Ferulic Acid Ameliorates L-Methionine-Induced Hyperhomocysteinemia in Rats
Abstract
:1. Introduction
2. Results
2.1. Evaluation of Serum Parameters
2.2. Effect on Tissue Parameters: Effect of FA (20, 40, and 60 mg/kg) on GSH, NO, MDA
2.3. Effect of FA (20, 40, and 60 mg/kg) on Blood Clotting Time
2.4. Effect on Hemodynamic and Electrocardiographic Parameters
2.5. Effect of FA (20, 40, and 60 mg/kg) on Orcein Staining
2.6. Results of Docking Studies
3. Discussion
4. Materials and Methods
4.1. Animals
4.2. Chemicals
4.3. Experimental Protocol for L-Methionine-Induced hHcy in Rats
4.4. Pharmacological Evaluation: Assessment of Hemodynamic and Electrocardiographic Parameters
4.5. Serum Parameters
4.6. Tissue Parameters
4.7. GSH Estimation
4.8. Malondialdehyde (MDA) Estimation
4.9. Nitric Oxide (NO) Estimation
4.10. Histopathology
4.11. Docking Studies
4.12. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Roth, G.A.; Mensah, G.A.; Johnson, C.O.; Addolorato, G.; Ammirati, E.; Baddour, L.M.; Barengo, N.C.; Beaton, A.Z.; Benjamin, E.J.; Benziger, C.P.; et al. Global burden of cardiovascular diseases and risk factors, 1990–2019: Update from the GBD 2019 study. J. Am. Coll. Cardiol. 2020, 76, 2982–3021. [Google Scholar] [CrossRef] [PubMed]
- Feigin, V.L.; Forouzanfar, M.H.; Krishnamurthi, R.; Mensah, G.A.; Connor, M.; Bennett, D.A.; Moran, A.E.; Sacco, R.L.; Anderson, L.; Truelsen, T.; et al. Global Burden of Diseases, Injuries, and Risk Factors Study 2010 (GBD 2010) and the GBD Stroke Experts Group. Global and regional burden of stroke during 1990–2010: Findings from the global burden of disease study 2010. Lancet 2014, 383, 245–254. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Health Topics: Cardiovascular Diseases. Fact Sheet. Available online: http://www.who.int/cardiovascular_diseases/en/ (accessed on 11 December 2020).
- Einarson, T.R.; Acs, A.; Ludwig, C.; Panton, U.H. Prevalence of cardiovascular disease in type 2 diabetes: A systematic literature review of scientific evidence from across the world in 2007–2017. Cardiovasc. Diabetol. 2018, 17, 83. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.J. Assessing the role of circulating, genetic, and imaging biomarkers in cardiovascular risk prediction. Circulation 2011, 123, 551–565. [Google Scholar] [CrossRef] [PubMed]
- Gilstrap, L.G.; Wang, T.J. Biomarkers and cardiovascular risk assessment for primary prevention: An update. Clin. Chem. 2012, 58, 72–82. [Google Scholar] [CrossRef]
- Hermann, A.; Sitdikova, G. Homocysteine: Biochemistry, molecular biology and role in disease. Biomolecules 2021, 11, 737. [Google Scholar] [CrossRef]
- Kim, J.; Kim, H.; Roh, H.; Kwon, Y. Causes of hyperhomocysteinemia and its pathological significance. Arch. Pharmacal Res. 2018, 41, 372–383. [Google Scholar] [CrossRef]
- Ganguly, P.; Alam, S.F. Role of homocysteine in the development of cardiovascular disease. Nutr. J. 2015, 14, 6. [Google Scholar] [CrossRef]
- Guieu, R.; Ruf, J.; Mottola, G. Hyperhomocysteinemia and cardiovascular diseases. Ann. Biol. Clin. 2022, 80, 7–14. [Google Scholar] [CrossRef]
