [CrossRef] [Green Version]
- Olsson, A.G.; Schwartz, G.G.; Szarek, M.; Sasiela, W.J.; Ezekowitz, M.D.; Ganz, P.; Oliver, M.F.; Waters, D.; Zeiher, A. High-density lipoprotein, but not low-density lipoprotein cholesterol levels influence short-term prognosis after acute coronary syndrome: Results from the MIRACL trial. Eur. Heart J. 2005, 26, 890–896. [Google Scholar] [CrossRef] [Green Version]
- Pearce, E.N.; Wilson, P.W.; Yang, Q.; Vasan, R.S.; Braverman, L.E. Thyroid function and lipid subparticle sizes in patients with short-term hypothyroidism and a population-based cohort. J. Clin. Endocrinol. Metab. 2008, 93, 888–894. [Google Scholar] [CrossRef] [Green Version]
- Van Linthout, S.; Foryst-Ludwig, A.; Spillmann, F.; Peng, J.; Feng, Y.; Meloni, M.; Van Craeyveld, E.; Kintscher, U.; Schultheiss, H.P.; De Geest, B.; et al. Impact of HDL on adipose tissue metabolism and adiponectin expression. Atherosclerosis 2010, 210, 438–444. [Google Scholar] [CrossRef]
- Kleemann, A.; Eckert, S.; von Eckardstein, A.; Lepper, W.; Schernikau, U.; Gleichmann, U.; Hanrath, P.; Fleck, E.; Neiss, A.; Kerber, S.; et al. Effects of lovastatin on progression of non-dilated and dilated coronary segments and on restenosis in patients after PTCA. The cholesterol lowering atherosclerosis PTCA trial (CLAPT). Eur. Heart J. 1999, 20, 1393–1406. [Google Scholar] [CrossRef] [Green Version]
- Schmermund, A.; Achenbach, S.; Budde, T.; Buziashvili, Y.; Forster, A.; Friedrich, G.; Henein, M.; Kerkhoff, G.; Knollmann, F.; Kukharchuk, V.; et al. Effect of intensive versus standard lipid-lowering treatment with atorvastatin on the progression of calcified coronary atherosclerosis over 12 months: A multicenter, randomized, double-blind trial. Circulation 2006, 113, 427–437. [Google Scholar] [CrossRef] [Green Version]
- Bucher, H.C.; Griffith, L.E.; Guyatt, G.H. Systematic review on the risk and benefit of different cholesterol-lowering interventions. Arterioscler. Thromb. Vasc. Biol. 1999, 19, 187–195. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheung, B.M.; Lauder, I.J.; Lau, C.P.; Kumana, C.R. Meta-analysis of large randomized controlled trials to evaluate the impact of statins on cardiovascular outcomes. Br. J. Clin. Pharm. 2004, 57, 640–651. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nadar, S.; Lim, H.S.; Beevers, D.G.; Lip, G.Y. Lipid lowering in hypertension and heart protection: Observations from the Anglo-Scandinavian Cardiac Outcomes Trial (ASCOT) and the Heart Protection Study. J. Hum. Hypertens. 2002, 16, 815–817. [Google Scholar] [CrossRef] [PubMed]
- Pignone, M.; Phillips, C.; Mulrow, C. Use of lipid lowering drugs for primary prevention of coronary heart disease: Meta-analysis of randomised trials. BMJ 2000, 321, 983–986. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simes, R.J.; Marschner, I.C.; Hunt, D.; Colquhoun, D.; Sullivan, D.; Stewart, R.A.; Hague, W.; Keech, A.; Thompson, P.; White, H.; et al. Relationship between lipid levels and clinical outcomes in the Long-term Intervention with Pravastatin in Ischemic Disease (LIPID) Trial: To what extent is the reduction in coronary events with pravastatin explained by on-study lipid levels? Circulation 2002, 105, 1162–1169. [Google Scholar] [CrossRef] [Green Version]
