Extraction and Identification of Flavonoids from the Leaves of Pilocarpus microphyllus: Focus on Antioxidant Activity and Neuroprotective Profile
Abstract
:1. Introduction
2. Results
2.1. Extraction Yield
2.2. Analysis by UV-Vis Spectrophotometry
2.3. HPLC Profile of Secondary Metabolites of the EtOAcF
2.4. Analysis by Mass Spectrometry (ESI-MS) of the Major Compound of the EtOAcF
2.5. Study Using Cyclic Voltammetry (CV) of the Major Compound of the EtOAcF
2.6. Characterization of the EtOAcF by Infrared Spectroscopy (FTIR)
2.7. EtOAcF Biological Assays
2.7.1. Antioxidant Activity by DPPH and ABTS Radical Capture
2.7.2. Antioxidant Activity Observed in the Electrochemical Profile of the EtOAcF
2.7.3. Neuropathy Induction Test by Sciatic Nerve Compression
3. Discussion
4. Materials and Methods
4.1. Obtaining Extracts and Fractions
4.1.1. Collection and Botanical Identification of Plant Material
4.1.2. Preparation of Plant Material
4.1.3. Obtaining Extracts
4.1.4. Extract Fractionation
4.2. Characterization of Extracts and EtOAcF
4.2.1. UV-Vis Spectrophotometry
4.2.2. High-Performance Liquid Chromatography (HPLC)
4.2.3. Mass Spectrometry (MS)
4.2.4. Electrochemical Characterization of the Major Compound of the EtOAcF
4.2.5. Characterization of the EtOAcF by Infrared Spectroscopy
4.3. EtOAcF Antioxidant Assays
4.3.1. Determination of Antioxidant Activity by the DPPH Radical Scavenging Method
4.3.2. Determination of Antioxidant Activity by the ABTS Radical Scavenging Method
4.3.3. Statistical Analysis of the DPPH and ABTS Tests
4.3.4. Determination of Antioxidant Potential by CV
4.4. Determination of Activity Against Neuropathic Pain Using a Method of Induction by Triggering the Sciatic Nerve
4.4.1. Surgical Procedure
4.4.2. Acute Antinociceptive Assessment
4.4.3. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Firmo, W.D.C.A.; de Menezes, V.D.J.M.; de Castro Passos, C.E.; Dias, C.N.; Alves, L.P.L.; Dias, I.C.L.; Neto, M.S.; Olea, R.S.G. Contexto histórico, uso popular e concepção científica sobre plantas medicinais. Cadernos de Pesquisa. 2012. Available online: http://cajapio.ufma.br/index.php/cadernosdepesquisa/article/view/746 (accessed on 10 November 2023).
- Ahad, B.; Shahri, W.; Rasool, H.; Reshi, Z.A.; Rasool, S.; Hussain, T. Medicinal plants and herbal drugs: An overview. In Medicinal and Aromatic Plants; Springer: Berlin/Heidelberg, Germany, 2021; pp. 1–40. [Google Scholar] [CrossRef]
- Baharara, H.; Rahsepar, S.; Emami, S.A.; Elyasi, S.; Mohammadpour, A.H.; Ghavami, V.; Rajendram, R.; Sahebkar, A.; Arasteh, O. The efficacy of medicinal plant preparations in the alleviation of radiodermatitis in patients with breast cancer: A systematic review of clinical trials. Phytother. Res. 2023, 37, 3275–3295. [Google Scholar] [CrossRef]
- De Abreu, I.N.; Sawaya, A.C.H.; Eberlin, M.N.; Mazzafera, P. Production of pilocarpine in callus of jaborandi (Pilocarpus microphyllus stapf). In Vitro Cell. Dev. Biol.-Plant 2005, 41, 806–811. [Google Scholar] [CrossRef]
- Tomchinsky, B.; Ming, L.; Hidalgo, A.D.F.; Carvalho, I.D.; Kffuri, C.W. Impacts of the legislation on ethnobotanic research in Brazil, with emphasis on the Amazon region. Amaz. Rev. Antropol. 2013, 5, 734–761. Available online: http://www.periodicos.ufpa.br/index.php/amazonica/article/view/1603/2005. (accessed on 10 November 2023).
