Searching for New Antibacterial Compounds Against Staphylococcus aureus: A Computational Study on the Binding Between FtsZ and FtsA
Abstract
:1. Introduction
2. Results and Discussion
2.1. Consensus Sequence Determination of FtsZ and FtsA of S. aureus
2.2. C-Terminus Homology Modeling of FtsZ from T. maritima and S. aureus
2.3. Molecular Docking of the Complete Structure of FtsA with FtsZ
2.4. Homology Modeling of the Disordered Segment of FtsZ from T. maritima and S. aureus
2.5. Flexible Molecular Docking Between FtsA and PepFold23s1/PepFold23s2/PepFold23s3 Models
2.6. Flexible Molecular Docking Between PepFold23s3 (Mutated) and FtsA
2.7. Identification of Protein–Protein Binding Inhibitors with the Potential to Disrupt FtsA and FtsZ Binding
3. Discussion
4. Computational Methods
4.1. FtsZ and FtsA Structure Selection of Staphylococcus aureus
4.2. Consensus Sequence Generation of FtsZ and FtsA in Staphylococcus aureus
4.3. Homology Modeling of C-Terminus of FtsZ of S. aureus
4.4. FtsA and FtsZ Molecular Docking
4.5. Mutation of C-Terminus Fragments of FtsZ’s Models
4.6. Molecular Docking of the Wild and Mutated Peptides FtsZ to FtsA
4.7. Analyses of the C-Terminus Structure as the Pharmacophore to Find Protein–Protein Binding Inhibitors
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- WHO. Global Priority List of Antibiotic-Resistant Batceria to Guide Research, Discovery, and Development of New Antibiotics; WHO: Geneva, Switzerland, 2017; p. 7. [Google Scholar]
- Jennings, P.C.; Cox, G.C.; Monahan, L.G.; Harry, E.J. Super-resolution imaging of the bacterial cytokinetic protein FtsZ. Micron 2011, 42, 336–341. [Google Scholar] [CrossRef] [PubMed]
- Huecas, S.; Ramírez-Aportela, E.; Vergoñós, A.; Núñez-Ramírez, R.; Llorca, O.; Díaz, J.F.; Juan-Rodríguez, D.; Oliva, M.A.; Castellen, P.; Andreu, J.M. Self-Organization of FtsZ Polymers in Solution Reveals Spacer Role of the Disordered C-Terminal Tail. Biophys. J. 2017, 113, 1831–1844. [Google Scholar] [CrossRef] [PubMed]
- Robinson, F.; Shalit, M. The dezincification of brass. Anti-Corros. Methods Mater. 1964, 11, 11–14. [Google Scholar] [CrossRef]
- Lund, V.A.; Wacnik, K.; Turner, R.D.; Cotterell, B.E.; Walther, C.G.; Fenn, S.J.; Grein, F.; Wollman, A.J.; Leake, M.C.; Olivier, N.; et al. Molecular coordination of staphylococcus aureus cell division. Elife 2018, 7, e32057. [Google Scholar] [CrossRef] [PubMed]
- Vollmer, W. The prokaryotic cytoskeleton: A putative target for inhibitors and antibiotics? Appl. Microbiol. Biotechnol. 2006, 73, 37–47. [Google Scholar] [CrossRef]
- Vollmer, W. Targeting the Bacterial Z-Ring. Chem. Biol. 2008, 15, 93–94. [Google Scholar] [CrossRef]
- Adams, D.W.; Errington, J. Bacterial cell division: Assembly, maintenance and disassembly of the Z ring. Nat. Rev. Microbiol. 2009, 7, 642–653. [Google Scholar] [CrossRef]
- Erickson, H.P.; Anderson, D.E.; Osawa, M. FtsZ in Bacterial Cytokinesis: Cytoskeleton and Force Generator All in One. Microbiol. Mol. Biol. Rev. 2010, 74, 504–528. [Google Scholar] [CrossRef]
- Loose, M.; Mitchison, T.J. The bacterial cell division proteins FtsA and FtsZ self-organize into dynamic cytoskeletal patterns. Nat. Cell Biol. 2014, 16, 38–46. [Google Scholar] [CrossRef]
- Ma, X.; Margolin, W. Genetic and functional analyses of the conserved C-terminus core domain of Escherichia coli FtsZ. J. Bacteriol. 1999, 181, 7531–7544. [Google Scholar] [CrossRef]