- Teo, K.K.; Burton, J.R.; Buller, C.E.; Plante, S.; Catellier, D.; Tymchak, W.; Dzavik, V.; Taylor, D.; Yokoyama, S.; Montague, T.J. Long-term effects of cholesterol lowering and angiotensin-converting enzyme inhibition on coronary atherosclerosis: The Simvastatin/Enalapril Coronary Atherosclerosis Trial (SCAT). Circulation 2000, 102, 1748–1754. [Google Scholar] [CrossRef] [Green Version]
- Antoniades, C.; Bakogiannis, C.; Leeson, P.; Guzik, T.J.; Zhang, M.H.; Tousoulis, D.; Antonopoulos, A.S.; Demosthenous, M.; Marinou, K.; Hale, A.; et al. Rapid, direct effects of statin treatment on arterial redox state and nitric oxide bioavailability in human atherosclerosis via tetrahydrobiopterin-mediated endothelial nitric oxide synthase coupling. Circulation 2011, 124, 335–345. [Google Scholar] [CrossRef] [Green Version]
- The Long-Term Intervention with Pravastatin in Ischaemic Disease (LIPID) Study Group. Prevention of cardiovascular events and death with pravastatin in patients with coronary heart disease and a broad range of initial cholesterol levels. N. Engl. J. Med. 1998, 339, 1349–1357. [Google Scholar] [CrossRef] [Green Version]
- Ridker, P.M.; Cannon, C.P.; Morrow, D.; Rifai, N.; Rose, L.M.; McCabe, C.H.; Pfeffer, M.A.; Braunwald, E.; the Pravastatin or Atorvastatin Evaluation and Infection Therapy–Thrombolysis in Myocardial Infarction 22 (PROVE IT–TIMI 22) Investigators. Infection Therapy-Thrombolysis in Myocardial Infarction, I. C-reactive protein levels and outcomes after statin therapy. N. Engl. J. Med. 2005, 352, 20–28. [Google Scholar] [CrossRef]
- Cuccurullo, C.; Iezzi, A.; Fazia, M.L.; De Cesare, D.; Di Francesco, A.; Muraro, R.; Bei, R.; Ucchino, S.; Spigonardo, F.; Chiarelli, F.; et al. Suppression of RAGE as a basis of simvastatin-dependent plaque stabilization in type 2 diabetes. Arterioscler. Thromb. Vasc. Biol. 2006, 26, 2716–2723. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Caterina, R.; Cipollone, F.; Filardo, F.P.; Zimarino, M.; Bernini, W.; Lazzerini, G.; Bucciarelli, T.; Falco, A.; Marchesani, P.; Muraro, R.; et al. Low-density lipoprotein level reduction by the 3-hydroxy-3-methylglutaryl coenzyme-A inhibitor simvastatin is accompanied by a related reduction of F2-isoprostane formation in hypercholesterolemic subjects: No further effect of vitamin E. Circulation 2002, 106, 2543–2549. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koh, K.K.; Son, J.W.; Ahn, J.Y.; Kim, D.S.; Jin, D.K.; Kim, H.S.; Han, S.H.; Seo, Y.H.; Chung, W.J.; Kang, W.C.; et al. Simvastatin combined with ramipril treatment in hypercholesterolemic patients. Hypertension 2004, 44, 180–185. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Viigimaa, M.; Vaverkova, H.; Farnier, M.; Averna, M.; Missault, L.; Hanson, M.E.; Dong, Q.; Shah, A.; Brudi, P. Ezetimibe/simvastatin 10/20 mg versus rosuvastatin 10 mg in high-risk hypercholesterolemic patients stratified by prior statin treatment potency. Lipids Health Dis. 2010, 9, 127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weintraub, W.S.; Boccuzzi, S.J.; Klein, J.L.; Kosinski, A.S.; King, S.B., III; Ivanhoe, R.; Cedarholm, J.C.; Stillabower, M.E.; Talley, J.D.; DeMaio, S.J.; et al. Lack of effect of lovastatin on restenosis after coronary angioplasty. Lovastatin Restenosis Trial Study Group. N. Engl. J. Med. 1994, 331, 1331–1337. [Google Scholar] [CrossRef]