- Lee, J.; Lee, S.K.; Park, J.S.; Lee, K.R. Plant-made pharmaceuticals: Exploring studies for the production of recombinant protein in plants and assessing challenges ahead. Plant Biotechnol. Rep. 2023, 17, 53–65. [Google Scholar] [CrossRef]
- Nair, B.R.; Perera, K.; Sreeshma, L.S. Modern Ethnobotany and the Development of Drug Leads. Conservation and Sustainable Utilization of Bioresources; Springer Nature: Singapore, 2023; pp. 505–529. [Google Scholar] [CrossRef]
- Véras, L.M.; Cunha, V.R.; Lima, F.C.; Guimarães, M.A.; Vieira, M.M.; Campelo, Y.D.; Sakai, V.Y.; Lima, D.F.; Carvalho, P.S., Jr.; Ellena, J.A.; et al. Industrial scale isolation, structural and spectroscopic characterization of epiisopiloturine from Pilocarpus microphyllus Stapf leaves: A promising alkaloid against schistosomiasis. PLoS ONE 2013, 8, e66702. [Google Scholar] [CrossRef]
- Pataro, G.; Carullo, D.; Falcone, M.; Ferrari, G. Recovery of lycopene from industrially derived tomato processing by-products by pulsed electric fields-assisted extraction. Innov. Food Sci. Emerg. Technol. 2020, 63, 102369. [Google Scholar] [CrossRef]
- Kim, J.H.; Ahn, H.J.; Choi, J.H.; Jung, D.W.; Kwon, J.S. Effect of 0.1% pilocarpine mouthwash on xerostomia: Double-blind, randomised controlled trial. J. Oral Rehabil. 2014, 41, 226–235. [Google Scholar] [CrossRef]
- Mozos, I.; Stoian, D.; Caraba, A.; Malainer, C.; Horbańczuk, J.O.; Atanasov, A.G. Lycopene and vascular health. Front. Pharmacol. 2018, 9, 521. [Google Scholar] [CrossRef]
- Jayabal, D.; Jayanthi, S.; Thirumalaisamy, R.; Karthika, R.; Iqbal, M.N. Comparative anti-Diabetic potential of phytocompounds from Dr. Duke’s phytochemical and ethnobotanical database and standard antidiabetic drugs against diabetes hyperglycemic target proteins: An in silico validation. J. Biomol. Struct. Dyn. 2023, 24, 15137–15149. [Google Scholar] [CrossRef]
- Dal, S.; Sigrist, S. The protective effect of antioxidants consumption on diabetes and vascular complications. Diseases 2016, 4, 24. [Google Scholar] [CrossRef] [PubMed]
- Mahmud, A.R.; Ema, T.I.; Siddiquee, M.; Shahriar, A.; Ahmed, H.; Mosfeq-Ul-Hasan, M.; Rahman, N.; Islam, R.; Uddin, M.R.; Mizan, M.F.R. Natural flavonols: Actions, mechanisms, and potential therapeutic utility for various diseases. Beni-Suef Univ. J. Basic Appl. Sci. 2023, 12, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Santos, A.P.; Moreno, P.R.H. Pilocarpus spp.: A survey of its chemical constituents and biological activities. Rev. Bras. Ciências Farm. 2004, 40, 116–137. [Google Scholar] [CrossRef]
- Grabher, C. A Governança e a Sustentabilidade do Extrativismo do Jaborandi na Amazônia e Transição Para o Cerrado e a Caatinga. 2015. Available online: http://hdl.handle.net/10183/132942 (accessed on 10 November 2023).
