Mechanistic Insights into the Interaction Between Kinin Receptors and Histamine H2 Receptor Pathways in Oxidative Stress
Abstract
:1. Introduction
2. Methodology
3. Kinin B2 Receptor in Oxidative Stress
4. Kinin B1 Receptor in Oxidative Stress
5. Histamine H2 Receptor in Oxidative Stress
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sies, H.; Jones, D.P. Reactive Oxygen Species (ROS) as Pleiotropic Physiological Signalling Agents. Nat. Rev. Mol. Cell Biol. 2020, 21, 363–383. [Google Scholar] [CrossRef] [PubMed]
- Lushchak, V.I. Free radicals, Reactive Oxygen Species, Oxidative Stress and its Classification. Chem. Biol. Interact. 2014, 224, 164–175. [Google Scholar] [CrossRef] [PubMed]
- Xue, C.; Li, X.; Liu, G.; Liu, W. Evaluation of Mitochondrial Respiratory Chain on the Generation of Reactive Oxygen Species and Cytotoxicity in HaCaT Cells Induced by Nanosized Titanium Dioxide Under UVA Irradiation. Int. J. Toxicol. 2016, 35, 644–653. [Google Scholar] [CrossRef] [PubMed]
- Iatsenko, I.; Boquete, J.P.; Lemaitre, B. Microbiota-Derived Lactate Activates Production of Reactive Oxygen Species by the Intestinal NADPH Oxidase Nox and Shortens Drosophila Lifespan. Immunity 2018, 49, 929–942. [Google Scholar] [CrossRef] [PubMed]
- Zorov, D.B.; Juhaszova, M.; Sollott, S.J. Mitochondrial Reactive Oxygen Species (ROS) and ROS-induced ROS Release. Physiol. Rev. 2014, 94, 909–950. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhang, J.; Wang, X.; Vikash, V.; Ye, Q.; Wu, D.; Liu, Y.; Dong, W. ROS and ROS-Mediated Cellular Signaling. Oxid. Med. Cell. Longev. 2016, 2016, 4350965. [Google Scholar] [CrossRef] [PubMed]
- Scialò, F.; Fernández-Ayala, D.J.; Sanz, A. Role of Mitochondrial Reverse Electron Transport in ROS Signaling: Potential Roles in Health and Disease. Front. Physiol. 2017, 8, 428. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- El-Kenawi, A.; Ruffell, B. Inflammation, ROS, and Mutagenesis. Cancer Cell 2017, 32, 727–729. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, N.H.; Tran, G.B.; Nguyen, C.T. Anti-Oxidative Effects of Superoxide Dismutase 3 on inflammatory Diseases. J. Mol. Med. 2020, 98, 59–69. [Google Scholar] [CrossRef] [PubMed]
- Rhee, S.G.; Woo, H.A.; Kil, I.S.; Bae, S.H. Peroxiredoxin Functions as a Peroxidase and a regulator and sensor of local peroxides. J. Biol. Chem. 2012, 287, 4403–4410. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Couto, N.; Wood, J.; Barber, J. The Role of Glutathione Reductase and Related Enzymes on Cellular Redox Homoeostasis Network. Free Radic. Biol. Med. 2016, 95, 27–42. [Google Scholar] [CrossRef] [PubMed]
- Regoli, D.; Marceau, F.; Barabé, J. De Novo Formation of Vascular Receptors for Bradykinin. Can. J. Physiol. Pharmacol. 1978, 56, 674–677. [Google Scholar] [CrossRef] [PubMed]
- Leeb-Lundberg, L.M.; Marceau, F.; Müller-Esterl, W.; Pettibone, D.J.; Zuraw, B.L. International Union of Pharmacology. XLV. Classification of the Kinin Receptor Family: From Molecular Mechanisms to Pathophysiological Consequences. Pharmacol. Rev. 2005, 57, 27–77. [Google Scholar] [CrossRef] [PubMed]
- Ewald, D.A.; Pang, I.H.; Sternweis, P.C.; Miller, R.J. Differential G Protein-Mediated Coupling of Neurotransmitter Receptors to Ca2+ Channels in Rat Dorsal Root Ganglion Neurons In Vitro. Neuron 1989, 2, 1185–1193. [Google Scholar] [CrossRef] [PubMed]
- Austin, C.E.; Faussner, A.; Robinson, H.E.; Chakravarty, S.; Kyle, D.J.; Bathon, J.M.; Proud, D. Stable Expression of the Human Kinin B1 Receptor in Chinese Hamster Ovary Cells. Characterization of Ligand Binding and Effector Pathways. J. Biol. Chem. 1997, 272, 11420–11425. [Google Scholar] [CrossRef] [PubMed]
- Ignjatovic, T.; Stanisavljevic, S.; Brovkovych, V.; Skidgel, R.A.; Erdös, E.G. Kinin B1 ReceptorsStimulate Nitric Oxide Production in Endothelial Cells: Signaling Pathways Activated by Angiotensin I-Converting Enzyme Inhibitors and Peptide Lgands. Mol. Pharmacol. 2004, 66, 1310–1316. [Google Scholar] [CrossRef] [PubMed]
- Thangam, E.B.; Jemima, E.A.; Singh, H.; Baig, M.S.; Khan, M.; Mathias, C.B.; Church, M.K.; Saluja, R. The Role of Histamine and Histamine Receptors in Mast Cell-Mediated Allergy and Inflammation: The Hunt for New Therapeutic Targets. Front. Immunol. 2018, 9, 1873. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Branco, A.C.C.C.; Yoshikawa, F.S.Y.; Pietrobon, A.J.; Sato, M.N. Role of Histamine in Modulating the Immune Response and Inflammation. Mediat. Inflamm. 2018, 2018, 9524075. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Borriello, F.; Iannone, R.; Marone, G. Histamine Release from Mast Cells and Basophils. Handb. Exp. Pharmacol. 2017, 241, 121–139. [Google Scholar] [CrossRef] [PubMed]
- Lieberman, P. The Basics of Histamine Biology. Ann. Allergy Asthma Immunol. 2011, 106 (Suppl. S2), S2–S55. [Google Scholar] [CrossRef] [PubMed]
- Parsons, M.E.; Ganellin, C.R. Histamine and its Receptors. Br. J. Pharmacol. 2006, 147 (Suppl. S1), S127–S135. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Delemasure, S.; Blaes, N.; Richard, C.; Couture, R.; Bader, M.; Dutartre, P.; Girolami, J.P.; Connat, J.L.; Rochette, L. Antioxidant/Oxidant Status and Cardiac Function in Bradykinin B(1)- and B(2)-Receptor Null Mice. Physiol. Res. 2013, 62, 511–517. [Google Scholar] [CrossRef] [PubMed]
- Fu, C.; Li, B.; Sun, Y.; Ma, G.; Yao, Y. Bradykinin Inhibits Oxidative Stress-Induced Senescence of Endothelial Progenitor Cells through the B2R/AKT/RB and B2R/EGFR/RB Signal Pathways. Oncotarget 2015, 6, 24675–24689. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ayres, L.S.; Berger, M.; Durli, I.C.L.O.; Kuhl, C.P.; Terraciano, P.B.; Garcez, T.N.A.; Dos Santos, B.G.; Guimarães, J.A.; Passos, E.P.; Cirne-Lima, E.O. Kallikrein-Kinin System and Oxidative Stress in Cisplatin-Induced Ovarian Toxicity. Reprod. Toxicol. 2020, 93, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Estrela, G.R.; Wasinski, F.; Bacurau, R.F.; Malheiros, D.M.; Câmara, N.O.; Araújo, R.C. Kinin B2 Receptor Deletion and Blockage Ameliorates Cisplatin-Induced Acute Renal Injury. Int. Immunopharmacol. 2014, 22, 115–119. [Google Scholar] [CrossRef] [PubMed]
