The Joint Contribution of Childhood Exposure to Parental Smoking and Genetic Susceptibility to Smoking to Epigenetic Age Acceleration in Late Adulthood: The Health and Retirement Study
Abstract
:1. Introduction
2. Methods
2.1. Study Population
2.2. Childhood Exposure to Parental Smoking and Childhood Smoking
2.3. Epigenetic Clocks and EAA
2.4. Genetic Susceptibility to Cigarette Smoking
2.5. Covariables
2.6. Statistical Analyses
3. Results
Childhood Exposure to Parental Smoking and EAA
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yan, Y.; Liu, H.; Abedini, A.; Sheng, X.; Palmer, M.; Li, H.; Susztak, K. Unraveling the epigenetic code: Human kidney DNA methylation and chromatin dynamics in renal disease development. Nat. Commun. 2024, 15, 873. [Google Scholar] [CrossRef]
- Chen, B.H.; Marioni, R.E.; Colicino, E.; Peters, M.J.; Ward-Caviness, C.K.; Tsai, P.C.; Roetker, N.S.; Just, A.C.; Demerath, E.W.; Guan, W.; et al. DNA methylation-based measures of biological age: Meta-analysis predicting time to death. Aging 2016, 8, 1844–1865. [Google Scholar] [CrossRef]
- Tan, Q. Epigenetic age acceleration as an effective predictor of diseases and mortality in the elderly. EBioMedicine 2021, 63, 103174. [Google Scholar] [CrossRef]
- Bell, C.G.; Lowe, R.; Adams, P.D.; Baccarelli, A.A.; Beck, S.; Bell, J.T.; Christensen, B.C.; Gladyshev, V.N.; Heijmans, B.T.; Horvath, S.; et al. DNA methylation aging clocks: Challenges and recommendations. Genome Biol. 2019, 20, 249. [Google Scholar] [CrossRef]
- Hannum, G.; Guinney, J.; Zhao, L.; Zhang, L.; Hughes, G.; Sadda, S.; Klotzle, B.; Bibikova, M.; Fan, J.-B.; Gao, Y.; et al. Genome-wide Methylation Profiles Reveal Quantitative Views of Human Aging Rates. Mol. Cell 2013, 49, 359–367. [Google Scholar] [CrossRef]
- Fox, F.A.U.; Liu, D.; Breteler, M.M.B.; Aziz, N.A. Physical activity is associated with slower epigenetic ageing—Findings from the Rhineland study. Aging Cell 2023, 22, e13828. [Google Scholar] [CrossRef]
- Fiorito, G.; Caini, S.; Palli, D.; Bendinelli, B.; Saieva, C.; Ermini, I.; Valentini, V.; Assedi, M.; Rizzolo, P.; Ambrogetti, D.; et al. DNA methylation-based biomarkers of aging were slowed down in a two-year diet and physical activity intervention trial: The DAMA study. Aging Cell 2021, 20, e13439. [Google Scholar] [CrossRef]
- Fiorito, G.; the BIOS Consortium; the Lifepath consortium; McCrory, C.; Robinson, O.; Carmeli, C.; Rosales, C.O.; Zhang, Y.; Colicino, E.; Dugué, P.-A.; et al. Socioeconomic position, lifestyle habits and biomarkers of epigenetic aging: A multi-cohort analysis. Aging 2019, 11, 2045–2070. [Google Scholar] [CrossRef]
- Klebaner, D.; Huang, Y.; Hui, Q.; Taylor, J.Y.; Goldberg, J.; Vaccarino, V.; Sun, Y.V. X chromosome-wide analysis identifies DNA methylation sites influenced by cigarette smoking. Clin. Epigenet. 2016, 8, 20. [Google Scholar] [CrossRef] [PubMed]
- Ambatipudi, S.; Cuenin, C.; Hernandez-Vargas, H.; Ghantous, A.; Le Calvez-Kelm, F.; Kaaks, R.; Barrdahl, M.; Boeing, H.; Aleksandrova, K.; Trichopoulou, A.; et al. Tobacco Smoking-Associated Genome-Wide DNA Methylation Changes in the EPIC Study. Epigenomics 2016, 8, 599–618. [Google Scholar] [CrossRef]