- Ma, E.Z.; Khachemoune, A. Flavonoids and their therapeutic applications in skin diseases. Arch. Dermatol. Res. 2023, 315, 321–331. [Google Scholar] [CrossRef]
- Al-Maharik, N.; Jaradat, N.; Al-Hajj, N.; Jaber, S. Myrtuscommunis L.: Essential oil chemical composition, total phenols and flavonoids contents, antimicrobial, antioxidant, anticancer, and α-amylase inhibitory activity. Chem. Biol. Technol. Agric. 2023, 10, 41. [Google Scholar] [CrossRef]
- Alzaabi, M.M.; Hamdy, R.; Ashmawy, N.S.; Hamoda, A.M.; Alkhayat, F.; Khademi, N.N.; Al Joud, S.M.A.; El-Keblawy, A.A.; Soliman, S.S. Flavonoids are promising safe therapy against COVID-19. Phytochem. Rev. 2022, 21, 291–312. [Google Scholar] [CrossRef]
- Li, H.; Zhang, H.; Zhao, H. Apigenin attenuates inflammatory response in allergic rhinitis mice by inhibiting the TLR4/MyD88/NF-κB signaling pathway. Environ. Toxicol. 2023, 38, 253–265. [Google Scholar] [CrossRef]
- Melrose, J. The potential of flavonoids and flavonoid metabolites in the treatment of neurodegenerative pathology in disorders of cognitive decline. Antioxidants 2023, 12, 663. [Google Scholar] [CrossRef]
- Izhaki, I. Emodin–a secondary metabolite with multiple ecological functions in higher plants. New Phytol. 2002, 155, 205–217. [Google Scholar] [CrossRef]
- Zhou, L.; Wang, J.; Wang, K.; Xu, J.; Zhao, J.; Shan, T.; Luo, C. Secondary metabolites with antinematodal activity from higher plants. Stud. Nat. Prod. Chem. 2012, 37, 67–114. [Google Scholar] [CrossRef]
- Skrypnik, L.; Feduraev, P.; Golovin, A.; Maslennikov, P.; Styran, T.; Antipina, M.; Riabova, A.; Katserov, D. The Integral Boosting Effect of Selenium on the Secondary Metabolism of Higher Plants. Plants 2022, 11, 3432. [Google Scholar] [CrossRef] [PubMed]
- Trantas, E.A.; Koffas, M.A.; Xu, P.; Ververidis, F. When plants produce not enough or at all: Metabolic engineering of flavonoids in microbial hosts. Front. Plant Sci. 2015, 6, 7. [Google Scholar] [CrossRef] [PubMed]
- Amer, A. Biotechnology approaches for in vitro production of flavonoids. J. Microbiol. Biotechnol. Food Sci. 2018, 7, 457. [Google Scholar] [CrossRef]
- Tzanova, M.; Atanasov, V.; Yaneva, Z.; Ivanova, D.; Dinev, T. Selectivity of current extraction techniques for flavonoids from plant materials. Processes 2020, 8, 1222. [Google Scholar] [CrossRef]
- Neves Costa, F.D.; Leitão, G.G. Strategies of solvent system selection for the isolation of flavonoids by countercurrent chromatography. J. Sep. Sci. 2010, 33, 336–347. [Google Scholar] [CrossRef]
- Do, Q.D.; Angkawijaya, A.E.; Tran-Nguyen, P.L.; Huynh, L.H.; Soetaredjo, F.E.; Ismadji, S.; Ju, Y.H. Effect of extraction solvent on total phenol content, total flavonoid content, and antioxidant activity of Limnophila aromatica. J. Food Drug Anal. 2014, 22, 296–302. [Google Scholar] [CrossRef]
- Miller, R.; Johnson, T.; Kim, S. Residual Solvents in Natural Product Extracts: Implications for Safety. Int. J. Food Sci. 2019, 56, 789–802. [Google Scholar]
- Chen, Y.; Wang, X.; Zhao, L. A Review of Extraction Techniques for Flavonoids: Focus on Toxicity and Efficiency. Nat. Prod. Res. 2023, 37, 101–110. [Google Scholar]