- Estrela, G.R.; Wasinski, F.; Gregnani, M.F.; Freitas-Lima, L.C.; Arruda, A.C.; Morais, R.L.; Malheiros, D.M.; Camara, N.O.S.; Pesquero, J.B.; Bader, M.; et al. Angiotensin-Converting Enzyme Inhibitor Protects Against Cisplatin Nephrotoxicity by Modulating Kinin B1 Receptor Expression and Aminopeptidase P Activity in Mice. Front. Mol. Biosci. 2020, 7, 96. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ferreira, A.P.O.; Rodrigues, F.S.; Della-Pace, I.D.; Mota, B.C.; Oliveira, S.M.; de Campos Velho Gewehr, C.; Bobinski, F.; de Oliveira, C.V.; Brum, J.S.; Oliveira, M.S.; et al. HOE-140, an Antagonist of B2 Receptor, Protects Against Memory Deficits and Brain Damage Induced by Moderate Lateral Fuid Percussion Injury in Mice. Psychopharmacology 2014, 231, 1935–1948. [Google Scholar] [CrossRef] [PubMed]
- Chiang, W.C.; Chien, C.T.; Lin, W.W.; Lin, S.L.; Chen, Y.M.; Lai, C.F.; Wu, K.D.; Chao, J.; Tsai, T.J. Early Activation of Bradykinin B2 Receptor Aggravates Reactive Oxygen Species Generation and Renal Damage in Ischemia/Reperfusion Injury. Free Radic. Biol. Med. 2006, 41, 1304–1314. [Google Scholar] [CrossRef] [PubMed]
- Bledsoe, G.; Crickman, S.; Mao, J.; Xia, C.F.; Murakami, H.; Chao, L.; Chao, J. Kallikrein/Kinin Protects Against Gentamicin-Induced Nephrotoxicity by Inhibition of Inflammation and Apoptosis. Nephrol. Dial. Transplant. 2006, 21, 624–633. [Google Scholar] [CrossRef] [PubMed]
- Allard, J.; Buléon, M.; Cellier, E.; Renaud, I.; Pecher, C.; Praddaude, F.; Conti, M.; Tack, I.; Girolami, J.P. ACE Inhibitor Reduces Growth Factor Receptor Expression and Signaling but also Albuminuria through B2-Kinin Glomerular Receptor Activation in Diabetic Rats. Am. J. Physiol. Renal Physiol. 2007, 293, F1083–F1092. [Google Scholar] [CrossRef] [PubMed]
- Jaffa, M.A.; Kobeissy, F.; Al Hariri, M.; Chalhoub, H.; Eid, A.; Ziyadeh, F.N.; Jaffa, A.A. Global Renal Gene Expression Profiling Analysis in B2-Kinin Receptor Null Mice: Impact of Diabetes. PLoS ONE 2012, 7, e44714. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bledsoe, G.; Shen, B.; Yao, Y.; Zhang, J.J.; Chao, L.; Chao, J. Reversal of Renal Fibrosis, Inflammation, and Glomerular Hypertrophy by Kallikrein Gene Delivery. Hum. Gene Ther. 2006, 17, 545–555. [Google Scholar] [CrossRef] [PubMed]
- Bledsoe, G.; Shen, B.; Yao, Y.Y.; Hagiwara, M.; Mizell, B.; Teuton, M.; Grass, D.; Chao, L.; Chao, J. Role of Tissue Kallikrein in Prevention and Recovery of Gentamicin-Induced Renal injury. Toxicol. Sci. 2008, 102, 433–443. [Google Scholar] [CrossRef] [PubMed]
- Niewiarowska-Sendo, A.; Kozik, A.; Guevara-Lora, I. Influence of Bradykinin B2 Receptor and Dopamine D2 Receptor on the Oxidative Stress, Inflammatory Response, and Apoptotic Process in Human Endothelial Cells. PLoS ONE 2018, 13, e0206443. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yasunari, K.; Maeda, K.; Watanabe, T.; Nakamura, M.; Asada, A.; Yoshikawa, J. Converting Enzyme Inhibitor Temocaprilat Prevents High Glucose-Mediated Suppression of Human Aortic Endothelial Cell Proliferation. J. Cardiovasc. Pharmacol. 2003, 42 (Suppl. S1), S55–S60. [Google Scholar] [CrossRef] [PubMed]
- Du, Y.M.; Du, B.H.; Yang, J.; Zang, S.; Wang, X.P.; Mao, X.; Zhang, W.; Jiang, L.P. Effect of Bradykinin on Rats with Thromboangiitis Obliterans through PI3K/Akt Signaling Pathway. Eur. Rev. Med. Pharmacol. Sci. 2019, 23, 10169–10176. [Google Scholar] [CrossRef] [PubMed]
- Oeseburg, H.; Iusuf, D.; van der Harst, P.; van Gilst, W.H.; Henning, R.H.; Roks, A.J. Bradykinin Protects Against Oxidative Stress-Induced Endothelial Cell Senescence. Hypertension 2009, 53, 417–422. [Google Scholar] [CrossRef] [PubMed]
- Mesquita, T.R.R.; Miguel-Dos-Santos, R.; Jesus, I.C.G.; de Almeida, G.K.M.; Fernandes, V.A.; Gomes, A.A.L.; Guatimosim, S.; Martins-Silva, L.; Ferreira, A.J.; Capettini, L.D.S.A.; et al. Ablation of B1- and B2-Kinin Receptors Causes Cardiac Dysfunction through Redox-Nitroso Unbalance. Life Sci. 2019, 228, 121–127. [Google Scholar] [CrossRef] [PubMed]
- Yao, Y.Y.; Yin, H.; Shen, B.; Chao, L.; Chao, J. Tissue Kallikrein Infusion Prevents Cardiomyocyte Apoptosis, Inflammation and Ventricular Remodeling after Myocardial Infarction. Regul. Pept. 2007, 140, 12–20. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Feng, W.; Xu, X.; Zhao, G.; Zhao, J.; Dong, R.; Ma, B.; Zhang, Y.; Long, G.; Wang, D.W.; Tu, L. Increased Age-Related Cardiac Dysfunction in Bradykinin B2 Receptor-Deficient Mice. J. Gerontol. A Biol. Sci. Med. Sci. 2016, 71, 178–187. [Google Scholar] [CrossRef] [PubMed]
- Dong, R.; Xu, X.; Li, G.; Feng, W.; Zhao, G.; Zhao, J.; Wang, D.W.; Tu, L. Bradykinin Inhibits Oxidative Stress-Induced Cardiomyocytes Senescence via Regulating Redox State. PLoS ONE 2013, 8, e77034. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kobayashi, N.; Honda, T.; Yoshida, K.; Nakano, S.; Ohno, T.; Tsubokou, Y.; Matsuoka, H. Critical Role of Bradykinin-eNOS and Oxidative Stress-LOX-1 Pathway in Cardiovascular Remodeling Under Chronic Angiotensin-Converting Enzyme Inhibition. Atherosclerosis 2006, 187, 92–100. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, K.; Kobayashi, N.; Ohno, T.; Fukushima, H.; Matsuoka, H. Cardioprotective Effect of Angiotensin II Type 1 Receptor Antagonist Associated with Bradykinin-Endothelial Nitric Oxide Synthase and Oxidative Stress in Dahl Salt-Sensitive Hypertensive Rats. J. Hypertens. 2007, 25, 1633–1642. [Google Scholar] [CrossRef] [PubMed]
- Li, H.J.; Yin, H.; Yao, Y.Y.; Shen, B.; Bader, M.; Chao, L.; Chao, J. Tissue Kallikrein Protects Against Pressure Overload-Induced Cardiac Hypertrophy through Kinin B2 Receptor and Glycogen Synthase Kinase-3beta Activation. Cardiovasc. Res. 2007, 73, 130–142. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lu, L.; Guo, L.; Xie, T.T.; Xin, H.L. Angiotensin Converting Enzyme is Involved in the Cardiac Hypertrophy Induced by Sinoaortic Denervation in Rats. Cardiovasc. Pathol. 2015, 24, 41–48. [Google Scholar] [CrossRef] [PubMed]
