The Role of Amino Acid Glycine on Cardiovascular Health and Its Beneficial Effects: A Narrative Review
Abstract
:1. Introduction
2. Methodology
3. Beneficial Effects of Glycine on Cardiovascular Diseases
3.1. Glycine Levels in Plasma and Risk of Acute Myocardial Infarction
3.2. Glycine Levels in Plasma and Aortic Conditions
3.3. The Role of Glycine in Angiogenesis and the Inhibition of Tumors
3.4. Dietary Glycine Supplementation for Endothelial Dysfunction
3.5. Effects of Glycine on Pathologic Cardiac Hypertrophy
3.6. Glycine and Low Peritoneal Vasoreactivity to Dialysis Solutions
3.7. Correlation between Glycine, Insulin Resistance, and Other Cardio-Metabolic Diseases
4. Limitations
5. Conclusions
6. Perspectives
Author Contributions
Funding
Conflicts of Interest
References
- PubChem. Glycine. Compound Summary. 2023. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Glycine (accessed on 3 January 2024).
- Adeva-Andany, M.; Souto-Adeva, G.; Ameneiros-Rodríguez, E.; Fernández-Fernández, C.; Donapetry-García, C.; Domínguez-Montero, A. Insulin resistance and glycine metabolism in humans. Amino Acids 2018, 50, 11–27. [Google Scholar] [CrossRef]
- Alves, A.; Bassot, A.; Bulteau, A.-L.; Pirola, L.; Morio, B. Glycine Metabolism and Its Alterations in Obesity and Metabolic Diseases. Nutrients 2019, 11, 1356. [Google Scholar] [CrossRef]
- Aguayo-Cerón, K.A.; Sánchez-Muñoz, F.; Gutierrez-Rojas, R.A.; Acevedo-Villavicencio, L.N.; Flores-Zarate, A.V.; Huang, F.; Giacoman-Martinez, A.; Villafaña, S.; Romero-Nava, R. Glycine: The Smallest Anti-Inflammatory Micronutrient. Int. J. Mol. Sci. 2023, 24, 11236. [Google Scholar] [CrossRef]
- Ding, Y.; Svingen, G.F.; Pedersen, E.R.; Gregory, J.F.; Ueland, P.M.; Tell, G.S.; NygAard, O.K. Plasma Glycine and Risk of Acute Myocardial Infarction in Patients With Suspected Stable Angina Pectoris. J. Am. Heart Assoc. 2015, 5, e002621. [Google Scholar] [CrossRef]
- Shao, M.-Y.; Tang, B.-H.; Guo, D.-Q.; Li, N.; Wang, Y.; Li, C.; Chen, X.; Zhang, X.-F.; Tan, N.-N.; Hong, Y.-Q. Glycine Attenuates Myocardial Fibrosis in Myocardial Infarction in Rats Partly through Modulating Signal Transducer and Activator of Transcription 3/Nuclear Factor-κB/Transforming Growth Factor-β axis. World J. Tradit. Chinese Med. 2024, 10, 263–270. [Google Scholar] [CrossRef]
- Meléndez-Hevia, E.; de Paz-Lugo, P.; Sánchez, G. Glycine can prevent and fight virus invasiveness by reinforcing the extracellular matrix. J. Funct. Foods 2021, 76, 104318. [Google Scholar] [CrossRef]
- Chen, Z.; Wang, X.; Liao, H.; Sheng, T.; Chen, P.; Zhou, H.; Pan, Y.; Liu, W.; Yao, H. Glycine attenuates cerebrovascular remodeling via glycine receptor alpha 2 and vascular endothelial growth factor receptor 2 after stroke. Am. J. Transl. Res. 2020, 12, 6895. [Google Scholar]
- Guo, D.; Murdoch, C.E.; Xu, H.; Shi, H.; Duan, D.D.; Ahmed, A.; Gu, Y. Vascular endothelial growth factor signaling requires glycine to promote angiogenesis. Sci. Rep. 2017, 7, 14749. [Google Scholar] [CrossRef]