- Margolin, W. FtsZ and the division of prokaryotic cells and organelles. Nat. Rev. Mol. Cell Biol. 2005, 6, 862–871. [Google Scholar] [CrossRef] [PubMed]
- Matsui, T.; Han, X.; Yu, J.; Yao, M.; Tanaka, I. Structural Change in FtsZ Induced by Intermolecular Interactions between Bound GTP and the T7 Loop. J. Biol. Chem. 2014, 289, 3501–3509. [Google Scholar] [CrossRef] [PubMed]
- Matsui, T.; Yamane, J.; Mogi, N.; Yamaguchi, H.; Takemoto, H.; Yao, M.; Tanaka, I. Structural reorganization of the bacterial cell-division protein FtsZ from Staphylococcus aureus. Acta Crystallogr. Sect. D Struct. Biol. 2012, 68, 1175–1188. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, A.; Lutkenhaus, J. Guanine nucleotide-dependent assembly of FtsZ into filaments. J. Bacteriol. 1994, 176, 2754–2758. [Google Scholar] [CrossRef] [PubMed]
- Nogales, E.; Downing, K.H.; Amos, L.A.; Löwe, J. Tubulin and FtsZ form a distinct family of GTPases. Nat. Struct. Biol. 1998, 5, 451–458. [Google Scholar] [CrossRef]
- Löwe, J.; Amos, L.A. Crystal structure of the bacterial cell-division protein FtsZ. Nature 1998, 391, 203–206. [Google Scholar] [CrossRef]
- Scheffers, D.-J.; de Wit, J.G.; Blaauwen, T.D.; Driessen, A.J.M. GTP Hydrolysis of Cell Division Protein FtsZ: Evidence that the Active Site Is Formed by the Association of Monomers. Biochemistry 2002, 41, 521–529. [Google Scholar] [CrossRef]
- Buske, P.J.; Levin, P.A. Extreme C Terminus of Bacterial Cytoskeletal Protein FtsZ Plays Fundamental Role in Assembly Independent of Modulatory Proteins. J. Biol. Chem. 2012, 287, 10945–10957. [Google Scholar] [CrossRef]
- Pichoff, S.; Lutkenhaus, J. Identification of a region of FtsA required for interaction with FtsZ. Mol. Microbiol. 2007, 64, 1129–1138. [Google Scholar] [CrossRef]
- Romberg, L.; Levin, P.A. Assembly Dynamics of the Bacterial Cell Division Protein FtsZ: Poised at the Edge of Stability. Annu. Rev. Microbiol. 2003, 57, 125–154. [Google Scholar] [CrossRef]
- Addinall, S.G.; Bi, E.; Lutkenhaus, J. FtsZ ring formation in fts mutants. J. Bacteriol. 1996, 178, 3877–3884. [Google Scholar] [CrossRef] [PubMed]
- Den Blaauwen, T.; Buddelmeijer, N.; Aarsman, M.E.; Hameete, C.M.; Nanninga, N. Timing of FtsZ assembly in Escherichia coli. J. Bacteriol. 1999, 181, 5167–5175. [Google Scholar] [CrossRef] [PubMed]
- Feucht, A.; Lucet, I.; Yudkin, M.D.; Errington, J. Cytological and biochemical characterization of the FtsA cell division protein of Bacillus subtilis. Mol. Microbiol. 2001, 40, 115–125. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Huang, J.; Mukherjee, A.; Cao, C.; Lutkenhaus, J. Analysis of the interaction of FtsZ with itself, GTP, and FtsA. J. Bacteriol. 1997, 179, 5551–5559. [Google Scholar] [CrossRef]
- Fujita, J.; Maeda, Y.; Nagao, C.; Tsuchiya, Y.; Miyazaki, Y.; Hirose, M.; Mizohata, E.; Matsumoto, Y.; Inoue, T.; Mizuguchi, K.; et al. Crystal structure of FtsA from Staphylococcus aureus. FEBS Lett. 2014, 588, 1879–1885. [Google Scholar] [CrossRef]
- Ent, F.v.D.; Löwe, J. Crystal structure of the cell division protein FtsA from Thermotoga maritima. EMBO J. 2000, 19, 5300–5307. [Google Scholar] [CrossRef]
- Yan, K.; Pearce, K.H.; Payne, D.J. A Conserved Residue at the Extreme C-Terminus of FtsZ Is Critical for the FtsA-FtsZ Interaction in Staphylococcus aureus. Biochem. Biophys. Res. Commun. 2000, 270, 387–392. [Google Scholar] [CrossRef]
- Huecas, S.; Andreu, J.M. Polymerization of nucleotide-free, GDP- and GTP-bound cell division protein FtsZ: GDP makes the difference. FEBS Lett. 2004, 569, 43–48. [Google Scholar] [CrossRef]