- Fragou, D.; Pakkidi, E.; Aschner, M.; Samanidou, V.; Kovatsi, L. Smoking and DNA methylation: Correlation of methylation with smoking behavior and association with diseases and fetus development following prenatal exposure. Food Chem. Toxicol. 2019, 129, 312–327. [Google Scholar] [CrossRef]
- Shenker, N.S.; Ueland, P.M.; Polidoro, S.; van Veldhoven, K.; Ricceri, F.; Brown, R.; Flanagan, J.M.; Vineis, P. DNA Methylation as a Long-term Biomarker of Exposure to Tobacco Smoke. Epidemiology 2013, 24, 712–716. [Google Scholar] [CrossRef]
- Yang, Y.; Gao, X.; Just, A.C.; Colicino, E.; Wang, C.; Coull, B.A.; Hou, L.; Zheng, Y.; Vokonas, P.; Schwartz, J.; et al. Smoking-Related DNA Methylation is Associated with DNA Methylation Phenotypic Age Acceleration: The Veterans Affairs Normative Aging Study. Int. J. Environ. Res. Public Health 2019, 16, 2356. [Google Scholar] [CrossRef]
- Breen, M.; Nwanaji-Enwerem, J.C.; Karrasch, S.; Flexeder, C.; Schulz, H.; Waldenberger, M.; Kunze, S.; Ollert, M.; Weidinger, S.; Colicino, E.; et al. Accelerated epigenetic aging as a risk factor for chronic obstructive pulmonary disease and decreased lung function in two prospective cohort studies. Aging 2020, 12, 16539–16554. [Google Scholar] [CrossRef] [PubMed]
- Joyce, B.T.; Gao, T.; Zheng, Y.; Ma, J.; Hwang, S.-J.; Liu, L.; Nannini, D.; Horvath, S.; Lu, A.T.; Allen, N.B.; et al. Epigenetic Age Acceleration Reflects Long-Term Cardiovascular Health. Circ. Res. 2021, 129, 770–781. [Google Scholar] [CrossRef]
- Zheng, Y.; Joyce, B.T.; Colicino, E.; Liu, L.; Zhang, W.; Dai, Q.; Shrubsole, M.J.; Kibbe, W.A.; Gao, T.; Zhang, Z.; et al. Blood Epigenetic Age may Predict Cancer Incidence and Mortality. EBioMedicine 2016, 5, 68–73. [Google Scholar] [CrossRef]
- Shen, L.; Li, C.; Wang, Z.; Zhang, R.; Shen, Y.; Miles, T.; Wei, J.; Zou, Z. Early-life exposure to severe famine is associated with higher methylation level in the IGF2 gene and higher total cholesterol in late adulthood: The Genomic Research of the Chinese Famine (GRECF) study. Clin. Epigenet. 2019, 11, 88. [Google Scholar] [CrossRef]
- Wang, Z.; Li, C.; Yang, Z.; Zou, Z.; Ma, J. Infant exposure to Chinese famine increased the risk of hypertension in adulthood: Results from the China Health and Retirement Longitudinal Study. BMC Public Health 2016, 16, 435. [Google Scholar] [CrossRef]
- Wang, Z.; Zou, Z.; Yang, Z.; Dong, Y.; Ma, J. Association between exposure to the Chinese famine during infancy and the risk of self-reported chronic lung diseases in adulthood: A cross-sectional study. BMJ Open 2017, 7, e015476. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Li, C.; Yang, Z.; Ma, J.; Zou, Z. Fetal and infant exposure to severe Chinese famine increases the risk of adult dyslipidemia: Results from the China health and retirement longitudinal study. BMC Public Health 2017, 17, 488. [Google Scholar] [CrossRef]
- Wang, Z.; Zou, Z.; Dong, B.; Ma, J.; Arnold, L. Association between the Great China Famine exposure in early life and risk of arthritis in adulthood. J. Epidemiol. Community Health 2018, 72, 790–795. [Google Scholar] [CrossRef]
- Jirtle, R.L.; Skinner, M.K. Environmental epigenomics and disease susceptibility. Nat. Rev. Genet. 2007, 8, 253–262. [Google Scholar] [CrossRef]