- Kumari, R.; Maulik, M.; Manchanda, S.C.; Maulik, S.K. Protective Effect of Bradykinin Antagonist Hoe-140 During In Vivo Myocardial Ischemic-Reperfusion Injury in the Cat. Regul. Pept. 2003, 115, 211–218. [Google Scholar] [CrossRef] [PubMed]
- Yin, H.; Chao, L.; Chao, J. Nitric Oxide Mediates Cardiac Protection of Tissue Kallikrein by Reducing Inflammation and Ventricular Remodeling After Myocardial Ischemia/Reperfusion. Life Sci. 2008, 82, 156–165. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Cargnoni, A.; Comini, L.; Bernocchi, P.; Bachetti, T.; Ceconi, C.; Curello, S.; Ferrari, R. Role of Bradykinin and eNOS in the Anti-Ischaemic Effect of Trandolapril. Br. J. Pharmacol. 2001, 133, 145–153. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wu, Y.; Fu, C.; Li, B.; Liu, C.; He, Z.; Li, X.E.; Wang, A.; Ma, G.; Yao, Y. Bradykinin Protects Human Endothelial Progenitor Cells from High-Glucose-Induced Senescence through B2 Receptor-Mediated Activation of the Akt/eNOS Signalling Pathway. J. Diabetes Res. 2021, 2021, 6626627. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Akash, M.S.H.; Rehman, K.; Liaqat, A. Tumor Necrosis Factor-Alpha: Role in Development of Insulin Resistance and Pathogenesis of Type 2 Diabetes Mellitus. J. Cell. Biochem. 2018, 119, 105–110. [Google Scholar] [CrossRef] [PubMed]
- Souza, D.G.; Pinho, V.; Pesquero, J.L.; Lomez, E.S.; Poole, S.; Juliano, L.; Correa Jr, A.; de ACastro, M.S.; Teixeira, M.M. Role of the Bradykinin B2 Receptor for the Local and Systemic Inflammatory Response that Follows Severe Reperfusion Injury. Br. J. Pharmacol. 2003, 139, 129–139. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Basuli, D.; Parekh, R.U.; White, A.; Thayyil, A.; Sriramula, S. Kinin B1 Receptor Mediates Renal Injury and Remodeling in Hypertension. Front. Med. 2022, 8, 780834. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Westermann, D.; Walther, T.; Savvatis, K.; Escher, F.; Sobirey, M.; Riad, A.; Bader, M.; Schultheiss, H.P.; Tschöpe, C. Gene Deletion of the Kinin Receptor B1 Attenuates Cardiac Inflammation and Fibrosis During the Development of Experimental Diabetic Cardiomyopathy. Diabetes 2009, 58, 1373–1381. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Catanzaro, O.; Capponi, J.A.; Michieli, J.; Labal, E.; Di Martino, I.; Sirois, P. Bradykinin B1 antagonism inhibits oxidative stress and restores Na+K+ ATPase activity in diabetic rat peripheral nervous system. Peptides 2013, 44, 100–104. [Google Scholar] [CrossRef] [PubMed]
- Catanzaro, O.L.; Capponi, J.A.; Di Martino, I.; Labal, E.S.; Sirois, P. Oxidative Stress in the Optic Nerve and Cortical Visual Area of Steptozotocin-Induced Diabetic Wistar Rats: Blockade with a Selective Bradykinin B1 Receptor Antagonist. Neuropeptides 2017, 66, 97–102. [Google Scholar] [CrossRef] [PubMed]
- Pouliot, M.; Talbot, S.; Sénécal, J.; Dotigny, F.; Vaucher, E.; Couture, R. Ocular Application of the Kinin B1 Receptor Antagonist LF22-0542 Inhibits Retinal Inflammation and Oxidative Stress in Streptozotocin-Diabetic Rats. PLoS ONE 2012, 7, e33864. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Parekh, R.U.; Robidoux, J.; Sriramula, S. Kinin B1 Receptor Blockade Prevents Angiotensin II-induced Neuroinflammation and Oxidative Stress in Primary Hypothalamic Neurons. Cell. Mol. Neurobiol. 2020, 40, 845–857. [Google Scholar] [CrossRef] [PubMed]
- Theobald, D.; Sriramula, S. Kinin B1 Receptor Mediates Bidirectional Interaction between Neuroinflammation and Oxidative Stress. Antioxidants 2023, 12, 150. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Haddad, Y.; Couture, R. Kininase 1 As a Preclinical Therapeutic Target for Kinin B1 Receptor in Insulin Resistance. Front. Pharmacol. 2017, 8, 509. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Dias, J.P.; Ismael, M.A.; Pilon, M.; de Champlain, J.; Ferrari, B.; Carayon, P.; Couture, R. The Kinin B1 Receptor Antagonist SSR240612 Reverses Tactile and Cold allodynia in an Experimental Rat Model of Insulin Resistance. Br. J. Pharmacol. 2007, 152, 280–287. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Dias, J.P.; Talbot, S.; Sénécal, J.; Carayon, P.; Couture, R. Kinin B1 Receptor Enhances the Oxidative Stress in a Rat Model of Insulin Resistance: Outcome in Hypertension, Allodynia and Metabolic Complications. PLoS ONE 2010, 5, e12622. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Marceau, F.; Sabourin, T.; Houle, S.; Fortin, J.P.; Petitclerc, E.; Molinaro, G.; Adam, A. Kinin Receptors: Functional Aspects. Int. Immunopharmacol. 2002, 214, 1729–1739. [Google Scholar] [CrossRef] [PubMed]
- Csiszar, A.; Wang, M.; Lakatta, E.G.; Ungvari, Z. Inflammation and Endothelial Dysfunction During Aging: Role of NF-kappaB. J. Appl. Physiol. 2008, 105, 1333–1341. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Schmaier, A.H. The Kallikrein-Kinin and the Renin-Angiotensin Systems Have a Multilayered iInteraction. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2003, 285, R1–R13. [Google Scholar] [CrossRef] [PubMed]
- Duka, A.; Kintsurashvili, E.; Duka, I.; Ona, D.; Hopkins, T.A.; Bader, M.; Gavras, I.; Gavras, H. Angiotensin-Converting Enzyme Inhibition After Experimental Myocardial Infarct: Role of the Kinin B1 and B2 Receptors. Hypertension 2008, 51, 1352–1357. [Google Scholar] [CrossRef] [PubMed]
- Ribuot, C.; Godin, D.; Couture, R.; Regoli, D.; Nadeau, R. In Vivo B2-Receptor-Mediated Negative Chronotropic Effect of Bradykinin in Canine Sinus Node. Am. J. Physiol. 1993, 265, H876–H879. [Google Scholar] [CrossRef] [PubMed]
- Lapenna, D.; De Gioia, S.; Mezzetti, A.; Grossi, L.; Festi, D.; Marzio, L.; Cuccurullo, F. H2-Receptor Antagonists are Scavengers of Oxygen Radicals. Eur. J. Clin. Investig. 1994, 24, 476–481. [Google Scholar] [CrossRef] [PubMed]