- Zhang, L.; Liu, Y.; Wang, Y.; Xu, M.; Hu, X. UV–Vis spectroscopy combined with chemometric study on the interactions of three dietary flavonoids with copper ions. Food Chem. 2018, 263, 208–215. [Google Scholar] [CrossRef]
- Andersen, O.M.; Markham, K.R. (Eds.) Flavonoids: Chemistry, Biochemistry and Applications; CRC Press: Boca Raton, FL, USA, 2005. [Google Scholar]
- Billowria, K.; Ali, R.; Rangra, N.K.; Kumar, R.; Chawla, P.A. Bioactive flavonoids: A comprehensive review on pharmacokinetics and analytical aspects. Crit. Rev. Anal. Chem. 2024, 54, 1002–1016. [Google Scholar] [CrossRef]
- De Rijke, E.; Out, P.; Niessen, W.M.; Ariese, F.; Gooijer, C.; Udo, A. Analytical separation and detection methods for flavonoids. J. Chromatogr. A 2006, 1112, 31–63. [Google Scholar] [CrossRef] [PubMed]
- De Villiers, A.; Venter, P.; Pasch, H. Recent advances and trends in the liquid-chromatography–mass spectrometry analysis of flavonoids. J. Chromatogr. A 2016, 1430, 16–78. [Google Scholar] [CrossRef] [PubMed]
- Hughes, R.J.; Croley, T.R.; Metcalfe, C.D.; March, R.E. A tandem mass spectrometric study of selected characteristic flavonoids. Int. J. Mass Spectrom. 2001, 210, 371–385. [Google Scholar] [CrossRef]
- Boué, S.M.; Carter-Wientjes, C.H.; Shih, B.Y.; Cleveland, T.E. Identification of flavone aglycones and glycosides in soybean pods by liquid chromatography–tandem mass spectrometry. J. Chromatogr. A 2003, 991, 61–68. [Google Scholar] [CrossRef]
- Tsimogiannis, D.; Samiotaki, M.; Panayotou, G.; Oreopoulou, V. Characterization of flavonoid subgroups and hydroxy substitution by HPLC-MS/MS. Molecules 2007, 12, 593–606. [Google Scholar] [CrossRef]
- Yang, B.; Arai, K.; Kusu, F. Electrochemical behaviors of quercetin and kaempferol in neutral buffer solution. Anal. Sci. 2001, 17, 987–989. [Google Scholar] [CrossRef]
- Timbola, A.K.; Souza, C.D.D.; Giacomelli, C.; Spinelli, A. Electrochemical oxidation of quercetin in hydro-alcoholic solution. J. Braz. Chem. Soc. 2006, 17, 139–148. [Google Scholar] [CrossRef]
- Kainat, S.; Gilani, S.R.; Asad, F.; Khalid, M.Z.; Khalid, W.; Ranjha, M.M.A.N.; Bangar, S.P.; Lorenzo, J.M. Determination and comparison of phytochemicals, phenolics, and flavonoids in Solanum lycopersicum using FTIR spectroscopy. Food Anal. Methods 2022, 15, 2931–2939. [Google Scholar] [CrossRef]
- Stuart, B. Infrared Spectroscopy: Fundamentals and Applications, 1st ed.; Ando, D.J., Ed.; John Wiley & Sons: Hoboken, NJ, USA, 2004; 245p. [Google Scholar]
- Mantsch, H.H.; Chapman, D. (Eds.) Infrared Spectroscopy of Biomolecules; Wiley-Liss: New York, NY, USA, 1996; pp. 131–134. [Google Scholar]
- Xie, Z.; Li, G.; Fu, Y.; Sun, M.; Ye, B. Sensitive, simultaneous determination of chrysin and baicalein based on Ta2O5-chitosan composite modified carbon paste electrode. Talanta 2017, 165, 553–562. [Google Scholar] [CrossRef]
- Ravichandran, V.; Vasanthi, S.; Shalini, S.; Shah, S.A.A.; Harish, R. Green synthesis of silver nanoparticles using Atrocarpus altilis leaf extract and the study of their antimicrobial and antioxidant activity. Mater. Lett. 2016, 180, 264–267. [Google Scholar] [CrossRef]