- Godfrey, K.M.; Costello, P.M.; Lillycrop, K.A. The developmental environment, epigenetic biomarkers and long-term health. J. Dev. Orig. Health Dis. 2015, 6, 399–406. [Google Scholar] [CrossRef]
- Liu, T.; Li, H.; Colton, J.P.; Ge, S.; Li, C. The BDNF Val66Met Polymorphism, Regular Exercise, and Cognition: A Systematic Review. West. J. Nurs. Res. 2020, 42, 660–673. [Google Scholar] [CrossRef]
- Liu, T.; Li, C.; Zhang, R.; Millender, E.F.; Miao, H.; Ormsbee, M.; Guo, J.; Westbrook, A.; Pan, Y.; Wang, J.; et al. A longitudinal study of polygenic score and cognitive function decline considering baseline cognitive function, lifestyle behaviors, and diabetes among middle-aged and older US adults. Alzheimer’s Res. Ther. 2023, 15, 196. [Google Scholar] [CrossRef]
- Kim, W.; Moll, M.; Qiao, D.; Hobbs, B.D.; Shrine, N.; Sakornsakolpat, P.; Tobin, M.D.; Dudbridge, F.; Wain, L.V.; Ladd-Acosta, C.; et al. Interaction of Cigarette Smoking and Polygenic Risk Score on Reduced Lung Function. JAMA Netw. Open 2021, 4, e2139525. [Google Scholar] [CrossRef]
- Horvath, S.; Oshima, J.; Martin, G.M.; Lu, A.T.; Quach, A.; Cohen, H.; Felton, S.; Matsuyama, M.; Lowe, D.; Kabacik, S.; et al. Epigenetic clock for skin and blood cells applied to Hutchinson Gilford Progeria Syndrome and ex vivo studies. Aging 2018, 10, 1758–1775. [Google Scholar] [CrossRef]
- Lu, A.T.; Quach, A.; Wilson, J.G.; Reiner, A.P.; Aviv, A.; Raj, K.; Hou, L.; Baccarelli, A.A.; Li, Y.; Stewart, J.D.; et al. DNA methylation GrimAge strongly predicts lifespan and healthspan. Aging 2019, 11, 303–327. [Google Scholar] [CrossRef]
- Levine, M.E.; Lu, A.T.; Quach, A.; Chen, B.H.; Assimes, T.L.; Bandinelli, S.; Hou, L.; Baccarelli, A.A.; Stewart, J.D.; Li, Y.; et al. An epigenetic biomarker of aging for lifespan and healthspan. Aging 2018, 10, 573–591. [Google Scholar] [CrossRef]
- Belsky, D.W.; Caspi, A.; Arseneault, L.; Baccarelli, A.; Corcoran, D.L.; Gao, X.; Hannon, E.; Harrington, H.L.; Rasmussen, L.J.; Houts, R.; et al. Quantification of the pace of biological aging in humans through a blood test, the DunedinPoAm DNA methylation algorithm. eLife 2020, 9, e54870. [Google Scholar] [CrossRef]
- Zhang, Y.; Wilson, R.; Heiss, J.; Breitling, L.P.; Saum, K.-U.; Schöttker, B.; Holleczek, B.; Waldenberger, M.; Peters, A.; Brenner, H. DNA methylation signatures in peripheral blood strongly predict all-cause mortality. Nat. Commun. 2017, 8, 14617. [Google Scholar] [CrossRef]
- Liu, M.; Jiang, Y.; Wedow, R.; Li, Y.; Brazel, D.M.; Chen, F.; Datta, G.; Davila-Velderrain, J.; McGuire, D.; Tian, C.; et al. Association studies of up to 1.2 million individuals yield new insights into the genetic etiology of tobacco and alcohol use. Nat. Genet. 2019, 51, 237–244. [Google Scholar] [CrossRef]
- Bugliari, D.; Carroll, J.; Hayden, O.; Hayes, J.; Hurd, M.; Karabatakis, A.; Main, R.; Marks, J.; McCullough, C.; Meijer, E.; et al. RAND HRS Longitudinal File 2016 (V2) Documentation. 2020. Available online: https://hrsdata.isr.umich.edu/sites/default/files/documentation/codebooks/randhrs1992_2016v2.pdf (accessed on 5 December 2024).
- Office of Disease Prevention and Health Promotion. Appendix 9. Alcohol. 2015–2020 Dietary Guidelines. 2015. Available online: https://health.gov/our-work/food-nutrition/2015-2020-dietary-guidelines/guidelines/appendix-9/ (accessed on 8 October 2024).