- van der Linde, N.A.; Sijbrands, E.J.; Boomsma, F.; van den Meiracker, A.H. Effect of low-density lipoprotein cholesterol on angiotensin II sensitivity: A randomized trial with fluvastatin. Hypertension 2006, 47, 1125–1130. [Google Scholar] [CrossRef] [Green Version]
- Group, A.S.; Ginsberg, H.N.; Elam, M.B.; Lovato, L.C.; Crouse, J.R., 3rd; Leiter, L.A.; Linz, P.; Friedewald, W.T.; Buse, J.B.; Gerstein, H.C.; et al. Effects of combination lipid therapy in type 2 diabetes mellitus. N. Engl. J. Med. 2010, 362, 1563–1574. [Google Scholar] [CrossRef]
- Ford, I.; Murray, H.; Packard, C.J.; Shepherd, J.; Macfarlane, P.W.; Cobbe, S.M.; West of Scotland Coronary Prevention Study Group. Long-term follow-up of the West of Scotland Coronary Prevention Study. N. Engl. J. Med. 2007, 357, 1477–1486. [Google Scholar] [CrossRef]
- Ridker, P.M.; MacFadyen, J.G.; Fonseca, F.A.; Genest, J.; Gotto, A.M.; Kastelein, J.J.; Koenig, W.; Libby, P.; Lorenzatti, A.J.; Nordestgaard, B.G.; et al. Number needed to treat with rosuvastatin to prevent first cardiovascular events and death among men and women with low low-density lipoprotein cholesterol and elevated high-sensitivity C-reactive protein: Justification for the use of statins in prevention: An intervention trial evaluating rosuvastatin (JUPITER). Circ. Cardiovasc. Qual. Outcomes 2009, 2, 616–623. [Google Scholar] [CrossRef] [Green Version]
- Glynn, R.J.; Danielson, E.; Fonseca, F.A.; Genest, J.; Gotto, A.M., Jr.; Kastelein, J.J.; Koenig, W.; Libby, P.; Lorenzatti, A.J.; MacFadyen, J.G.; et al. A randomized trial of rosuvastatin in the prevention of venous thromboembolism. N. Engl. J. Med. 2009, 360, 1851–1861. [Google Scholar] [CrossRef] [Green Version]
- Kjekshus, J.; Apetrei, E.; Barrios, V.; Bohm, M.; Cleland, J.G.; Cornel, J.H.; Dunselman, P.; Fonseca, C.; Goudev, A.; Grande, P.; et al. Rosuvastatin in older patients with systolic heart failure. N. Engl. J. Med. 2007, 357, 2248–2261. [Google Scholar] [CrossRef]
- Liakopoulos, O.J.; Choi, Y.H.; Haldenwang, P.L.; Strauch, J.; Wittwer, T.; Dorge, H.; Stamm, C.; Wassmer, G.; Wahlers, T. Impact of preoperative statin therapy on adverse postoperative outcomes in patients undergoing cardiac surgery: A meta-analysis of over 30,000 patients. Eur. Heart J. 2008, 29, 1548–1559. [Google Scholar] [CrossRef] [Green Version]
- Martin, J.H.; Krum, H. Statins and clinical outcomes in heart failure. Clin. Sci. 2007, 113, 119–127. [Google Scholar] [CrossRef]
- Investigators, A.-H.; Boden, W.E.; Probstfield, J.L.; Anderson, T.; Chaitman, B.R.; Desvignes-Nickens, P.; Koprowicz, K.; McBride, R.; Teo, K.; Weintraub, W. Niacin in patients with low HDL cholesterol levels receiving intensive statin therapy. N. Engl. J. Med. 2011, 365, 2255–2267. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ridker, P.M.; Group, J.S. Rosuvastatin in the primary prevention of cardiovascular disease among patients with low levels of low-density lipoprotein cholesterol and elevated high-sensitivity C-reactive protein: Rationale and design of the JUPITER trial. Circulation 2003, 108, 2292–2297. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davignon, J. Beneficial cardiovascular pleiotropic effects of statins. Circulation 2004, 109, III39–III43. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fichtlscherer, S.; Schmidt-Lucke, C.; Bojunga, S.; Rossig, L.; Heeschen, C.; Dimmeler, S.; Zeiher, A.M. Differential effects of short-term lipid lowering with ezetimibe and statins on endothelial function in patients with CAD: Clinical evidence for ‘pleiotropic’ functions of statin therapy. Eur. Heart J. 2006, 27, 1182–1190. [Google Scholar] [CrossRef] [Green Version]