- Biedrzycki, G.; Wolszczak-Biedrzycka, B.; Dorf, J.; Michalak, D.; Żendzian-Piotrowska, M.; Zalewska, A.; Maciejczyk, M. Antioxidant and Anti-Glycation Potential of H2 Receptor Antagonists-In Vitro Studies and a Systematic Literature Review. Pharmaceuticals 2023, 16, 273. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Tanriverdi, H.I.; Şenel, U.; Gevrek, F.; Akbaş, A. Protective Effect of Famotidine on Ischemia-Reperfusion Injury Following Testicular Torsion in Rats. J. Pediatr. Urol. 2021, 17, 167.e1–167.e7. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, S.S.A.; El-Aal, S.A.A.; Reda, A.M.; Achy, S.E.; Shahine, Y. Anti-Neoplastic Action of Cimetidine/Vitamin C on Histamine and the PI3K/AKT/mTOR Pathway in Ehrlich Breast Cancer. Sci. Rep. 2022, 12, 11514. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Estaphan, S.; Eissa, H.; Elattar, S.; Rashed, L.; Farouk, M. A Study on the Effect of Cimetidine and L-Carnitine on Myoglobinuric Acute Kidney Injury in Male Rats. Injury 2015, 46, 1223–1230. [Google Scholar] [CrossRef] [PubMed]
- Estaphan, S.; Abdel-Malek, R.; Rashed, L.; Mohamed, E.A. Cimetidine a Promising Radio-Protective Agent Through Modulating Bax/Bcl2 Ratio: An In Vivo Study in Male Rats. J. Cell. Physiol. 2020, 235, 8495–8506. [Google Scholar] [CrossRef] [PubMed]
- Aydin, E.; Hallner, A.; Grauers Wiktorin, H.; Staffas, A.; Hellstrand, K.; Martner, A. NOX2 Inhibition Reduces Oxidative Stress and Prolongs Survival in Murine KRAS-Induced Myeloproliferative Disease. Oncogene 2019, 38, 1534–1543. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Shimoyama, T.; Fukuda, S.; Liu, Q.; Fukuda, Y.; Nakaji, S.; Sugawara, K. Characteristics of Attenuating Effects of Rebamipide, an Anti-Ulcer Agent, on Oxidative Burst of Human Neutrophils. J. Pharmacol. Sci. 2003, 91, 153–157. [Google Scholar] [CrossRef] [PubMed]
- Potnuri, A.G.; Allakonda, L.; Saheera, S. Involvement of Histamine 2 Receptor in Alpha 1 Adrenoceptor Mediated Cardiac Hypertrophy and Oxidative Stress in H9c2 Cardio Myoblasts. J. Cardiovasc. Transl. Res. 2021, 14, 184–194. [Google Scholar] [CrossRef] [PubMed]
- Kondru, S.K.; Potnuri, A.G.; Allakonda, L.; Konduri, P. Histamine 2 Receptor Antagonism Elicits Protection Against Doxorubicin-Induced Cardiotoxicity in Rodent Model. Mol. Cell. Biochem. 2018, 441, 77–88. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Yao, K.; Fan, Y.; He, P.; Wang, X.; Hu, W.; Chen, Z. Carnosine Protects Brain Microvascular Endothelial Cells Against Rotenone-Induced Oxidative Stress Injury Through Histamine H₁ and H₂ Receptors In Vitro. Clin. Exp. Pharmacol. Physiol. 2012, 39, 1019–1025. [Google Scholar] [CrossRef] [PubMed]
- Virdi, J.K.; Bhanot, A.; Jaggi, A.S.; Agarwal, N. Investigation on Beneficial Role of L-Carnosine in Neuroprotective Mechanism of Ischemic Postconditioning in Mice: Possible Role of Histidine Histamine pathway. Int. J. Neurosci. 2020, 130, 983–998. [Google Scholar] [CrossRef] [PubMed]
- Singh, D.P.; Borse, S.P.; Nivsarkar, M. Overcoming the Exacerbating Effects of Ranitidine on NSAID-Induced Small Intestinal Toxicity With Quercetin: Providing a Complete GI Solution. Chem. Biol. Interact. 2017, 272, 53–64. [Google Scholar] [CrossRef] [PubMed]
- Turkyilmaz, I.B.; Arda Pirincci, P.; Bolkent, S.; Yanardag, R. The Effects of Vitamins and Selenium Mixture or Ranitidine Against Small Intestinal Injury Induced by Indomethacin in Adult Rats. J. Food Biochem. 2019, 43, e12808. [Google Scholar] [CrossRef] [PubMed]
- Jahangirvand, M.; Minai-Tehrani, D.; Yazdi, F.; Minai-Tehrani, A.; Razmi, N. Binding of Cimetidine to Balb/C Mouse Liver Catalase; Kinetics and Conformational Studies. Curr. Clin. Pharmacol. 2016, 11, 21–27. [Google Scholar] [CrossRef] [PubMed]
- El-Mahdy, N.A.; El-Sisi, A.E.; Dewidar, B.I.; El-Desouky, K.I. Histamine Protects Against the Acute Phase of Experimentally-Induced Hepatic Ischemia/Reperfusion. J. Immunotoxicol. 2013, 10, 9–16. [Google Scholar] [CrossRef] [PubMed]
- Gaafa, K.M.; Badawy, M.M.; Hamza, A.A. The Protective Effects of Ascorbic Acid, Cimetidine, and Nifedipine on Diethyldithiocarbamate-Induced Hepatic Toxicity in Albino Rats. Drug Chem. Toxicol. 2011, 34, 405–419. [Google Scholar] [CrossRef] [PubMed]
- Oh, T.Y.; Lee, J.S.; Ahn, B.O.; Cho, H.; Kim, W.B.; Kim, Y.B.; Surh, Y.J.; Cho, S.W.; Hahm, K.B. Oxidative Damages are Critical in Pathogenesis of Reflux Esophagitis: Implication of in its Treatment. Free Radic. Biol. Med. 2001, 30, 905–915. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.S.; Oh, T.Y.; Ahn, B.O.; Cho, H.; Kim, W.B.; Kim, Y.B.; Surh, Y.J.; Kim, H.J.; Hahm, K.B. Involvement of Oxidative Stress in Experimentally Induced Reflux Esophagitis and Barrett’s Esophagus: Clue for the Chemoprevention of Esophageal Carcinoma by Antioxidants. Mutat. Res. 2001, 480–481, 189–200. [Google Scholar] [CrossRef] [PubMed]
- Oh, T.Y.; Lee, J.S.; Ahn, B.O.; Cho, H.; Kim, W.B.; Kim, Y.B.; Surh, Y.J.; Cho, S.W.; Lee, K.M.; Hahm, K.B. Oxidative Stress is More Important Than Acid in the Pathogenesis of Reflux Oesophagitis in Rats. Gut 2001, 49, 364–371. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.K.; Kim, M.G.; Leem, K.H. Extrusion Process of Acanthopanax Senticosus Leaves Enhances the Gastroprotective Effect of Compound 48/80 on Acute Gastric Mucosal Lesion in Rats. J. Tradit. Chin. Med. 2016, 36, 187–196. [Google Scholar] [CrossRef] [PubMed]
- Qiao, X.; Tang, X.; Zhang, J.; Chen, K.; Zhang, Y.; Wang, C.; Fei, S.; Zhu, J.; Zhu, S.; Liu, Z.; et al. Protective Effect of Histamine Microinjected Into the Cerebellar Fastigial Nucleus on Stress-Induced Gastric Mucosal Damage in Rats. Am. J. Transl. Res. 2015, 7, 1648–1659. [Google Scholar] [PubMed] [PubMed Central]
- Ahmad, S.S.; Najmi, A.K.; Kaundal, M.; Akhtar, M. Gastroprotective Effect of Thymoquinone on Water Immersion Restraint Stress Induced Ulceration in Rats. Drug Res. 2017, 67, 366–372. [Google Scholar] [CrossRef] [PubMed]
- Mahmoud, M.F.; Abdo, W.; Nabil, M.; Drissi, B.; El-Shazly, A.M.; Abdelfattah, M.A.O.; Sobeh, M. Apple (Malus domestica Borkh) lLeaves Attenuate Indomethacin-Induced Gastric Ulcer in Rats. Biomed. Pharmacother. 2023, 160, 114331. [Google Scholar] [CrossRef] [PubMed]