- Leite-Legatti, A.V.; Batista, Â.G.; Dragano, N.R.V.; Marques, A.C.; Malta, L.G.; Riccio, M.F.; Eberlin, M.N.; Machado, A.R.T.; de Carvalho-Silva, L.B.; Ruiz, A.L.T.G.; et al. Jaboticaba peel: Antioxidant compounds, antiproliferative and antimutagenic activities. Food Res. Int. 2012, 49, 596–603. [Google Scholar] [CrossRef]
- Arumugam, P.; Ramamurthy, P.; Santhiya, S.T.; Ramesh, A. Antioxidant activity measured in different solvent fractions obtained from Mentha spicata Linn.: An analysis by ABTS.+ decolorization assay. Asia Pac. J. Clin. Nutr. 2006, 15, 119. Available online: https://apjcn.nhri.org.tw/server/APJCN/15/1/119.pdf (accessed on 10 November 2023). [PubMed]
- Lima, A.R.; Barbosa, V.C.; Santos Filho, P.R.; Gouvêa, C.M. In vitro evaluation of the antioxidant activity of the hydroalcoholic extract of leaves of bardana. Rev. Bras. Farmacogn. 2006, 16, 531–536. [Google Scholar] [CrossRef]
- Arribas, A.S.; Martínez-Fernández, M.; Chicharro, M. The role of electroanalytical techniques in analysis of polyphenols in wine. TrAC Trends Anal. Chem. 2012, 34, 78–96. [Google Scholar] [CrossRef]
- Jorgensen, L.V.; Cornett, C.; Justesen, U.; Skibsted, L.H.; Dragsted, L.O. Two-electron electrochemical oxidation of quercetin and kaempferol changes only the flavonoid C-ring. Free Radic. Res. 1998, 29, 339–350. [Google Scholar] [CrossRef]
- Hotta, H.; Sakamoto, H.; Nagano, S.; Osakai, T.; Tsujino, Y. Unusually large numbers of electrons for the oxidation of polyphenolic antioxidants. Biochim. Biophys. Acta (BBA)-Gen. Subj. 2001, 1526, 159–167. [Google Scholar] [CrossRef]
- Brett, A.M.O.; Ghica, M.E. Electrochemical oxidation of quercetin. Electroanal. Int. J. Devoted Fundam. Pract. Asp. Electroanal. 2003, 15, 1745–1750. [Google Scholar] [CrossRef]
- George, S.A.; Rajeev, R.; Thadathil, D.A.; Varghese, A. A comprehensive review on the electrochemical sensing of flavonoids. Crit. Rev. Anal. Chem. 2021, 53, 1133–1173. [Google Scholar] [CrossRef]
- Arslan, G.; Yazici, B.; Erbil, M. The effect of pH, temperature and concentration on electrooxidation of phenol. J. Hazard. Mater. 2005, 124, 37–43. [Google Scholar] [CrossRef]
- Sultana, S.; Verma, K.; Khan, R. Nephroprotective efficacy of chrysin against cisplatin-induced toxicity via attenuation of oxidative stress. J. Pharm. Pharmacol. 2012, 64, 872–881. [Google Scholar] [CrossRef]
- Renuka, M.; Natesan, V. Chrysin: Sources, beneficial pharmacological activities, and molecular mechanism of action. Phytochemistry 2018, 145, 187–196. [Google Scholar] [CrossRef]
- Klusáková, I.; Dubový, P. Experimental models of peripheral neuropathic pain based on traumatic nerve injuries–an anatomical perspective. Ann. Anat. Anat. Anz. 2009, 191, 248–259. [Google Scholar] [CrossRef] [PubMed]
- Dubner, R. Pain research in animals. In Proceedings of the National Symposium on Imperatives in Research Animal Use: Scientific Needs and Animal Welfare, Bethesda, MD, USA, 11–12 April 1985; pp. 277–282. [Google Scholar]
- Kavaliers, M. Evolutionary and comparative aspects of nociception. Brain Res. Bull. 1988, 21, 923–931. [Google Scholar] [CrossRef]
- Wilkerson, J.; Hsu, K.L.; Niphakis, M.; van der Stelt, M.; Cravatt, B.; Lichtman, A. Marble Burying: A Novel Measure of Murine Neuropathic Pain Depressed Behavior. FASEB J. 2015, 29, 616.11. [Google Scholar] [CrossRef]