- Rashid, M.; Tawara, S.; Fukumoto, Y.; Seto, M.; Yano, K.; Shimokawa, H. Importance of Rac1 signaling pathway inhibition in the pleiotropic effects of HMG-CoA reductase inhibitors. Circ. J. 2009, 73, 361–370. [Google Scholar] [CrossRef] [Green Version]
- Wassmann, S.; Nickenig, G. Interrelationship of free oxygen radicals and endothelial dysfunction--modulation by statins. Endothelium 2003, 10, 23–33. [Google Scholar] [CrossRef]
- Endo, K.; Miyashita, Y.; Sasaki, H.; Ebisuno, M.; Ohira, M.; Saiki, A.; Koide, N.; Oyama, T.; Takeyoshi, M.; Shirai, K. Probucol and atorvastatin decrease urinary 8-hydroxy-2′-deoxyguanosine in patients with diabetes and hypercholesterolemia. J. Atheroscler. Thromb. 2006, 13, 68–75. [Google Scholar] [CrossRef] [Green Version]
- Vlachopoulos, C.; Aznaouridis, K.; Dagre, A.; Vasiliadou, C.; Masoura, C.; Stefanadi, E.; Skoumas, J.; Pitsavos, C.; Stefanadis, C. Protective effect of atorvastatin on acute systemic inflammation-induced endothelial dysfunction in hypercholesterolaemic subjects. Eur. Heart J. 2007, 28, 2102–2109. [Google Scholar] [CrossRef] [Green Version]
- Lee, T.M.; Su, S.F.; Tsai, C.H. Effect of pravastatin on proteinuria in patients with well-controlled hypertension. Hypertension 2002, 40, 67–73. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koh, K.K.; Quon, M.J.; Han, S.H.; Lee, Y.; Kim, S.J.; Shin, E.K. Atorvastatin causes insulin resistance and increases ambient glycemia in hypercholesterolemic patients. J. Am. Coll. Cardiol. 2010, 55, 1209–1216. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saltiel, A.R.; Kahn, C.R. Insulin signalling and the regulation of glucose and lipid metabolism. Nature 2001, 414, 799–806. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, J.H.; Chan, J.L.; Yiannakouris, N.; Kontogianni, M.; Estrada, E.; Seip, R.; Orlova, C.; Mantzoros, C.S. Circulating resistin levels are not associated with obesity or insulin resistance in humans and are not regulated by fasting or leptin administration: Cross-sectional and interventional studies in normal, insulin-resistant, and diabetic subjects. J. Clin. Endocrinol. Metab. 2003, 88, 4848–4856. [Google Scholar] [CrossRef] [Green Version]
- Steppan, C.M.; Bailey, S.T.; Bhat, S.; Brown, E.J.; Banerjee, R.R.; Wright, C.M.; Patel, H.R.; Ahima, R.S.; Lazar, M.A. The hormone resistin links obesity to diabetes. Nature 2001, 409, 307–312. [Google Scholar] [CrossRef] [PubMed]
- Kim, T.N.; Kim, S.; Yang, S.J.; Yoo, H.J.; Seo, J.A.; Kim, S.G.; Kim, N.H.; Baik, S.H.; Choi, D.S.; Choi, K.M. Vascular inflammation in patients with impaired glucose tolerance and type 2 diabetes: Analysis with 18F-fluorodeoxyglucose positron emission tomography. Circ. Cardiovasc. Imaging 2010, 3, 142–148. [Google Scholar] [CrossRef] [Green Version]
- Yadav, H.; Quijano, C.; Kamaraju, A.K.; Gavrilova, O.; Malek, R.; Chen, W.; Zerfas, P.; Zhigang, D.; Wright, E.C.; Stuelten, C.; et al. Protection from obesity and diabetes by blockade of TGF-beta/Smad3 signaling. Cell Metab. 2011, 14, 67–79. [Google Scholar] [CrossRef] [Green Version]