- Akbaş, N.; Süleyman, B.; Mammadov, R.; Gülaboğlu, M.; Akbaş, E.M.; Süleyman, H. Effect of Felodipine on Indomethacin-Induced Gastric Ulcers in Rats. Exp. Anim. 2023, 72, 505–512. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Jafari, A.; Andishfar, N.; Esmaeilzadeh, Z.; Khezri, M.R.; Ghasemnejad-Berenji, M. Gastroprotective Effect of Topiramate on Indomethacin-Induced Peptic Ulcer in Rats: Biochemical and Histological Analyses. Basic. Clin. Pharmacol. Toxicol. 2022, 130, 559–568. [Google Scholar] [CrossRef] [PubMed]
- Karakaya, K.; Hanci, V.; Bektas, S.; Can, M.; Ucan, H.B.; Emre, A.U.; Tascilar, O.; Ozkocak Turan, I.; Comert, M.; Irkorucu, O.; et al. Mitigation of Indomethacin-Induced Gastric Mucosal Lesions by a Potent Specific Type V Phosphodiesterase Inhibitor. World J. Gastroenterol. 2009, 15, 5091–5096. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Raji, Y.; Oyeyemi, W.A.; Shittu, S.T.; Bolarinwa, A.F. Gastro-Protective Effect of Methanol Extract of Ficus Asperifolia Bark on Indomethacin-Induced Gastric Ulcer in Rats. Niger. J. Physiol. Sci. 2011, 26, 43–48. [Google Scholar] [PubMed]
- Hernández-Muñoz, R.; Montiel-Ruíz, C.; Vázquez-Martínez, O. Gastric Mucosal Cell Proliferation in Ethanol-Induced Chronic Mucosal Injury is Related to Oxidative Stress and Lipid Peroxidation in Rats. Lab. Investig. 2000, 80, 1161–1169. [Google Scholar] [CrossRef] [PubMed]
- Beiranvand, M.; Bahramikia, S.; Dezfoulian, O. Evaluation of Antioxidant and Anti-Ulcerogenic Effects of Eremurus Persicus (Jaub & Spach) Boiss Leaf Hydroalcoholic Extract on Ethanol-Induced Gastric Ulcer in Rats. Inflammopharmacology 2021, 29, 1503–1518. [Google Scholar] [CrossRef] [PubMed]
- Fahmi, A.A.; Abdur-Rahman, M.; Aboul Naser, A.F.; Hamed, M.A.; Abd-Alla, H.I.; Nasr, M.I. Pulicaria Crispa Mitigates Gastric Ulcer Induced by Ethanol in Rats: Role of Treatment and Auto Healing. Biomarkers 2019, 24, 286–294. [Google Scholar] [CrossRef] [PubMed]
- Cadirci, E.; Suleyman, H.; Aksoy, H.; Halici, Z.; Ozgen, U.; Koc, A.; Ozturk, N. Effects of Onosma Armeniacum Rroot Extract on Ethanol-Induced Oxidative Stress in Stomach Tissue of Rats. Chem. Biol. Interact. 2007, 170, 40–48. [Google Scholar] [CrossRef] [PubMed]
- Pradeepkumar Singh, L.; Kundu, P.; Ganguly, K.; Mishra, A.; Swarnakar, S. Novel Role of Famotidine in Downregulation of Matrix Metalloproteinase-9 During Protection of Ethanol-Induced Acute Gastric Ulcer. Free Radic. Biol. Med. 2007, 43, 289–299. [Google Scholar] [CrossRef] [PubMed]
- Alirezaei, M.; Dezfoulian, O.; Neamati, S.; Rashidipour, M.; Tanideh, N.; Kheradmand, A. Oleuropein Prevents Eethanol-Induced Gastric Ulcers Via Elevation of Antioxidant Enzyme Activities in Rats. J. Physiol. Biochem. 2012, 68, 583–592. [Google Scholar] [CrossRef] [PubMed]
- Gupta, M.; Gulati, M.; Kapoor, B.; Kumar, B.; Kumar, R.; Kumar, R.; Khurana, N.; Gupta, R.; Singh, N. Anti-Ulcerogenic Effect of Methanolic Extract of Elaeagnus Conferta Roxb. Seeds in Wistar Rats. J. Ethnopharmacol. 2021, 275, 114115. [Google Scholar] [CrossRef] [PubMed]
- Olaleye, M.T.; Akinmoladun, A.C. Comparative Gastroprotective Effect of Post-Treatment with Low Doses of Rutin and Cimetidine in Rats. Fundam. Clin. Pharmacol. 2013, 27, 138–145. [Google Scholar] [CrossRef] [PubMed]
- Kath, R.K.; Gupta, R.K. Antioxidant Activity of Hydroalcoholic Leaf Extract of Ocimum Sanctum in Animal Models of Peptic Ulcer. Indian J. Physiol. Pharmacol. 2006, 50, 391–396. [Google Scholar] [PubMed]
- Olaleye, S.B.; Farombi, E.O. Attenuation of Indomethacin- and HCl/Ethanol-Induced Oxidative Gastric Mucosa Damage in Rats by Kolaviron, a Natural Biflavonoid of Garcinia Kola Seed. Phytother. Res. 2006, 20, 14–20. [Google Scholar] [CrossRef] [PubMed]
- Fornai, M.; Colucci, R.; Antonioli, L.; Ghisu, N.; Tuccori, M.; Blandizzi, C.; Del Tacca, M. Effects of Pantoprazole on Ulcer Healing Delay Associated with NSAID Treatment. Naunyn Schmiedebergs Arch. Pharmacol. 2009, 379, 305–313. [Google Scholar] [CrossRef] [PubMed]
- Asokkumar, K.; Sen, S.; Umamaheswari, M.; Sivashanmugam, A.T.; Subhadradevi, V. Synergistic Effect of the Combination of Gallic acid and Famotidine in Protection of Rat Gastric Mucosa. Pharmacol. Rep. 2014, 66, 594–599. [Google Scholar] [CrossRef] [PubMed]
- Morsy, M.; Ashour, O.; Amin, E.; Rofaeil, R. Gastroprotective Effects of Telmisartan on Experimentally-Induced Gastric Ulcers in Rats. Pharmazie 2009, 64, 590–594. [Google Scholar] [PubMed]
- Panula, P. Histamine Receptors, Agonists, and Antagonists in Health and Disease. Handb. Clin. Neurol. 2021, 180, 377–387. [Google Scholar] [CrossRef] [PubMed]
- Nogueira-Machado, J.A.; Lima e Silva, F.C.; Cunha, E.P.; Calsolari, M.R.; Costa, D.C.; Perilo, C.S.; Horta, B.C.; Ferreira, I.C.; Chaves, M.M. Modulation of the Production of Reactive Oxygen Species (ROS) by cAMP-Elevating Agents in Granulocytes from Diabetic Patients: An Akt/PKB-Dependent Phenomenon. Diabetes Metab. 2006, 32, 331–335. [Google Scholar] [CrossRef] [PubMed]
Target Receptor | Sample | Tissue | Main Methods | Main Outcomes | Reference |
---|---|---|---|---|---|
B1R | Male rats | Thoracic aortic rings | High-glucose feeding and B1R antagonist (SSR240612) | B1R inibition did not affect superoxide anion (O2•─) production. | Dias et al., 2007 [60] |
B1R | C57BL/6 and B1KO mice | Heart | Streptozotocin (STZ)-induced diabetes and B1R antagonist (R-954) | B1R absence partially reversed increased nitrotyrosine and myeloperoxidase levels induced by diabetes. | Westermann et al., 2009 [53] |
B1R | Male rats | Thoracic aortic rings | High-glucose feeding, B1R antagonist (SSR240612), and B1R agonist (Sar[D-Phe8]des-Arg9-BK) | B1R activation increased superoxide anion (O2•─) production, increased NADPH oxidase activity, SOD gene expression, and catalase protein expression. | Dias et al., 2010 [61] |