- Sabanayagam, C.; Shankar, A. Association between plasma homocysteine and microalbuminuria in persons without hypertension, diabetes mellitus, and cardiovascular disease. Clin. Exp. Nephrol. 2011, 15, 92–99. [Google Scholar] [CrossRef]
- Kuang, Z.M.; Wang, Y.; Feng, S.J.; Jiang, L.; Cheng, W.L. Association between plasma homocysteine and microalbuminuria in untreated patients with essential hypertension: A case-control study. Kidney Blood Press. Res. 2017, 42, 1303–1311. [Google Scholar] [CrossRef] [PubMed]
- Lehotský, J.; Tothová, B.; Kovalská, M.; Dobrota, D.; Beňová, A.; Kalenská, D.; Kaplán, P. Role of homocysteine in the ischemic stroke and development of ischemic tolerance. Front. Neurosci. 2016, 10, 538. [Google Scholar] [CrossRef] [PubMed]
- Esse, R.; Barroso, M.; Tavares de Almeida, I.; Castro, R. The contribution of homocysteine metabolism disruption to endothelial dysfunction: State-of-the-art. Int. J. Mol. Sci. 2019, 20, 867. [Google Scholar] [CrossRef] [PubMed]
- Kopetz, V.; Kennedy, J.; Heresztyn, T.; Stafford, I.; Willoughby, S.R.; Beltrame, J.F. Endothelial function, oxidative stress and inflammatory studies in chronic coronary slow flow phenomenon patients. Cardiology 2012, 121, 197–203. [Google Scholar] [CrossRef] [PubMed]
- Ho, E.; Galougahi, K.K.; Liu, C.C.; Bhindi, R.; Figtree, G.A. Biological markers of oxidative stress: Applications to cardiovascular research and practice. Redox Biol. 2013, 1, 483–491. [Google Scholar] [CrossRef]
- Senoner, T.; Dichtl, W. Oxidative stress in cardiovascular diseases: Still a therapeutic target? Nutrients 2019, 11, 2090. [Google Scholar] [CrossRef]
- Xu, D.P.; Li, Y.; Meng, X.; Zhou, T.; Zhou, Y.; Zheng, J.; Zhang, J.J.; Li, H.B. Natural antioxidants in foods and medicinal plants: Extraction, assessment and resources. Int. J. Mol. Sci. 2017, 18, 96. [Google Scholar] [CrossRef]
- Li, D.; Rui, Y.X.; Guo, S.D.; Luan, F.; Liu, R.; Zeng, N. Ferulic acid: A review of its pharmacology, pharmacokinetics and derivatives. Life Sci. 2021, 284, 119921. [Google Scholar] [CrossRef]
- Pandi, A.; Raghu, M.H.; Chandrashekar, N.; Kalappan, V.M. Cardioprotective effects of Ferulic acid against various drugs and toxic agents. Beni-Suef Univ. J. Basic Appl. Sci. 2022, 11, 92. [Google Scholar] [CrossRef]
- Zhang, X.X.; Zhao, D.S.; Wang, J.; Zhou, H.; Wang, L.; Mao, J.L.; He, J.X. The treatment of cardiovascular diseases: A review of ferulic acid and its derivatives. Pharm.-Int. J. Pharm. Sci. 2021, 76, 55–60. [Google Scholar]
- Zduńska, K.; Dana, A.; Kolodziejczak, A.; Rotsztejn, H. Antioxidant properties of ferulic acid and its possible application. Skin Pharmacol. Physiol. 2018, 31, 332–336. [Google Scholar] [CrossRef] [PubMed]
- Zheng, M.; Liu, Y.; Zhang, G.; Yang, Z.; Xu, W.; Chen, Q. The Antioxidant Properties, Metabolism, Application and Mechanism of Ferulic Acid in Medicine, Food, Cosmetics, Livestock and Poultry. Antioxidants 2024, 13, 853. [Google Scholar] [CrossRef] [PubMed]
- Alam, M.A. Anti-hypertensive effect of cereal antioxidant ferulic acid and its mechanism of action. Front. Nutr. 2019, 6, 121. [Google Scholar] [CrossRef] [PubMed]