- Doupis, J.; Rahangdale, S.; Gnardellis, C.; Pena, S.E.; Malhotra, A.; Veves, A. Effects of diabetes and obesity on vascular reactivity, inflammatory cytokines, and growth factors. Obesity 2011, 19, 729–735. [Google Scholar] [CrossRef]
- Evans, J.L.; Goldfine, I.D.; Maddux, B.A.; Grodsky, G.M. Are oxidative stress-activated signaling pathways mediators of insulin resistance and beta-cell dysfunction? Diabetes 2003, 52, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Kouyama, K.; Miyake, K.; Zenibayashi, M.; Hirota, Y.; Teranishi, T.; Tamori, Y.; Kanda, H.; Sakaguchi, K.; Ohara, T.; Kasuga, M. Association of serum MCP-1 concentration and MCP-1 polymorphism with insulin resistance in Japanese individuals with obese type 2 diabetes. Kobe J. Med. Sci. 2008, 53, 345–354. [Google Scholar]
- Kurucz, I.; Morva, A.; Vaag, A.; Eriksson, K.F.; Huang, X.; Groop, L.; Koranyi, L. Decreased expression of heat shock protein 72 in skeletal muscle of patients with type 2 diabetes correlates with insulin resistance. Diabetes 2002, 51, 1102–1109. [Google Scholar] [CrossRef] [Green Version]
- Pessler, D.; Rudich, A.; Bashan, N. Oxidative stress impairs nuclear proteins binding to the insulin responsive element in the GLUT4 promoter. Diabetologia 2001, 44, 2156–2164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bruce, C.R.; Carey, A.L.; Hawley, J.A.; Febbraio, M.A. Intramuscular heat shock protein 72 and heme oxygenase-1 mRNA are reduced in patients with type 2 diabetes: Evidence that insulin resistance is associated with a disturbed antioxidant defense mechanism. Diabetes 2003, 52, 2338–2345. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patel, S.; Van Der Kaay, J.; Sutherland, C. Insulin regulation of hepatic insulin-like growth factor-binding protein-1 (IGFBP-1) gene expression and mammalian target of rapamycin (mTOR) signalling is impaired by the presence of hydrogen peroxide. Biochem. J. 2002, 365, 537–545. [Google Scholar] [CrossRef] [PubMed]
- Gargiulo, P.; Marsico, F.; Parente, A.; Paolillo, S.; Cecere, M.; Casaretti, L.; Pellegrino, A.M.; Formisano, T.; Fabiani, I.; Soricelli, A. Ischemic heart disease in systemic inflammatory diseases. An appraisal. Int. J. Cardiol. 2014, 170, 286–290. [Google Scholar] [CrossRef]
- Kabbany, M.; Joshi, A.; Mehta, N. Cardiovascular Diseases in Chronic Inflammatory Disorders; American College of Cardiology: Washington, DC, USA, 2016. [Google Scholar]
- Wilson, P.W. Evidence of systemic inflammation and estimation of coronary artery disease risk: A population perspective. Am. J. Med. 2008, 121, S15–S20. [Google Scholar] [CrossRef]
- Krishnan, E.; Lingala, V.B.; Singh, G. Declines in mortality from acute myocardial infarction in successive incidence and birth cohorts of patients with rheumatoid arthritis. Circulation 2004, 110, 1774–1779. [Google Scholar] [CrossRef] [Green Version]
- Choi, H.K.; Hernán, M.A.; Seeger, J.D.; Robins, J.M.; Wolfe, F. Methotrexate and mortality in patients with rheumatoid arthritis: A prospective study. Lancet 2002, 359, 1173–1177. [Google Scholar] [CrossRef]
- Ohta, H.; Wada, H.; Niwa, T.; Kirii, H.; Iwamoto, N.; Fujii, H.; Saito, K.; Sekikawa, K.; Seishima, M. Disruption of tumor necrosis factor-α gene diminishes the development of atherosclerosis in ApoE-deficient mice. Atherosclerosis 2005, 180, 11–17. [Google Scholar] [CrossRef]