B1R | Male rats | Ocular tissue (retina) | Streptozotocin (STZ)-induced diabetes and B1R antagonist (LF22-0542) | B1R antagonist normalized elevated B1R levels and reduced superoxide production. | Pouliot et al., 2012 [56] |
B1R | Male rats | Sciatic nerve | Streptozotocin (STZ)-induced diabetes and B1R antagonist (R-954) | B1R inhibition reversed diabetes-induced increases in MDA levels and restored reduced GSH activity, antioxidant potential, and SOD content. | Catanzaro et al., 2013 [54] |
B1R | Male rats | Optic nerve, visual cortex, and plasma | Streptozotocin (STZ)-induced diabetes and B1R antagonist (R-954) | B1R inhibition reversed diabetes-induced increases in MDA levels across all tissues and restored reduced GSH content in all tissues. | Catanzaro et al., 2017 [55] |
B1R | Male rats | Thoracic aortic and renal cortex | High-glucose infusion, carboxypeptidase M/carboxypeptidase N inhibitor (Mergetpa), and iNOS inhibitor (1400 W) | COM/CPN inhibitor corrected increased aortic superoxide production and increased nitrotyrosine renal cortex protein expression. | Haddad et al., 2017 [59] |
B1R | Neonatal mice | Hypothalamic neurons | Angiotensin II and B1R antagonist (R715) | B1R activation partially induced ROS generation and NADPH oxidase (Nox2 and 4) gene expression. | Parekh et al., 2020 [57] |
B1R | Human embryonic kidney (HEK) cells, C57BL/6, and B1KO mice | Kidney | DOCA-salt hypertension, B1R agonist (des-Arg10-kallidin and DAKD), B1R antagonist (R715), and B2R antagonist (HOE 140) | B1R absence decreased kidney ROS generation in vivo, and B1R increased ROS generation in vitro. | Basuli et al., 2022 [52] |
B1R | C57BL/6 male mice | Hypothalamic neurons | DOCA-salt hypertension, Lys-[des-Arg9]-Bradykinin (LDABK), B1R antagonist (R715), and hydrogen peroxide (H2O2) | B1R activation induced ROS production, with ROS generation partially mediated by TNF, LPS, and H2O2. | Theobald et al., 2023 [58] |
B1R/B2R | Human endothelial cells (AECs) | _ | High-glucose feeding, ACEi (Temocapril), BK antagonist (Icatibant), and B1R antagonist (Lys-(Des-Arg9, Leu8)-Bradykinin) | B2R reversed increased oxidative stress mediated by high-glucose treatment. | Yasunari et al., 2003 [35] |
B1R/B2R | B1KO and B2KO | Plasma | Reactive oxygen species (ROS) detection | The absence of both B2R and B1R led to an increase in plasma oxidative stress. | Delemasure et al., 2013 [22] |
B1R/B2R | C57BL/6, B1KO, and B2KO | Heart | Description of knockout mouse adaptations | The absence of both B2R and B1R resulted in increased NADPH oxidase protein expression, superoxide anion levels, NO, and peroxynitrite production, while simultaneously decreasing the expression and activity of SOD. | Mesquita et al., 2019 [38] |
B1R/B2R | C57BL/6 female mice | Ovary | Cisplatin-induced ovarian toxicity | In the cisplatin-treated group, B1R and B2R regulation resulted in increased levels of superoxides, NAG, and MPO, while GSH levels were reduced. | Ayres et al., 2020 [24] |
B2R | Female and male cats | Heart | Ischemia/reperfusion model and B2R antagonist (HOE 140) | B2R activation led to an increase in thiobarbituric acid reactive substances (TBARSs) 60 min following reperfusion. | Kumari et al., 2003 [46] |
B2R | Dahl salt-sensitive hypertensive (DS) rats | Heart (LV) | Hypersodica diet, ACEi (Quinapril), and B2R antagonist (FR172357) | B2R activation increased eNOS and decreased NADPH oxidase. | Kobayashi et al., 2006 [42] |
B2R | Rats | Kidney | Ischemia/reperfusion model, kallikrein, B2R antagonist (HOE 140), and B1R antagonist (Lys-(Des-Arg9, Leu8)-Bradykinin) | B2R activation increased ROS, MDA, and oxigen peroxide levels and decreased GSH. | Chiang et al., 2006 [28] |
B2R | Male rats | Kidney | Adenovirus carrying the human tissue kallikrein gene and BK antagonist (Icatibant) | B2R partially restored nitrite/nitrate levels reduced by gentamicin and decreased gentamicin-induced NADH oxidase activity and superoxide production. | Bledsoe et al., 2006 [32] |
B2R | Male rats | Kidney | DOCA-salt hypertension, adenovirus carrying the human tissue kallikrein gene, and BK antagonist (Icatibant) | B2R partially corrected increased NADH oxidase activity and superoxide anion formation. | Bledsoe et al., 2006 [29] |
B2R | Male rats | Heart | Abdominal aorta constriction and cardiac hipertrophy model | B2R reduced NADH/NADPH oxidase activity, superoxide production, as well as the phosphorylation of MAPKs, ERKs, and AKT. | Li et al., 2007 [44] |
B2R | Rats | Serum | Streptozotocin (STZ)-induced diabetes, ACEi (Ramipril), and B2R antagonist (HOE 140) | B2R increased GPx activity while decreasing MDA content. | Allard et al., 2007 [30] |
B2R | Rats | Heart (LV) | Hypersodica diet, angiotensin II-receptor blocker (Valsartan), and B2R antagonist (FR172,357) | B2R reduced both the activity and expression of NADPH oxidase. | Yoshida et al., 2007 [43] |
B2R | Male rats | Heart | Coronary ligation infarction model, kallikrein tissue, and BK antagonist (Icatibant) | B2R reduced NADH oxidase activity, p22 gene expression, and MDA content, while partially decreasing superoxide production. | Yao et al., 2007 [39] |
B2R | Male rats | Kidney | Gentamicin, kallikrein infusion, and BK antagonist (Icatibant) | B2R reduced gentamicin-induced superoxide production in the kidney. | Bledsoe et al., 2008 [33] |
B2R | Male rats | Heart | Ischemia/reperfusion model, human-tissue kallikrein gene, BK antagonist (Icatibant), and NG-Nitro- l-Arginine Methyl Ester (L-NAME) | B2R increased heart NO production and normalized superoxide levels. | Yin et al., 2008 [47] |
B2R | Bovine Aorta Endothelial Cells (BAECs) | _ | ROS-induced senescence, in vitro scratch model, BK, B2R antagonist (HOE 140), and NO inhibitor (Nω-Methyl-L-arginine acetate salt) | B2R protected cells from H2O2-induced senescence, DNA damage, and impaired migration. | Oeseburg et al., 2009 [37] |
B2R | C57BL/6 and B2KO mice | Kidney | Streptozotocin (STZ)-induced diabetes | B2R absence upregulated SOD expression. | Jaffa et al., 2012 [31] |