- Klopack, E.T.; Carroll, J.E.; Cole, S.W.; Seeman, T.E.; Crimmins, E.M. Lifetime exposure to smoking, epigenetic aging, and morbidity and mortality in older adults. Clin. Epigenet. 2022, 14, 72. [Google Scholar] [CrossRef]
- Cooke, M.E.; Clifford, J.S.; Do, E.K.; Gilman, J.M.; Maes, H.H.; Peterson, R.E.; Prom-Wormley, E.C.; Evins, A.E.; Schuster, R.M. Spit for Science Working group Polygenic score for cigarette smoking is associated with ever electronic-cigarette use in a college-aged sample. Addiction 2022, 117, 1071–1078. [Google Scholar] [CrossRef]
Variables | Overall | Parents or Guardians Smoked During Childhood | |
---|---|---|---|
Yes | No | ||
Mean age (SD), years | 69.8 (9.5) | 69.7 (9.3) | 69.9 (10.1) |
Male, % | 1242, 40.0% | 847, 41.0% | 373, 37.3% |
Race, % | |||
Black | 494, 16.0% | 275, 13.3% | 207, 20.8% |
White | 2407, 77.8% | 1684, 81.7% | 702, 70.4% |
Smoking status | |||
Current | 320, 10.4% | 236, 11.5% | 82, 8.2% |
Former | 1369, 44.4% | 988, 48.2% | 363, 36.5% |
Never | 1394, 45.2% | 827, 40.3% | 551, 55.3% |
Drinking status | |||
Regular drinking | 98, 8.0% | 72, 8.6% | 25, 6.7% |
Occasional drinking | 658, 53.5% | 468, 55.8% | 178, 48.0% |
Never drinking | 475, 38.6% | 299, 35.6% | 168, 45.3% |
Mean years of education (SD) | 13.0 (3.0) | 13.1 (3.0) | 13.0 (3.1) |
Mean CESD (SD) | 1.3 (1.9) | 1.4 (1.9) | 1.3 (1.9) |
Mean BMI (SD), kg/m2 | 28.9 (6.3) | 29.1 (6.4) | 28.6 (6.2) |
Tertiles of Genetic Susceptibility to Smoking | Age and Sex Adjusted Model | Full Model | ||||
---|---|---|---|---|---|---|
Beta (SE) | P | P_Interaction | Beta (SE) | P | P_Interaction | |
HannumAA | −0.23 (0.26) | 0.39 | −0.49 (0.43) | 0.26 | ||
Bottom | −0.43 (0.44) | 0.33 | 0.005 | −0.44 (0.71) | 0.54 | 0.25 |
Middle | −0.53 (0.43) | 0.22 | −0.72 (0.64) | 0.26 | ||
Top | 0.32 (0.50) | 0.53 | −0.30 (0.91) | 0.75 | ||
PhenoAA | −0.07 (0.34) | 0.84 | −0.49 (0.53) | 0.35 | ||
Bottom | 0.25 (0.58) | 0.67 | 0.04 | 0.41 (0.88) | 0.64 | 0.57 |
Middle | −0.15 (0.58) | 0.80 | −0.03 (0.84) | 0.97 | ||
Top | −0.25 (0.63) | 0.69 | −1.88 (1.03) | 0.07 | ||
HorvathAA | −0.20 (0.22) | 0.36 | −0.10 (0.36) | 0.79 | ||
Bottom | −0.10 (0.37) | 0.78 | 0.02 | 0.67 (0.66) | 0.31 | 0.54 |
Middle | −0.59 (0.38) | 0.12 | −0.45 (0.55) | 0.42 | ||
Top | 0.11 (0.41) | 0.80 | −0.44 (0.70) | 0.53 | ||
ZhangAA | 0.01 (0.02) | 0.59 | −0.05 (0.03) | 0.13 | ||
Bottom | −0.00 (0.04) | 0.90 | 0.003 | −0.10 (0.06) | 0.07 | 0.49 |
Middle | −0.01 (0.04) | 0.71 | −0.05 (0.05) | 0.29 | ||
Top | 0.06 (0.04) | 0.16 | 0.02 (0.06) | 0.69 | ||
GrimAA | 0.98 (0.21) | <0.001 | 0.70 (0.32) | 0.03 | ||
Bottom | 0.74 (0.35) | 0.03 | <0.001 | 0.91 (0.53) | 0.09 | 0.01 |
Middle | 0.84 (0.36) | 0.02 | 0.56 (0.52) | 0.28 | ||
Top | 1.41 (0.41) | <0.001 | 0.79 (0.60) | 0.19 | ||
DunedinAA | 0.01 (0.00) | 0.002 | 0.01 (0.01) | 0.06 | ||
Bottom | 0.01 (0.01) | 0.41 | <0.001 | 0.02 (0.01) | 0.20 | 0.10 |