- Haydon, D.J.; Bennett, J.M.; Brown, D.; Collins, I.; Galbraith, G.; Lancett, P.; Macdonald, R.; Stokes, N.R.; Chauhan, P.K.; Sutariya, J.K.; et al. Creating an Antibacterial with in Vivo Efficacy: Synthesis and Characterization of Potent Inhibitors of the Bacterial Cell Division Protein FtsZ with Improved Pharmaceutical Properties. J. Med. Chem. 2010, 53, 3927–3936. [Google Scholar] [CrossRef]
- Hale, C.A.; De Boer, P.A.J. Recruitment of ZipA to the septal ring of Escherichia coli is dependent on FtsZ and independent of FtsA. J. Bacteriol. 1999, 181, 167–176. [Google Scholar] [CrossRef]
- Stricker, J.; Maddox, P.; Salmon, E.D.; Erickson, H.P. Rapid assembly dynamics of the Escherichia coli FtsZ-ring demonstrated by fluorescence recovery after photobleaching. Proc. Natl. Acad. Sci. USA 2002, 99, 3171–3175. [Google Scholar] [CrossRef] [PubMed]
- Sass, P.; Brötz-Oesterhelt, H. Bacterial cell division as a target for new antibiotics. Curr. Opin. Microbiol. 2013, 16, 522–530. [Google Scholar] [CrossRef] [PubMed]
- Kumar, M.; Mathur, T.; Barman, T.K.; Chaira, T.; Kumar, R.; Joshi, V.; Pandya, M.; Sharma, L.; Fujii, K.; Bandgar, M.; et al. Novel FtsZ inhibitor with potent activity against Staphylococcus aureus. J. Antimicrob. Chemother. 2021, 76, 2867–2874. [Google Scholar] [CrossRef] [PubMed]
- Straniero, V.; Sebastián-Pérez, V.; Suigo, L.; Margolin, W.; Casiraghi, A.; Hrast, M.; Zanotto, C.; Zdovc, I.; Radaelli, A.; Valoti, E. Computational Design and Development of Benzodioxane-Benzamides as Potent Inhibitors of FtsZ by Exploring the Hydrophobic Subpocket. Antibiotics 2021, 10, 442. [Google Scholar] [CrossRef] [PubMed]
- Ranganatha, V.L. Design, synthesis, docking, Hirshfeld surface analysis and DFT calculations of 2-methylxanthen-9-with the FtsZ protein from Staphylococcus aureus. Bioinformation 2021, 17, 393–403. [Google Scholar] [CrossRef]
- Kapoor, S.; Panda, D. Targeting FtsZ for antibacterial therapy: A promising avenue. Expert Opin. Ther. Targets 2009, 13, 1037–1051. [Google Scholar] [CrossRef]
- Andreu, J.M.; Huecas, S.; Araújo-Bazán, L.; Vázquez-Villa, H.; Martín-Fontecha, M. The Search for Antibacterial Inhibitors Targeting Cell Division Protein FtsZ at Its Nucleotide and Allosteric Binding Sites. Biomedicines 2022, 10, 1825. [Google Scholar] [CrossRef]
- Panda, D.; Bhattacharya, D.; Gao, Q.H.; Oza, P.M.; Lin, H.-Y.J.; Hawkins, B.; Hibbs, D.E.; Groundwater, P.W. Identification of Agents Targeting Ftsz Assembly. Future Med. Chem. 2016, 8, 1111–1132. [Google Scholar] [CrossRef]
- Fujita, J.; Sugiyama, S.; Terakado, H.; Miyazaki, M.; Ozawa, M.; Ueda, N.; Kuroda, N.; Tanaka, S.-I.; Yoshizawa, T.; Uchihashi, T. Dynamic Assembly/Disassembly of Staphylococcus aureus FtsZ Visualized by High-Speed Atomic Force Microscopy. Int. J. Mol. Sci. 2021, 22, 1697. [Google Scholar] [CrossRef]
- Yan, Y.; Tao, H.; He, J.; Huang, S.-Y. The HDOCK server for integrated protein-protein docking. Nat. Protoc. 2020, 15, 1829–1852. [Google Scholar] [CrossRef]
- Bitencourt-Ferreira, G.; de Azevedo, W.F., Jr. Molegro Virtual Docker for Docking. Methods Mol Biol. 2019, 2053, 149–167. [Google Scholar] [CrossRef] [PubMed]
- Madeira, F.; Pearce, M.; Tivey, A.R.N.; Basutkar, P.; Lee, J.; Edbali, O.; Madhusoodanan, N.; Kolesnikov, A.; Lopez, R. Search and sequence analysis tools services from EMBL-EBI in 2022. Nucleic Acids Res. 2022, 50, W276–W279. [Google Scholar] [CrossRef] [PubMed]