B2R | Rat cardiomyocyte cell line (H9C2) | _ | ROS-induced senescence, eNOS inhibitor (Nω-methyl-L-arginine acetate salt), BK, and B2R antagonist (HOE 140) | B2R inhibited H2O2-induced effects: reduced B2R expression, increased ROS, decreased SOD levels and activity, and elevated NADPH oxidase expression and activity. | Dong et al., 2013 [41] |
B2R | Swiss mice | Ipsilateral cortex | Traumatic brain injury model | B2R partially reduced NADPH oxidase activity and TBARS. | Ferreira et al., 2014 [27] |
B2R | Human DM patients’ mononuclear cells | _ | Plasmatic measurements and BK- or B2R-antagonist (HOE 140) treatments | B2R increased RB mRNA, AKT phosphorylation, and cyclin D1; decreased ROS and cellular senescence; and inversely correlated with plasma MPO levels. | Fu et al., 2015 23] |
B2R | Male rats | Heart | Sinoaortic denervation, ACEi (Ramipril), B2R antagonist (HOE 140), and AT1R antagonist (Losartan) | B2R normalized TBARS, the GSH/GSSG ratio, and NADPH oxidase activity. | Lu et al., 2015 [45] |
B2R | C57BL/6 and B2KO mice | Heart and serum | Reactive oxygen species (ROS) detection | B2R absence increased ROS, serum/heart MDA, and NADPH oxidase expression and decreased heart/serum SOD activity, heart SOD protein, and catalase expression. | Feng et al., 2016 [40] |
B2R | Human umbilical vein endothelial cells (HUVECs) | Endothelium | BK- and B2R-antagonist (HOE 140) treatments | B2R increased ROS, SOD, and catalase. | Niewiarowska-Sendo et al., 2018 [34] |
B2R | Female rats | Lower extremity veins | Thromboangitis obliterans model amd B2R-antagonist (HOE 140) treatment | B2R blockade increased reactive species and caspase-3 activity, and decreased Pi3k expression. | Du et al., 2019 [36] |
H2R | Cardiomyoblasts lineage (H9C2) | _ | Phenylephrine (alfa 1 agonist) and H2 antagonist (famotidine) | Famotidine reduced ROS and lipid peroxidation and restored SOD and PRX levels after phenylephrine treatment. | Potnuri et al., 2021 [75] |
H2R | Bovine serum albumin (BSA) | Bovine serum albumin (BSA) | BSA glycation and H2R antagonist (famotidine, ranitidine, and cimetidine) | Ranitidine showed the strongest anti-glycation and ROS-scavenging effects. | Biedrzycki et al., 2023 [68] |
H2R | Human blood and rats | Plasma and gastric lumen | H2R-antagonist (famotidine, ranitidine, and cimetidine) reaction test | H2 antagonists scavenged OH radicals, and cimetidine also chelates iron. | Lapenna et al., 1994 [67] |
H2R | Male rats | Gastric mucosa | Chronic ethanol-induced mucosal injury and H2R antagonist (famotidine) | H2 inhibition raised TBARS at 24–48h and lowered it at 72h, reduced SROS at 48h, and increased glutathione at 48–72h. | Hernández-Muñoz et atl., 2000 [95] |
H2R | Male rats | Esophageal mucosa | Reflux esophagitis model, antioxidant (DA9601), and H2R antagonist (ranitidine) | H2 antagonists have antioxidant properties, scavenging ROS and offering protection against oxidative stress. | Oh et al., 2001 [84] |
H2R | Male rats | Esophageal mucosa | Reflux esophagitis model, antioxidant (DA9601), and H2R antagonist (ranitidine) | H2 antagonist did not affect MDA, GSH, or MPO levels. | Lee et al., 2001 [85] |
H2R | Male rats | Gastric mucosa | Reflux esophagitis model, antioxidant (DA9601), and H2R antagonist (ranitidine) | H2 antagonist had no impact on MDA, GSH, or MPO activity. | Oh et al., 2001 [86] |
H2R | Male humans | Neutrophils | Opsonized zymosan (OZ), Acetate phorbol (PMA), calcium ionophore, Rebamipide, and H2R antagonist (cimetidine) | H2 antagonist reduced MPO activity but not superoxide generation. | Shimoyama et al., 2003 [74] |
H2R | Rats and guinea pigs (both genders) | Blood | Ethanol gastric injutry model, piloric ligation gastric model, histamine, H2R antagonist (Ranitidine), and plant extract (Ocimum sanctum) | H2 antagonist partially reduced an increase in histamine-induced MDA and a decrease in SOD. | Kath et al., 2006 [106] |
H2R | Male rats | Gastric mucosa | HCl/ethanol gastric lesion model, indomethacin gastric lesion model, plant extract (kolaviron), and H2R antagonist (ranitidine) | H2 antagonist partially restored GSH, SOD, CAT, and reduced MDA. | Olaleye et al., 2006 [104] |
H2R | Male rats | Gastric mucosa | Ethanol gastric injury model and H2R antagonist (ranitidine and famotidine) | H2 antagonist corrected MPO activity raised by gastric ulcers. | Singh et al., 2007 [99] |
H2R | Rats | Gastric mucosa | Ethanol gastric injury model, plant extract (Onosma armeniacum), and H2R antagonist (ranitidine) | H2 antagonist partially restored GSH and NO and reduced MPO and MDA but not SOD. | Cadirci et al., 2007 [98] |
H2R | Male rats | Gastric mucosa | Acetic acid gastric injury model, proton-pump inhibitor (pantoprazole), H2R antagonist (famotidine), and indomethacin | H2 antagonist did not affect an ulcer-induced MDA increase. | Fornai et al., 2009 [105] |
H2R | Female rats | Gastric mucosa | Indomethacin gastric ulcer model, H2R antagonist (famotidine), and PDE inhibitor (vardenafil) | H2 antagonist lowered MDA and restored NO levels. | Karakaya et al., 2009 [93] |
H2R | Rats | Gastric mucosa | Indomethacin gastric ulcer model, CRS ulcer model, angiotensin II-receptor antagonist (Telmisartan and Candesartan), and H2R antagonist (ranitidine) | H2 antagonist normalized MDA and the nitrite/nitrate ratio. | Morsy et al., 2009 [107] |
H2R | Male rats | Hepatic tissue | DDC hepatic toxicity model, ascorbic acid, H2R antagonist (cimetidine), and calcium channel antagonist (Nifedipine) | H2 antagonist partially corrected MDA and GSH, and SOD was unaffected. | Gaafa et al., 2011 [83] |
H2R | Male rats | Gastric mucosa | Indomethacin gastric ulcer model, plant extract (Ficus asperifolia bark), and H2R antagonist (cimetidine) | H2 antagonist restored SOD and CAT activities, and MDA was unaffected. | Raji et al., 2011 [94] |
H2R | Mouse-brain-derived endothelial cells | _ | Rotenone, Carnosine, and H2R antagonist (cimetidine and Zolantidine) | H2 inhibition reversed carnosine’s mitochondrial protective effects. | Zhang et al., 2012 [77] |