- Bennett, G.J.; Xie, Y.K. A peripheral mononeuropathy in rat that produces disorders of pain sensation like those seen in man. Pain 1988, 33, 87–107. [Google Scholar] [CrossRef]
- Marchand, F.; Perretti, M.; McMahon, S.B. Role of the immune system in chronic pain. Nat. Rev. Neurosci. 2005, 6, 521–532. [Google Scholar] [CrossRef]
- Gabay, E.; Tal, M. Pain behavior and nerve electrophysiology in the CCI model of neuropathic pain. Pain 2004, 110, 354–360. [Google Scholar] [CrossRef]
- Saadé, N.E.; Jabbur, S.J. Nociceptive behavior in animal models for peripheral neuropathy: Spinal and supraspinal mechanisms. Prog. Neurobiol. 2008, 86, 22–47. [Google Scholar] [CrossRef]
- Blom, S.M.; Pfister, J.P.; Santello, M.; Senn, W.; Nevian, T. Nerve injury-induced neuropathic pain causes disinhibition of the anterior cingulate cortex. J. Neurosci. 2014, 34, 5754–5764. [Google Scholar] [CrossRef]
- Al-Amin, H.; Sarkis, R.; Atweh, S.; Jabbur, S.; Saadé, N. Chronic dizocilpine or apomorphine and development of neuropathy in two animal models II: Effects on brain cytokines and neurotrophins. Exp. Neurol. 2011, 228, 30–40. [Google Scholar] [CrossRef]
- Pathak, N.N.; Balaganur, V.; Lingaraju, M.C.; Kant, V.; Latief, N.; More, A.S.; Kumar, D.; Kumar, D.; Tandan, S.K. Atorvastatin attenuates neuropathic pain in rat neuropathy model by down-regulating oxidative damage at peripheral, spinal and supraspinal levels. Neurochem. Int. 2014, 68, 1–9. [Google Scholar] [CrossRef]
- Goecks, C.S.; Horst, A.; Moraes, M.S.; Scheid, T.; Kolberg, C.; Belló-Klein, A.; Partata, W.A. Assessment of oxidative parameters in rat spinal cord after chronic constriction of the sciatic nerve. Neurochem. Res. 2012, 37, 1952–1958. [Google Scholar] [CrossRef]
- Horst, A.; Kolberg, C.; Moraes, M.S.; Riffel, A.P.K.; Finamor, I.A.; Belló-Klein, A.; Pavanato, M.A.; Partata, W.A. Effect of N-acetylcysteine on the spinal-cord glutathione system and nitric-oxide metabolites in rats with neuropathic pain. Neurosci. Lett. 2014, 569, 163–168. [Google Scholar] [CrossRef]
- Jaggi, A.S.; Jain, V.; Singh, N. Animal models of neuropathic pain. Fundam. Clin. Pharmacol. 2011, 25, 1–28. [Google Scholar] [CrossRef]
- Barbosa, R.A.; Nunes, T.L.G.M.; Nunes, T.L.G.M.; Paixão, A.O.D.; Neto, R.B.; Moura, S.; Junior, R.L.C.A.; Cândido, E.A.F.; Padilha, F.F.; Quintans-Júnior, L.J.; et al. Hydroalcoholic extract of red propolis promotes functional recovery and axon repair after sciatic nerve injury in rats. Pharm. Biol. 2016, 54, 993–1004. [Google Scholar] [CrossRef]
- Caraffa, A. The neuroprotective role of flavonoids. Eur. J. Neurodegener. Dis. 2021, 10, 25–29. [Google Scholar]
- Honoré, P.H.; Basnet, A.; Kristensen, P.; Andersen, L.M.; Neustrup, S.; Møllgaard, P.; Eljaja, L.; Bjerrum, O.J. Predictive validity of pharmacologic interventions in animal models of neuropathic pain. Scand. J. Pain 2011, 2, 178–184. [Google Scholar] [CrossRef]