- Boccara, F.; Lang, S.; Meuleman, C.; Ederhy, S.; Mary-Krause, M.; Costagliola, D.; Capeau, J.; Cohen, A. HIV and coronary heart disease: Time for a better understanding. J. Am. Coll. Cardiol. 2013, 61, 511–523. [Google Scholar] [CrossRef] [Green Version]
- Hakeem, A.; Bhatti, S.; Cilingiroglu, M. The spectrum of atherosclerotic coronary artery disease in HIV patients. Curr. Atheroscler. Rep. 2010, 12, 119–124. [Google Scholar] [CrossRef] [PubMed]
- Dubé, M.P.; Lipshultz, S.E.; Fichtenbaum, C.J.; Greenberg, R.; Schecter, A.D.; Fisher, S.D.; Working Group 3. Effects of HIV infection and antiretroviral therapy on the heart and vasculature. Circulation 2008, 118, e36–e40. [Google Scholar] [CrossRef] [Green Version]
- Solages, A.; Vita, J.A.; Thornton, D.J.; Murray, J.; Heeren, T.; Craven, D.E.; Horsburgh, C.R., Jr. Endothelial function in HIV-infected persons. Clin. Infect. Dis. 2006, 42, 1325–1332. [Google Scholar] [CrossRef]
- Seigneur, M.; Constans, J.; Blann, A.; Renard, M.; Pellegrin, J.L.; Amiral, J.; Boisseau, M.; Conri, C. Soluble adhesion molecules and endothelial cell damage in HIV infected patients. Thromb. Haemost. 1997, 77, 646–649. [Google Scholar] [CrossRef] [PubMed]
- Lang, S.; Mary-Krause, M.; Cotte, L.; Gilquin, J.; Partisani, M.; Simon, A.; Boccara, F.; Bingham, A.; Costagliola, D. Increased risk of myocardial infarction in HIV-infected patients in France, relative to the general population. Aids 2010, 24, 1228–1230. [Google Scholar] [CrossRef]
- Kavousi, M.; Leening, M.J.; Nanchen, D.; Greenland, P.; Graham, I.M.; Steyerberg, E.W.; Ikram, M.A.; Stricker, B.H.; Hofman, A.; Franco, O.H. Comparison of application of the ACC/AHA guidelines, Adult Treatment Panel III guidelines, and European Society of Cardiology guidelines for cardiovascular disease prevention in a European cohort. JAMA 2014, 311, 1416–1423. [Google Scholar] [CrossRef] [PubMed]
- Grundy, S.M.; Stone, N.J.; Bailey, A.L.; Beam, C.; Birtcher, K.K.; Blumenthal, R.S.; Braun, L.T.; de Ferranti, S.; Faiella-Tommasino, J.; Forman, D.E.; et al. 2018 AHA/ACC/AACVPR/AAPA/ABC/ACPM/ADA/AGS/APhA/ASPC/NLA/PCNA Guideline on the Management of Blood Cholesterol: Executive Summary: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. J. Am. Coll Cardiol. 2019, 73, 3168–3209. [Google Scholar] [CrossRef]
- Arnett, D.K.; Blumenthal, R.S.; Albert, M.A.; Buroker, A.B.; Goldberger, Z.D.; Hahn, E.J.; Himmelfarb, C.D.; Khera, A.; Lloyd-Jones, D.; McEvoy, J.W.; et al. 2019 ACC/AHA Guideline on the Primary Prevention of Cardiovascular Disease: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation 2019, 140, e596–e646. [Google Scholar] [CrossRef]
PROTEINS | Oxidative Stress | Insulin Resistance |
---|---|---|
Vasoactive Peptides | ||
Angiotensin-II | 81, 308-318 | 319–323 |
Atrial natriutetic Peptide | 324–326 | 327–329 |
Endothelins | 218, 315, 330 | 130, 331, 332 |
Bradykinin | 333–335 | 333, 336 |
Chromogranin-A | 337, 338 | 339, 340 |
Membrane Receptors | ||
Bradykinin-receptor | 334, 341, 342 | 336, 343 |
Dopamine receptor | 344–346 | 347–349 |
Adrenergic receptors | 264; 337; 350–352 | 129, 353–357 |
Mineralocorticoid receptor | 358–361 | 361–364 |
Angiotensin II receptors | 308–311, 313, 315, 323 | 301, 320, 322, 323 |
Endothelin receptor | 130, 365, 366 | 130; 367–369 |