H2R | Male rats | Gastric mucosa | Ethanol gastric injury model, oleuropein (OLE), and H2R antagonist (ranitidine) | H2 antagonist partially corrected GSH, GPx, and TBARS but not SOD and CAT. | Alirezaei et al., 2012 [100] |
H2R | Male rats | Hepatic tissue | Ischemia/reperfusion model, histamine, and H2R antagonist (ranitidine) | Positive histamine effects on MDA and GSH were H2-independent. | El-Mahdy et al., 2013 [82] |
H2R | Male rats | Gastric mucosa | Ulceral models, rutin, and H2R antagonist (cimetidine) | H2 antagonist reduced MDA, restored vitamin C, and increased GPx. | Olaleye et al., 2013 [102] |
H2R | Female and male rats | Gastric mucosa | Pylorus ligation gastric ulcer model, acetylsalicylic acid (ASA), gallic acid, and H2R antagonist (famotidine) | H2 antagonist partially restored SOD, GSH, CAT, GPx, and reduced MDA. | Asokkumar et al., 2014 [106] |
H2R | Male rats | Gastric mucosa | Brain microinjections of histamine, H1R antagonist (Tripolidine), and H2R antagonist (ranitidine) | H2 activation reduced MDA and restored SOD activity. | Qiao et al., 2015 [88] |
H2R | Male rats | Kidney | Glycerol kidney injury model, L-carnitine, and H2R antagonist (cimetidine) | H2 antagonist normalized NO and glutathione and reduced cytochrome p450. | Estaphan et al., 2015 [71] |
H2R | BALB/c mice | Liver extracts | Catalase activity, H2O2, and H2R antagonist (cimetidine) | H2 antagonist inhibited catalase and lowered optimal temperature. | Jahangirvand et al., 2016 [81] |
H2R | Male rats | Heart | Oxidative stress inductor (doxorubicin), ACE inhibitor (Captopril), and H2R antagonist (famotidine) | H2 inhibition corrected lipid peroxidation and the nitrite/nitrate ratio and partially restored SOD. | Kondru et al., 2018 [76] |
H2R | Male rats | Gastrointestinal tract | Dicofenac enterophaty induced model, adenosine receptor antagonist (quercetin), and H2R antagonist (ranitidine) | H2 antagonist worsened a diclofenac-induced MDA increase. | Singh et al., 2017 [79] |
H2R | Male rats | Gastric mucosa | Water-immersion restraint stress ulcer model, thymoquinone, and H2R antagonist (ranitidine) | H2 antagonist corrected TBARS, GSH, SOD, and CAT in ulcers. | Ahmad et al., 2017 [89] |
H2R | Transgenic mice Kras/NoxKO | Myeloid cells | H2R agonist (N-methylhistamine) and H2R antagonist (ranitidine) | H2 activation inhibited superoxides and reduced ROS in Kras mice. | Aydin et al., 2019 [73] |
H2R | Male rats | Gastric mucosa | Ethanol gastric injutry model, plant extract (Pulicaria crispa), and H2R antagonist (ranitidine) | H2 antagonist partially restored GSH and SOD in ulcers. | Fahmi et al., 2019 [97] |
H2R | Male rats | Small intestine | Indomethacin small intestine-lesion model, vitamin C, vitamin E, β-Carotene, sodium selene, and H2R antagonist (ranitidine) | H2 antagonist partially restored GSH, CAT, GPx, and increased SOD, and there was no MDA effect. | Turkyilmaz et al., 2019 [80] |
H2R | Male rats | Bone marrow and intestinal tissue | Irradiation and H2R antagonist (cimetidine) | H2 antagonist corrected MDA, GSH, and SOD levels. | Estaphan et al., 2020 [72] |
H2R | Female and male mice | Brain | Brain ischemia/reperfusion model, L-carnosine, and H2R antagonist (ranitidine) | H2 antagonist blocked L-carnosine effects on TBARS, GSH, and MPO in brain ischemia. | Virdi et al., 2020 [78] |
H2R | Male rats | Testis | Testicular ischemia model and H2R antagonist (famotidine) | H2 antagonist normalized NO and SOD, and MDA and GPx were unaffected. | Tanriverdi et al., 2021 [69] |
H2R | Male rats | Gastric tissue | Indomethacin gastric ulcer model, water-immersion stress model, plant extract (Elaeagnus conferta Roxb.), and H2R antagonist (ranitidine) | H2 antagonist partially restored CAT, GSH, SOD, and reduced MDA. | Gupta et al., 2021 [101] |
H2R | Male rats | Gastric mucosa | Ethanol gastric injury model, plant extract (E. persicus), and H2R antagonist (ranitidine) | H2 antagonist restored CAT, GSH, and reduced ROS and MDA. | Beiranvand et al., 2021 [96] |
H2R | Female Swiss mice | Tumor tissue | Breast-tumor model, vitamin C, and H2R antagonist (cimetidine) | H2 antagonist partially restored tumor GSH, SOD, and reduced MDA. | Ibrahim et al., 2022 [70] |
H2R | Male rats | Gastric mucosa | Indomethacin gastric lesion model, topiramate, and H2R antagonist (ranitidine) | H2 antagonist restored SOD, CAT, GPx activities, GSH, and reduced MDA. | Jafari et al., 2022 [92] |
H2R | Male rats | Gastric mucosa | Indomethacin gastric ulcer model, plant extract (Malus domestica Borkh), and H2R antagonist (famotidine) | H2 antagonist partially restored GSH, GPx, and reduced MDA. | Mahmoud et al., 2023 [90] |
H2R | Rats | Gastric tissue | Indomethacin gastric ulcer model, felodipine, and H2R antagonist (famotidine) | H2 antagonist corrected MDA, GSH, and catalase levels. | Akbaş et al., 2023 [91] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gregnani, M.F.; Martins, L.; Fogel, W.A. Mechanistic Insights into the Interaction Between Kinin Receptors and Histamine H2 Receptor Pathways in Oxidative Stress. Receptors 2024, 3, 513-537. https://doi.org/10.3390/receptors3040026
Gregnani MF, Martins L, Fogel WA. Mechanistic Insights into the Interaction Between Kinin Receptors and Histamine H2 Receptor Pathways in Oxidative Stress. Receptors. 2024; 3(4):513-537. https://doi.org/10.3390/receptors3040026
Chicago/Turabian StyleGregnani, Marcos Fernandes, Leonardo Martins, and Wieslawa Agnieszka Fogel. 2024. "Mechanistic Insights into the Interaction Between Kinin Receptors and Histamine H2 Receptor Pathways in Oxidative Stress" Receptors 3, no. 4: 513-537. https://doi.org/10.3390/receptors3040026
APA StyleGregnani, M. F., Martins, L., & Fogel, W. A. (2024). Mechanistic Insights into the Interaction Between Kinin Receptors and Histamine H2 Receptor Pathways in Oxidative Stress. Receptors, 3(4), 513-537. https://doi.org/10.3390/receptors3040026