- Yamashina, S.; Ikejima, K.; Rusyn, I.; Sato, N. Glycine as a potent anti-angiogenic nutrient for tumor growth. J. Gastroenterol. Hepatol. 2007, 22, S62–S64. [Google Scholar] [CrossRef]
- Bruns, H.; Petrulionis, M.; Schultze, D.; Al Saeedi, M.; Lin, S.; Yamanaka, K.; Ambrazevičius, M.; Strupas, K.; Schemmer, P. Glycine inhibits angiogenic signaling in human hepatocellular carcinoma cells. Amino Acids 2014, 46, 969–976. [Google Scholar] [CrossRef]
- Gómez-Zamudio, J.H.; García-Macedo, R.; Lázaro-Suárez, M.; Ibarra-Barajas, M.; Kumate, J.; Cruz, M. Vascular endothelial function is improved by oral glycine treatment in aged rats. Can. J. Physiol. Pharmacol. 2015, 93, 465–473. [Google Scholar] [CrossRef]
- Rom, O.; Liu, Y.; Finney, A.C.; Ghrayeb, A.; Zhao, Y.; Shukha, Y.; Wang, L.; Rajanayake, K.K.; Das, S.; Rashdan, N.A.; et al. Induction of glutathione biosynthesis by glycine-based treatment mitigates atherosclerosis. Redox Biol. 2022, 52, 102313. [Google Scholar] [CrossRef]
- Sweis, R.N.; Jivan, A. Acute Myocardial Infarction (MI). MSD Manual. 2022. Available online: https://www.msdmanuals.com/professional/cardiovascular-disorders/coronary-artery-disease/acute-myocardial-infarction-mi (accessed on 1 January 2024).
- Borges, J.P.; Sætra, R.S.; Volchuk, A.; Bugge, M.; Devant, P.; Sporsheim, B.; Kilburn, B.R.; Evavold, C.L.; Kagan, J.C.; Goldenberg, N.M.; et al. Glycine inhibits NINJ1 membrane clustering to suppress plasma membrane rupture in cell death. Elife 2022, 11, e78609. [Google Scholar] [CrossRef]
- Tsuji-Tamura, K.; Sato, M.; Fujita, M.; Tamura, M. The role of PI3K/Akt/mTOR signaling in dose-dependent biphasic effects of glycine on vascular development. Biochem. Biophys. Res. Commun. 2020, 529, 596–602. Available online: https://www.sciencedirect.com/science/article/pii/S0006291X20313036 (accessed on 6 January 2020). [CrossRef]
- Lu, Y.; Zhu, X.; Li, J.; Fang, R.; Wang, Z.; Zhang, J.; Li, K.; Li, X.; Bai, H.; Yang, Q.; et al. Glycine prevents pressure overload induced cardiac hypertrophy mediated by glycine receptor. Biochem. Pharmacol. 2017, 123, 40–51. [Google Scholar] [CrossRef]
- Zakaria, E.R.; Joseph, B.; Hamidi, M.; Zeeshan, M.; Algamal, A.; Sartaj, F.; Althani, M.; Fadl, T.; Madan, D. Glycine improves peritoneal vasoreactivity to dialysis solutions in the elderly. Qatar Med. J. 2019, 2019, 19. [Google Scholar] [CrossRef]
- El Hafidi, M.; Pérez, I.; Zamora, J.; Soto, V.; Carvajal-Sandoval, G.; Baños, G. Glycine intake decreases plasma free fatty acids, adipose cell size, and blood pressure in sucrose-fed rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2004, 287, R1387–R1393. [Google Scholar] [CrossRef]
- McCarty, M.F.; DiNicolantonio, J.J. The cardiometabolic benefits of glycine: Is glycine an ‘antidote’ to dietary fructose? Open Hear. 2014, 1, e000103. [Google Scholar] [CrossRef]