- Yin, Z.N.; Wu, W.J.; Sun, C.Z.; Liu, H.F.; Chen, W.B.; Zhan, Q.P.; Lei, Z.G.; Xuan, X.I.; Juan, J.; Kun, Y.A.; et al. Antioxidant and anti-inflammatory capacity of ferulic acid released from wheat bran by solid-state fermentation of Aspergillus niger. Biomed. Environ. Sci. 2019, 32, 11–21. [Google Scholar] [PubMed]
- Sultan, S.; Acharya, Y.; Barrett, N.; Hynes, N. A pilot protocol and review of triple neuroprotection with targeted hypothermia, controlled induced hypertension, and barbiturate infusion during emergency carotid endarterectomy for acute stroke after failed tPA or beyond 24-hour window of opportunity. Ann. Transl. Med. 2020, 8, 1275. [Google Scholar] [CrossRef]
- Neto-Neves, E.M.; da Silva Maia Bezerra Filho, C.; Dejani, N.N.; de Sousa, D.P. Ferulic acid and cardiovascular health: Therapeutic and preventive potential. Mini Rev. Med. Chem. 2021, 21, 1625–1637. [Google Scholar] [CrossRef]
- Mallamaci, F.; Zoccali, C.; Tripepi, G.; Fermo, I.; Benedetto, F.A.; Cataliotti, A.; Bellanuova, I.; Malatino, L.S.; Soldarini, A. Hyperhomocysteinemia predicts cardiovascular outcomes in hemodialysis patients. Kidney Int. 2002, 61, 609–614. [Google Scholar] [CrossRef]
- Zhang, S.; Lv, Y.; Luo, X.; Weng, X.; Qi, J.; Bai, X.; Zhao, C.; Zeng, M.; Bao, X.; Dai, X.; et al. Homocysteine promotes atherosclerosis through macrophage pyroptosis via endoplasmic reticulum stress and calcium disorder. Mol. Med. 2023, 29, 73. [Google Scholar] [CrossRef]
- Ulivelli, M.; Priora, R.; Di Giuseppe, D.; Coppo, L.; Summa, D.; Margaritis, A.; Frosali, S.; Bartalini, S.; Martini, G.; Cerase, A.; et al. Homocysteinemia control by cysteine in cerebral vascular patients after methionine loading test: Evidences in physiological and pathological conditions in cerebro-vascular and multiple sclerosis patients. Amino Acids 2016, 48, 1477–1489. [Google Scholar] [CrossRef]
- Durand, P.; Prost, M.; Loreau, N.; Lussier-Cacan, S.; Blache, D. Impaired homocysteine metabolism and atherothrombotic disease. Lab. Investig. 2001, 81, 645–672. [Google Scholar] [CrossRef]
- Graham, I.M.; O’Callaghan, P. Vitamins, homocysteine and cardiovascular risk. Cardiovasc. Drugs Ther. 2002, 16, 383–389. [Google Scholar] [CrossRef] [PubMed]
- Breilmann, J.; Pons-Kühnemann, J.; Brunner, C.; Richter, M.; Neuhäuser-Berthold, M. Effect of antioxidant vitamins on the plasma homocysteine level in a free-living elderly population. Ann. Nutr. Metab. 2011, 57, 177–182. [Google Scholar] [CrossRef] [PubMed]
- Desouza, C.; Keebler, M.; McNamara, D.B.; Fonseca, V. Drug’s affecting homocysteine metabolism: Impact on cardiovascular risk. Drugs 2002, 62, 605–616. [Google Scholar] [CrossRef]
- Reynolds, E.H. Antiepileptic drugs, folate and one carbon metabolism revisited. Epilepsy Behav. 2020, 112, 107336. [Google Scholar] [CrossRef]
- Maru, L.; Verma, M.; Jinsiwale, N. Homocysteine as predictive marker for pregnancy-induced hypertension—A comparative study of homocysteine levels in normal versus patients of PIH and its complications. J. Obstet. Gynecol. India 2016, 66, 167–171. [Google Scholar] [CrossRef] [PubMed]