Middle | 0.01 (0.01) | 0.06 | 0.01 (0.01) | 0.19 | ||
Top | 0.02 (0.01) | 0.01 | 0.01 (0.01) | 0.30 |
Tertiles of Genetic Susceptibility to Smoking | Age and Sex Adjusted Model | Full Model | ||||
---|---|---|---|---|---|---|
Beta (SE) | P | P_Interaction | Beta (SE) | P | P_Interaction | |
HannumAA | 0.27 (0.55) | 0.63 | −1.51 (1.10) | 0.17 | ||
Bottom | 0.81 (0.93) | 0.39 | 0.06 | 3.37 (2.02) | 0.10 | 0.06 |
Middle | 0.44 (0.90) | 0.63 | −2.11 (1.68) | 0.22 | ||
Top | −0.15 (1.06) | 0.89 | −4.84 (2.83) | 0.10 | ||
PhenoAA | 0.71 (0.77) | 0.36 | 1.17 (1.59) | 0.46 | ||
Bottom | 0.98 (1.29) | 0.45 | 0.65 | 2.72 (2.54) | 0.29 | 0.90 |
Middle | 1.31 (1.27) | 0.30 | −0.29 (2.63) | 0.91 | ||
Top | −0.63 (1.42) | 0.66 | −0.90 (4.26) | 0.83 | ||
HorvathAA | −0.35 (0.47) | 0.46 | −0.38 (0.94) | 0.69 | ||
Bottom | −0.47 (0.80) | 0.56 | 0.53 | 3.70 (1.89) | 0.06 | 0.23 |
Middle | 0.09 (0.81) | 0.91 | −1.13 (1.26) | 0.38 | ||
Top | −0.57 (0.86) | 0.51 | −3.41 (2.09) | 0.11 | ||
ZhangAA | 0.05 (0.05) | 0.33 | −0.12 (0.09) | 0.17 | ||
Bottom | 0.08 (0.08) | 0.34 | 0.63 | 0.19 (0.17) | 0.28 | 0.19 |
Middle | 0.09 (0.08) | 0.30 | 0.13 (0.19) | 0.51 | ||
Top | 0.02 (0.08) | 0.81 | −0.36 (0.20) | 0.08 | ||
GrimAA | 1.47 (0.48) | 0.003 | −0.51 (0.83) | 0.54 | ||
Bottom | 2.55 (0.81) | 0.002 | 0.56 | −0.27 (1.31) | 0.84 | 0.48 |
Middle | 1.39 (0.86) | 0.11 | 2.67 (1.54) | 0.09 | ||
Top | 0.71 (0.87) | 0.42 | −2.94 (1.88) | 0.13 | ||
DunedinAA | 0.03 (0.01) | 0.003 | 0.02 (0.02) | 0.34 | ||
Bottom | 0.04 (0.02) | 0.02 | 0.93 | 0.00 (0.03) | 0.94 | 0.74 |
Middle | 0.05 (0.02) | 0.006 | 0.10 (0.04) | 0.02 | ||
Top | 0.00 (0.02) | 0.83 | −0.03 (0.04) | 0.47 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, T.; Sun, Y.; Zhang, R.; Li, C. The Joint Contribution of Childhood Exposure to Parental Smoking and Genetic Susceptibility to Smoking to Epigenetic Age Acceleration in Late Adulthood: The Health and Retirement Study. Future 2024, 2, 185-193. https://doi.org/10.3390/future2040015
Liu T, Sun Y, Zhang R, Li C. The Joint Contribution of Childhood Exposure to Parental Smoking and Genetic Susceptibility to Smoking to Epigenetic Age Acceleration in Late Adulthood: The Health and Retirement Study. Future. 2024; 2(4):185-193. https://doi.org/10.3390/future2040015
Chicago/Turabian StyleLiu, Tingting, Yixi Sun, Ruiyuan Zhang, and Changwei Li. 2024. "The Joint Contribution of Childhood Exposure to Parental Smoking and Genetic Susceptibility to Smoking to Epigenetic Age Acceleration in Late Adulthood: The Health and Retirement Study" Future 2, no. 4: 185-193. https://doi.org/10.3390/future2040015
APA StyleLiu, T., Sun, Y., Zhang, R., & Li, C. (2024). The Joint Contribution of Childhood Exposure to Parental Smoking and Genetic Susceptibility to Smoking to Epigenetic Age Acceleration in Late Adulthood: The Health and Retirement Study. Future, 2(4), 185-193. https://doi.org/10.3390/future2040015