- Kumar, P.; Liu, C.; Suliburk, J.; Hsu, J.W.; Muthupillai, R.; Jahoor, F.; Minard, C.G.; Taffet, G.E.; Sekhar, R.V. Supplementing Glycine and N-Acetylcysteine (GlyNAC) in Older Adults Improves Glutathione Deficiency, Oxidative Stress, Mitochondrial Dysfunction, Inflammation, Physical Function, and Aging Hallmarks: A Randomized Clinical Trial. J. Gerontol. A Biol. Sci. Med. Sci. 2023, 78, 75–89. [Google Scholar] [CrossRef]
- Rom, O.; Liu, Y.; Liu, Z.; Zhao, Y.; Wu, J.; Ghrayeb, A.; Villacorta, L.; Fan, Y.; Chang, L.; Wang, L.; et al. Glycine-based treatment ameliorates NAFLD by modulating fatty acid oxidation, glutathione synthesis, and the gut microbiome. Sci. Transl. Med. 2020, 12, eaaz2841. [Google Scholar] [CrossRef]
- UCLA Health. Aortic Conditions & Diseases. Aortic Care. 2024. Available online: https://www.uclahealth.org/medical-services/heart/aortic/aortic-conditions-diseases (accessed on 15 January 2024).
- Bossone, E.; Eagle, K.A. Epidemiology and management of aortic disease: Aortic aneurysms and acute aortic syndromes. Nat. Rev. Cardiol. 2021, 18, 331–348. [Google Scholar] [CrossRef]
- Wang, L.; Liu, S.; Yang, W.; Yu, H.; Zhang, L.; Ma, P.; Wu, P.; Li, X.; Cho, K.; Xue, S.; et al. Plasma amino acid profile in patients with aortic dissection. Sci. Rep. 2017, 7, 40146. [Google Scholar] [CrossRef]
- de la Barca, J.M.C.; Richard, A.; Robert, P.; Eid, M.; Fouquet, O.; Tessier, L.; Wetterwald, C.; Faure, J.; Fassot, C.; Henrion, D.; et al. Metabolomic Profiling of Angiotensin-II-Induced Abdominal Aortic Aneurysm in Ldlr−/− Mice Points to Alteration of Nitric Oxide, Lipid, and Energy Metabolisms. Int. J. Mol. Sci. 2022, 23, 6387. [Google Scholar] [CrossRef]
- Yin, M.; Rusyn, I.; Schoonhoven, R.; Graves, L.M.; Rusyn, E.V.; Li, X.; Li, F.; Cox, A.D.; Harding, T.W.; Bunzendahl, H.; et al. Inhibition of chronic rejection of aortic allografts by dietary glycine. Transplantation 2000, 69, 773–781. [Google Scholar] [CrossRef]
- NIH. “Angiogenesis Inhibitors”. National Cancer Institute. 2018. Available online: https://www.cancer.gov/about-cancer/treatment/types/immunotherapy/angiogenesis-inhibitors-fact-sheet (accessed on 25 January 2024).
- Stanford Medicine. Endothelial Dysfunction. 2024. Available online: https://stanfordhealthcare.org/medical-conditions/blood-heart-circulation/endothelial-dysfunction.html#:~:text=Endothelial%20dysfunction%20is%20a%20type,instead%20of%20dilating%20(opening) (accessed on 26 January 2024).
- Brawley, L.; Torrens, C.; Anthony, F.W.; Itoh, S.; Wheeler, T.; Jackson, A.A.; Clough, G.F.; Poston, L.; Hanson, M.A. Glycine rectifies vascular dysfunction induced by dietary protein imbalance during pregnancy. J. Physiol. 2004, 554, 497–504. [Google Scholar] [CrossRef]
- Mayo Clinic. Hypertrophic Cardiomyopathy. 2023. Available online: https://www.mayoclinic.org/diseases-conditions/hypertrophic-cardiomyopathy/symptoms-causes/syc-20350198 (accessed on 26 January 2024).