- Tamura, K.; Stecher, G.; Kumar, S. MEGA11: Molecular Evolutionary Genetics Analysis Version 11. Mol. Biol. Evol. 2021, 38, 3022–3027. [Google Scholar] [CrossRef] [PubMed]
- Sunseri, J.; Koes, D.R. Pharmit: Interactive exploration of chemical space. Nucleic Acids Res. 2016, 44, W442–W448. [Google Scholar] [CrossRef]
- Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Meng, E.C.; Couch, G.S.; Croll, T.I.; Morris, J.H.; Ferrin, T.E. UCSF ChimeraX: Structure visualization for researchers, educators, and developers. Protein Sci. 2021, 30, 70–82. [Google Scholar] [CrossRef]
- Waterhouse, A.; Bertoni, M.; Bienert, S.; Studer, G.; Tauriello, G.; Gumienny, R.; Heer, F.T.; de Beer, T.A.P.; Rempfer, C.; Bordoli, L.; et al. SWISS-MODEL: Homology modelling of protein structures and complexes. Nucleic Acids Res. 2018, 46, W296–W303. [Google Scholar] [CrossRef]
Complex | Mol Dock Score (kcal/mol) | Hydrogen Bonds |
---|---|---|
1 | −480.939 | −12.02 |
2 | −480.822 | −10.37 |
3 | −446.585 | −7.08 |
Complex | Mol Dock Score | Hydrogen Bonds |
---|---|---|
PF23s1 | −619.002 | −15.07 |
PF23s2 | −609.84 | −17.68 |
PF23s3 | −628.598 | −9.88 |
Complex | Residues of FtsA | Asn 43 | Met 230 | Asp 234 | Asp 238 | Arg 296 | Glu 299 | Glu 303 |
---|---|---|---|---|---|---|---|---|
Interaction Type | ||||||||
FtsA-PF23s1 | Hydrogen bond | X | X | X | X | |||
Electrostatic interaction | X | X | X | X | ||||
FtsA-PF23s2 | Hydrogen bond | X | X | X | X | X | ||
Electrostatic interaction | X | |||||||
FtsA-PF23s3 | Hydrogen bond | X | X | |||||
Electrostatic interaction | X | X | X | X |
Complex | Mol Dock Score | Hydrogen Bonds |
---|---|---|
PF23-D372A | −483.63 | −13.0545 |
PF23-I373A | −594.24 | −11.562 |
PF23-I374A | −574.44 | −10.2531 |
FtsA’s Complex | FtsA’s Residues | Asn 43 | Met 230 | Asp 234 | Asp 238 | Arg 296 | Glu 299 | Glu 303 |
---|---|---|---|---|---|---|---|---|
Interaction Type | ||||||||
PF23-D372A | HB | X | X | X | X | |||
Electrostatic | X | X | X | X | ||||
PF23-I373A | HB | X | X | X | ||||
Electrostatic | X | X | ||||||
PF23-P374A | HB | X | X | X | ||||
Electrostatic | X | X | X |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Demesa-Castañeda, A.V.; Pérez, D.J.; Millán-Pacheco, C.; Hernández-Mendoza, A.; Razo-Hernández, R.S. Searching for New Antibacterial Compounds Against Staphylococcus aureus: A Computational Study on the Binding Between FtsZ and FtsA. Drugs Drug Candidates 2024, 3, 751-773. https://doi.org/10.3390/ddc3040043
Demesa-Castañeda AV, Pérez DJ, Millán-Pacheco C, Hernández-Mendoza A, Razo-Hernández RS. Searching for New Antibacterial Compounds Against Staphylococcus aureus: A Computational Study on the Binding Between FtsZ and FtsA. Drugs and Drug Candidates. 2024; 3(4):751-773. https://doi.org/10.3390/ddc3040043
Chicago/Turabian StyleDemesa-Castañeda, Alba V., David J. Pérez, César Millán-Pacheco, Armando Hernández-Mendoza, and Rodrigo Said Razo-Hernández. 2024. "Searching for New Antibacterial Compounds Against Staphylococcus aureus: A Computational Study on the Binding Between FtsZ and FtsA" Drugs and Drug Candidates 3, no. 4: 751-773. https://doi.org/10.3390/ddc3040043
APA StyleDemesa-Castañeda, A. V., Pérez, D. J., Millán-Pacheco, C., Hernández-Mendoza, A., & Razo-Hernández, R. S. (2024). Searching for New Antibacterial Compounds Against Staphylococcus aureus: A Computational Study on the Binding Between FtsZ and FtsA. Drugs and Drug Candidates, 3(4), 751-773. https://doi.org/10.3390/ddc3040043