- O’callaghan, P.; Meleady, R.; Fitzgerald, T.; Graham, I. Smoking and plasma homocysteine. Eur. Heart J. 2002, 23, 1580–1586. [Google Scholar] [CrossRef]
- Gibson, A.; Woodside, J.V.; Young, I.S.; Sharpe, P.C.; Mercer, C.; Patterson, C.C.; McKinley, M.C.; Kluijtmans, L.A.; Whitehead, A.S.; Evans, A. Alcohol increases homocysteine and reduces B vitamin concentration in healthy male volunteers—A randomized, crossover intervention study. QJM Int. J. Med. 2008, 101, 881–887. [Google Scholar] [CrossRef]
- Fallah, S.; Nouroozi, V.; Seifi, M.; Samadikuchaksaraei, A.; Aghdashi, E.M. Influence of oral contraceptive pills on homocysteine and nitric oxide levels: As risk factors for cardiovascular disease. J. Clin. Lab. Anal. 2012, 26, 120–123. [Google Scholar] [CrossRef]
- Aswar, U.; Mahajan, U.; Nerurkar, G.; Aswar, M. Amelioration of cardiac hypertrophy induced by abdominal aortic banding in ferulic acid treated rats. Biomed. Aging Pathol. 2013, 3, 209–217. [Google Scholar] [CrossRef]
- Aswar, U.; Mahajan, U.; Kandhare, A.; Aswar, M. Ferulic acid ameliorates doxorubicin-induced cardiac toxicity in rats. Naunyn-Schmiedeberg’s Arch. Pharmacol. 2019, 392, 659–668. [Google Scholar] [CrossRef]
- Trombino, S.; Serini, S.; Di Nicuolo, F.; Celleno, L.; Andò, S.; Picci, N.; Calviello, G.; Palozza, P. Antioxidant effect of ferulic acid in isolated membranes and intact cells: Synergistic interactions with α-tocopherol, β-carotene, and ascorbic acid. J. Agric. Food Chem. 2004, 52, 2411–2420. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Godber, J.S. Antioxidant activities of major components of γ-oryzanol from rice bran using a linoleic acid model. J. Am. Oil Chem. Soc. 2001, 78, 645. [Google Scholar] [CrossRef]
- Maurya, D.K.; Devasagayam, T.P. Antioxidant and prooxidant nature of hydroxycinnamic acid derivatives ferulic and caffeic acids. Food Chem. Toxicol. 2010, 48, 3369–3373. [Google Scholar] [CrossRef] [PubMed]
- Kikuzaki, H.; Hisamoto, M.; Hirose, K.; Akiyama, K.; Taniguchi, H. Antioxidant properties of ferulic acid and its related compounds. J. Agric. Food Chem. 2002, 50, 2161–2168. [Google Scholar] [CrossRef] [PubMed]
- Blom, H.J. Homocysteine and Cholesterol: Basic and Clinical Interactions. In Homocysteine and Vascular Disease. Developments in Cardiovascular Medicine; Robinson, K., Ed.; Springer: Dordrecht, The Netherlands, 2000; Volume 230. [Google Scholar] [CrossRef]
- Jain, P.G.; Surana, S.J. Isolation, characterization and hypolipidemic activity of ferulic acid in high-fat-diet-induced hyperlipidemia in laboratory rats. EXCLI J. 2016, 15, 599. [Google Scholar]
- Kamal-Eldin, A.; Frank, J.; Razdan, A.; Tengblad, S.; Basu, S.; Vessby, B. Effects of dietary phenolic compounds on tocopherol, cholesterol, and fatty acids in rats. Lipids 2000, 35, 427–435. [Google Scholar] [CrossRef]
- Kim, H.K.; Jeong, T.S.; Lee, M.K.; Park, Y.B.; Choi, M.S. Lipid-lowering efficacy of hesperetin metabolites in high-cholesterol fed rats. Clin. Chim. Acta 2003, 327, 129–137. [Google Scholar] [CrossRef]