- Samak, M.; Fatullayev, J.; Sabashnikov, A.; Zeriouh, M.; Schmack, B.; Farag, M.; Popov, A.-F.; Dohmen, P.M.; Choi, Y.-H.; Wahlers, T.; et al. Cardiac Hypertrophy: An Introduction to Molecular and Cellular Basis. Med. Sci. Monit. Basic Res. 2016, 22, 75–79. [Google Scholar] [CrossRef]
- Vadakedath, S.; Kandi, V. Dialysis: A Review of the Mechanisms Underlying Complications in the Management of Chronic Renal Failure. Cureus 2017, 9, e1603. [Google Scholar] [CrossRef]
- Murdeshwar, H.N.; Anjum, F. Hemodialysis. StatPearls Publishing. 2024. Available online: https://www.ncbi.nlm.nih.gov/books/NBK563296/ (accessed on 23 January 2024).
- Kosmas, C.E.; Bousvarou, M.D.; Kostara, C.E.; Papakonstantinou, E.J.; Salamou, E.; Guzman, E. Insulin resistance and cardiovascular disease. J. Int. Med. Res. 2023, 51, 03000605231164548. [Google Scholar] [CrossRef]
- NHS. Cardiovascular Disease. 2022. Available online: https://www.nhs.uk/conditions/cardiovascular-disease/ (accessed on 26 January 2024).
- Wittemans, L.B.L.; Lotta, L.A.; Oliver-Williams, C.; Stewart, I.D.; Surendran, P.; Karthikeyan, S.; Day, F.R.; Koulman, A.; Imamura, F.; Zeng, L.; et al. Assessing the causal association of glycine with risk of cardio-metabolic diseases. Nat. Commun. 2019, 10, 1060. [Google Scholar] [CrossRef]
- Prado, W.L.D.; Josephson, S.; Cosentino, R.G.; Churilla, J.R.; Hossain, J.; Balagopal, P.B. Preliminary evidence of glycine as a biomarker of cardiovascular disease risk in children with obesity. Int. J. Obes. 2023, 47, 1023–1026. [Google Scholar] [CrossRef]
- Sekhar, R.V. GlyNAC Supplementation improves glutathione deficiency, oxidative stress, mitochondrial dysfunction, inflammation, aging hallmarks, metabolic defects, muscle strength, cognitive decline, and body composition: Implications for healthy aging. J. Nutr. 2021, 151, 3606–3616. [Google Scholar] [CrossRef]
Glycine levels in plasma and risk of acute myocardial infarction | Glycine-dependent reactions with lipid metabolism and cholesterol transport catabolize excess S-adenosylmethionine by its remethylation into sarcosine via the enzyme glycine-N-methyltransferase (GNMT) [5]. |
Attenuates myocardial fibrosis by modulating the signal transducer and activator of the transcription 3/Nuclear Factor-κB/transforming growth factor-β axis [6]. | |
Inhibition of myocardial apoptosis in rats and suppression of phosphorylated p38 mitogen-activated protein kinase and c-Jun NH2-terminal kinase [13]. | |
Glycine levels in plasma and aortic conditions | Glycine deficiency inhibits glutathione formation in bone marrow-derived macrophages. At the same time, glycine-based treatment induces de novo glutathione biosynthesis and mitigates atherosclerosis through antioxidant effects mediated by the induction of glutathione biosynthesis [13]. |
Minimizes chronic rejection of aortic transplants by reducing the immune response and, in part, minimizing the proliferation and migration of smooth muscle cells [14]. | |
Works at the level of NINJ1, an executioner of plasma membrane rupture in pyroptosis, necrosis, and post-apoptosis lysis [15]. | |
The role of glycine in angiogenesis and the inhibition of tumors | Acts on PI3K/Akt/mTOR signaling: low doses of glycine (10 mM) promote angiogenesis, whereas high doses (400 mM) cause anti-angiogenesis [16]. |
It attenuates cerebrovascular remodeling in rats after stroke via glycine receptor alpha 2 and vascular endothelial growth factor receptor 2 [8]. | |