Atrial natriutetic peptide-receptors | 370–372 | 373, 374 |
Enzymes | ||
Aldosterone Synthase | 375, 376 | 375, 377, 378 |
Nitric Oxide Synthase | 217, 379–382 | 382–386 |
Protein Kinase G | 381, 387, 388 | 381, 382, 387, 389, 390 |
Ion Channels | ||
Na+/K+ ATPases | 390 | 391 |
Na+/H+ exchangers | 392–394 | 395, 396 |
K+ channels | 397, 398 | 399, 400 |
Cl− Channels | 401, 402 | 403, 404 |
Na+/K+/Cl− Cotransporters | 405, 406 | 407, 408 |
Medical History | Component | Comment | Modifiable |
---|---|---|---|
Demographic | Age | Steadily higher with age | N |
Gender | Male gender | N | |
Race | NA > MA > AA > CA | N | |
Social/Life-style | Socioeconomic Status | Lower socioeconomic strata | Y/N |
Education | Less than College | Y | |
Atherogenic Diet | Meat: Red > White > Fish > None | Y | |
Smoking | Present > Ceased more than 5 yr | Y | |
Family History | Atherosclerotic Disease | Age of onset; type; severity | N |
Hyperlipidemia | Lipoprotein profile-dependent | N | |
Personal History of Medical Disease | MI Present | Highest | Y |
Symptomatic MI | Dependent on duration since MI | Y | |
Unstable Angina | Very high, dependent on therapy | Y | |
CHF | Very high, dependent on NHYA Class | Y | |
Coronary Stenosis | Dependent on anatomy and degree | Y | |
Coronary Calcification | Dependent on anatomy and degree | N | |
Ventricular Arrhythmia | Dependent of type | Y | |
Atrial Arrhythmia | Severity of associated disease | Y | |
Cardiomegaly CXR | Always significantly higher than normal | N | |
Past Silent MI | Always significantly higher than normal | N | |
Abnormal EKG (LVH) | Always significantly higher than normal | N | |
Diabetes Mellitus | Severity Dyslipidemia > HgbA1C | Y | |
Hypertension | High DBP ~equal to High SBP | Y | |
Hyperlipidemia | Cholesterol > TG | Y | |
Renal failure | Increasing with stage | N | |
Obesity | Proportional to BMI | Y | |
Metabolic Syndrome | Number of components | Y | |
Insulin-resistance | Dependent on degree | Y | |
Inflammatory Disease | Dependent on severity and therapy | Y | |
Autoimmune Disease | Dependent on type and severity | Y | |
Chronic infection | Dependent on recognition and therapy | Y | |
Acute infection | Dependent on severity | Y |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abohelwa, M.; Kopel, J.; Shurmur, S.; Ansari, M.M.; Awasthi, Y.; Awasthi, S. The Framingham Study on Cardiovascular Disease Risk and Stress-Defenses: A Historical Review. J. Vasc. Dis. 2023, 2, 122-164. https://doi.org/10.3390/jvd2010010
Abohelwa M, Kopel J, Shurmur S, Ansari MM, Awasthi Y, Awasthi S. The Framingham Study on Cardiovascular Disease Risk and Stress-Defenses: A Historical Review. Journal of Vascular Diseases. 2023; 2(1):122-164. https://doi.org/10.3390/jvd2010010
Chicago/Turabian StyleAbohelwa, Mostafa, Jonathan Kopel, Scott Shurmur, Mohammad M. Ansari, Yogesh Awasthi, and Sanjay Awasthi. 2023. "The Framingham Study on Cardiovascular Disease Risk and Stress-Defenses: A Historical Review" Journal of Vascular Diseases 2, no. 1: 122-164. https://doi.org/10.3390/jvd2010010
APA StyleAbohelwa, M., Kopel, J., Shurmur, S., Ansari, M. M., Awasthi, Y., & Awasthi, S. (2023). The Framingham Study on Cardiovascular Disease Risk and Stress-Defenses: A Historical Review. Journal of Vascular Diseases, 2(1), 122-164. https://doi.org/10.3390/jvd2010010