- Pacher, P.; Beckman, J.S.; Liaudet, L. Nitric oxide and peroxynitrite in health and disease. Physiol. Rev. 2007, 87, 315–424. [Google Scholar] [CrossRef]
- Faraci, F.M.; Lentz, S.R. Hyperhomocysteinemia, oxidative stress, and cerebral vascular dysfunction. Stroke 2004, 35, 345–347. [Google Scholar] [CrossRef]
- Woo, C.W.; Prathapasinghe, G.A.; Siow, Y.L.; Karmin, O. Hyperhomocysteinemia induces liver injury in rat: Protective effect of folic acid supplementation. Biochim. Biophys. Acta-Mol. Basis Dis. 2006, 1762, 656–665. [Google Scholar] [CrossRef]
- Rukkumani, R.; Aruna, K.; Suresh Varma, P.; Padmanabhan Menon, V. Hepatoprotective role of ferulic acid: A dose-dependent study. J. Med. Food 2004, 7, 456–461. [Google Scholar] [CrossRef] [PubMed]
- Eldibany, M.M.; Caprini, J.A. Hyperhomocysteinemia and thrombosis: An overview. Arch. Pathol. Lab. Med. 2007, 131, 872–884. [Google Scholar] [CrossRef]
- Liu, Q.; Lin, B.; Tao, Y. Improved methylation in E. coli via an efficient methyl supply system driven by betaine. Metab. Eng. 2022, 72, 46–55. [Google Scholar] [CrossRef] [PubMed]
- Stead, L.M.; Brosnan, M.E.; Brosnan, J.T. Characterization of homocysteine metabolism in the rat liver. Biochem. J. 2000, 350, 685–692. [Google Scholar] [CrossRef]
- Azad, M.A.; Huang, P.; Liu, G.; Ren, W.; Teklebrh, T.; Yan, W.; Zhou, X.; Yin, Y. Hyperhomocysteinemia and cardiovascular disease in animal model. Amino Acids 2018, 50, 3–9. [Google Scholar] [CrossRef] [PubMed]
- Macfarlane, P.W. Normal limits of ECG measurements related to atrial activity using a modified limb lead system. Anatol. J. Cardiol. 2015, 15, 7. [Google Scholar] [CrossRef]
- Aygun, H.; Basol, N.; Gul, S.S. Cardioprotective Effect of Paricalcitol on Amitriptyline-Induced Cardiotoxicity in Rats: Comparison of [99m Tc] PYP Cardiac Scintigraphy with Electrocardiographic and Biochemical Findings. Cardiovasc. Toxicol. 2020, 20, 427–436. [Google Scholar] [CrossRef]
- Li, N.; Tian, Y.; Wang, C.; Zhang, P.; You, S. Protective effect of Lai Fu Cheng Qi decoction on severe acute pancreatitis-induced myocardial injury in a rat model. Exp. Ther. Med. 2015, 9, 1133–1140. [Google Scholar] [CrossRef]
- Tawfik, A.; Mohamed, R.; Elsherbiny, N.M.; DeAngelis, M.M.; Bartoli, M.; Al-Shabrawey, M. Homocysteine: A potential biomarker for diabetic retinopathy. J. Clin. Med. 2019, 8, 121. [Google Scholar] [CrossRef]
- El-Sherbeeny, N.A.; Nader, M.A.; Attia, G.M.; Ateyya, H. Agmatine protects rat liver from nicotine-induced hepatic damage via antioxidative, antiapoptotic, and antifibrotic pathways. Naunyn-Schmiedeberg’s Arch. Pharmacol. 2016, 389, 1341–1351. [Google Scholar] [CrossRef]
- Sun, J.; Zhang, X.; Broderick, M.; Fein, H. Measurement of nitric oxide production in biological systems by using Griess reaction assay. Sensors 2003, 3, 276–284. [Google Scholar] [CrossRef]
- Ronco, M.T.; Francés, D.; de Luján Alvarez, M.; Quiroga, A.; Monti, J.; Parody, J.P.; Pisani, G.; Carrillo, M.C.; Carnovale, C.E. Vascular endothelial growth factor and nitric oxide in rat liver regeneration. Life Sci. 2007, 81, 750–755. [Google Scholar] [CrossRef]