An increase in intracellular glycine causes the endothelial growth factor to activate the glycine transporter 1 (GlyT1), which is directly bound to the voltage-dependent anion channel 1 (VDAC1) on the mitochondrial outer membrane, inhibiting its opening [9]. | |
Glycine increases intracellular Ca2+ concentration. Also, it significantly diminishes the serum-stimulated proliferation and migration of endothelial cells by activating a glycine-gated chloride channel [10]. | |
Glycine decreases GlyR-dependent, VEGF-A-mediated, angiogenic signaling in human hepatocellular carcinoma [11]. | |
Dietary glycine supplementation for endothelial dysfunction | It improves endothelial function in aged rats by enhancing eNOS expression and reducing the role of superoxide anion and contractile prostanoids, which increase nitric oxide bioavailability [12]. |
Effects of glycine on pathologic cardiac hypertrophy | Glycine could antagonize Ang II stimulated release of transforming growth factor-β and endothelin-1 by cardiomyocytes, preventing an over-production of collagens in rat fibroblasts [17]. |
Glycine and low peritoneal vasoreactivity to dialysis solutions | Vasoreactivity to peritoneal dialysis solution is entirely restored by glycine supplementation, thanks to its antioxidant effects, which mitigate oxidative stress [18]. |
Correlation between glycine, insulin resistance, and other cardio-metabolic diseases | Glycine intake (1% in drinking water) decreases plasma-free fatty acids, adipose cell size, and blood pressure in sucrose-fed rats [19]. |
Glycine could have effects against dietary fructose [20] via activation of glycine-gated chloride channels. | |
Supplementing with glycine and N-acetylcysteine in older adults improves glutathione deficiency, oxidative stress, mitochondrial dysfunction, inflammation, physical function, and aging hallmarks [21]. | |
It improves the symptoms of nonalcoholic fatty liver disease and nonalcoholic steatohepatitis by enhancing fatty acid oxidation and glutathione synthesis and modulating the gut microbiomes [22]. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Quintanilla-Villanueva, G.E.; Rodríguez-Delgado, M.M.; Villarreal-Chiu, J.F.; Blanco-Gámez, E.A.; Luna-Moreno, D. The Role of Amino Acid Glycine on Cardiovascular Health and Its Beneficial Effects: A Narrative Review. J. Vasc. Dis. 2024, 3, 201-211. https://doi.org/10.3390/jvd3020016
Quintanilla-Villanueva GE, Rodríguez-Delgado MM, Villarreal-Chiu JF, Blanco-Gámez EA, Luna-Moreno D. The Role of Amino Acid Glycine on Cardiovascular Health and Its Beneficial Effects: A Narrative Review. Journal of Vascular Diseases. 2024; 3(2):201-211. https://doi.org/10.3390/jvd3020016
Chicago/Turabian StyleQuintanilla-Villanueva, Gabriela Elizabeth, Melissa Marlene Rodríguez-Delgado, Juan Francisco Villarreal-Chiu, Edgar Allan Blanco-Gámez, and Donato Luna-Moreno. 2024. "The Role of Amino Acid Glycine on Cardiovascular Health and Its Beneficial Effects: A Narrative Review" Journal of Vascular Diseases 3, no. 2: 201-211. https://doi.org/10.3390/jvd3020016
APA StyleQuintanilla-Villanueva, G. E., Rodríguez-Delgado, M. M., Villarreal-Chiu, J. F., Blanco-Gámez, E. A., & Luna-Moreno, D. (2024). The Role of Amino Acid Glycine on Cardiovascular Health and Its Beneficial Effects: A Narrative Review. Journal of Vascular Diseases, 3(2), 201-211. https://doi.org/10.3390/jvd3020016