- Ganeshpurkar, A.; Singh, R.; Gore, P.G.; Kumar, D.; Gutti, G.; Kumar, A.; Singh, S.K. Structure-based screening and molecular dynamics simulation studies for the identification of potential acetylcholinesterase inhibitors. Mol. Simul. 2020, 46, 169–185. [Google Scholar] [CrossRef]
- Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem. 2009, 30, 2785–2791. [Google Scholar] [CrossRef] [PubMed]
- Pettersen, E.F.; Goddard, T.D.; Huang, C.C. UCSF Chimera—A visualization system for exploratory research and analysis. J. Comput. Chem. 2004, 25, 1605–1612. [Google Scholar] [CrossRef]
Serum Parameters | Normal | hHcy Control | Vit. B12 + FoA (15 + 70) | FA (20) | FA (40) | FA (60) |
---|---|---|---|---|---|---|
Hcy (µmol/L) | 4.52 ± 0.02 | 25.74 ± 0.81 # | 4.55 ± 0.24 * | 4.80 ± 0.70 * | 5.47 ± 0.62 * | 7.03 ± 0.59 * |
Total cholesterol (mg/dL) | 57.33 ± 1.15 | 156.67 ± 6.17 # | 66.00 ± 3.38 * | 55.0 ± 0.93 * | 60.83 ± 1.33 * | 66.17 ± 1.90 * |
Total Protein (g/dL) | 9.72 ± 0.30 | 17.37 ± 0.38 # | 10.18 ± 0.23 * | 7.74 ± 0.29 * | 7.51 ± 0.26 * | 8.01 ± 0.33 * |
LDH (IU/L) | 566.00 ± 10.01 | 1341.00 ± 7.64 # | 8098.00 ± 2.63 * | 777.00 ± 4.42 * | 835.00 ± 1.83 * | 846.17 ± 3.17 * |
CK-MB (U/L) | 170.50 ± 11.17 | 785.50 ± 27.93 # | 204.2 ± 3.76 * | 215.00 ± 9.02 * | 235.80 ± 10.15 * | 289.50 ± 8.57 * |
ALT (IU/L) | 250.70 ± 5.58 | 548.40 ± 8.65 # | 308.61 ± 16.77 * | 185.32 ± 12.30 * | 204.05 ± 15.34 * | 255.92 ± 18.25 * |
AST (IU/L) | 289.08 ± 16.42 | 425.44 ± 11.46 # | 270.51 ± 18.83 * | 240.11 ± 8.96 * | 281.14 ± 19.44 * | 299.71 ± 6.57 * |
Parameters → Groups ↓ | HR (BPM) | SBP (mm Hg) | DBP (mm Hg) | QTc (s) |
---|---|---|---|---|
Normal | 280 ± 14.38 | 64.12 ± 1.58 | 74.42 ± 1.85 | 0.20 ± 0.01 |
hHcy control | 324.25 ± 36.46 | 72.50 ± 3.44 | 80.70 ± 5.49 | 0.25 ± 0.02 |
Vit. B12 + FoA (15 + 70) | 334 ± 35.24 | 72.88 ± 9.52 | 81.88 ± 9.68 | 0.18 ± 0.02 |
FA (20) | 299.11 ± 23.75 | 69.46 ± 6.72 | 84.46 ± 4.72 | 0.29 ± 0.02 |
FA (40) | 286 ± 1.49 | 78.83 ± 5.57 | 83.83 ± 2.67 | 0.30 ± 0.01 |
FA (60) | 296 ± 31.34 | 81.25 ± 5.44 | 91.65 ± 7.40 | 0.21 ± 0.03 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bhise, S.; Aswar, U.; Jadhav, A.; Aswar, M.; Ganeshpurkar, A. Ferulic Acid Ameliorates L-Methionine-Induced Hyperhomocysteinemia in Rats. Drugs Drug Candidates 2024, 3, 694-706. https://doi.org/10.3390/ddc3040039
Bhise S, Aswar U, Jadhav A, Aswar M, Ganeshpurkar A. Ferulic Acid Ameliorates L-Methionine-Induced Hyperhomocysteinemia in Rats. Drugs and Drug Candidates. 2024; 3(4):694-706. https://doi.org/10.3390/ddc3040039
Chicago/Turabian StyleBhise, Sunita, Urmila Aswar, Akash Jadhav, Manoj Aswar, and Ankit Ganeshpurkar. 2024. "Ferulic Acid Ameliorates L-Methionine-Induced Hyperhomocysteinemia in Rats" Drugs and Drug Candidates 3, no. 4: 694-706. https://doi.org/10.3390/ddc3040039
APA StyleBhise, S., Aswar, U., Jadhav, A., Aswar, M., & Ganeshpurkar, A. (2024). Ferulic Acid Ameliorates L-Methionine-Induced Hyperhomocysteinemia in Rats. Drugs and Drug Candidates, 3(4), 694-706. https://doi.org/10.3390/ddc3040039