- Chen, G.L.; Fan, M.X.; Wu, J.L.; Li, N.; Guo, M.Q. Antioxidant and anti-inflammatory properties of flavonoids from lotus plumule. Food Chem. 2019, 277, 706–712. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, G.; Szeto, S.S.; Chong, C.M.; Quan, Q.; Huang, C.; Cui, W.; Guo, B.; Wang, Y.; Han, Y.; et al. Examining the neuroprotective effects of protocatechuic acid and chrysin on in vitro and in vivo models of Parkinson disease. Free Radic. Biol. Med. 2015, 84, 331–343. [Google Scholar] [CrossRef]
- Souza, L.C.; Antunes, M.S.; Borges Filho, C.; Del Fabbro, L.; de Gomes, M.G.; Goes, A.T.R.; Donato, F.; Prigol, M.; Boeira, S.P.; Jesse, C.R. Flavonoid Chrysin prevents age-related cognitive decline via attenuation of oxidative stress and modulation of BDNF levels in aged mouse brain. Pharmacol. Biochem. Behav. 2015, 134, 22–30. [Google Scholar] [CrossRef]
- Gupta, A.; Sheth, N.R.; Pandey, S.; Yadav, J.S.; Joshi, S.V. Screening of flavonoids rich fractions of three Indian medicinal plants used for the management of liver diseases. Rev. Bras. Farmacogn. 2015, 25, 485–490. [Google Scholar] [CrossRef]
- Cao, Y.L.; Lin, J.H.; Hammes, H.P.; Zhang, C. Flavonoids in treatment of chronic kidney disease. Molecules 2022, 27, 2365. [Google Scholar] [CrossRef] [PubMed]
- Rehman, M.U.; Tahir, M.; Khan, A.Q.; Khan, R.; Lateef, A.; Qamar, W.; Ali, F.; Sultana, S. Chrysin suppresses renal carcinogenesis via amelioration of hyperproliferation, oxidative stress and inflammation: Plausible role of NF-κB. Toxicol. Lett. 2013, 216, 146–158. [Google Scholar] [CrossRef] [PubMed]
- Rehman, M.U.; Ali, N.; Rashid, S.; Jain, T.; Nafees, S.; Tahir, M.; Khan, A.Q.; Lateef, A.; Khan, R.; Hamiza, O.O.; et al. Alleviation of hepatic injury by chrysin in cisplatin administered rats: Probable role of oxidative and inflammatory markers. Pharmacol. Rep. 2014, 66, 1050–1059. [Google Scholar] [CrossRef]
- Xiao, J.; Zhai, H.; Yao, Y.; Wang, C.; Jiang, W.; Zhang, C.; Simard, A.; Zhang, R.; Hao, J. Chrysin attenuates experimental autoimmune neuritis by suppressing immuno-inflammatory responses. Neuroscience 2014, 262, 156–164. [Google Scholar] [CrossRef]
- Sulaiman, G.M.; Jabir, M.S.; Hameed, A.H. Nanoscale modification of chrysin for improved of therapeutic efficiency and cytotoxicity. Artif. Cells Nanomed. Biotechnol. 2018, 46 (Suppl. 1), 708–720. [Google Scholar] [CrossRef]
- Begić, S.; Horozić, E.; Alibašić, H.; Bjelić, E.; Seferović, S.; Kozarević, E.C.; Ibišević, M.; Zukić, A.; Karić, E.; Softić, M. Antioxidant capacity and total phenolic and flavonoid contents of methanolic extracts of Urtica dioica L. by different extraction techniques. Int. Res. J. Pure Appl. Chem. 2020, 21, 207–214. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Perfeito, M.L.G.; Ribeiro, F.d.O.S.; Jesus, J.R.d.; Véras, L.M.C.; Nobre, A.R.d.A.; Lopes, E.M.; Queiroz, J.C.E.d.; Vasconcelos, A.G.; Cardoso, M.G.; Gonçalves, J.; et al. Extraction and Identification of Flavonoids from the Leaves of Pilocarpus microphyllus: Focus on Antioxidant Activity and Neuroprotective Profile. Drugs Drug Candidates 2024, 3, 796-812. https://doi.org/10.3390/ddc3040045
Perfeito MLG, Ribeiro FdOS, Jesus JRd, Véras LMC, Nobre ARdA, Lopes EM, Queiroz JCEd, Vasconcelos AG, Cardoso MG, Gonçalves J, et al. Extraction and Identification of Flavonoids from the Leaves of Pilocarpus microphyllus: Focus on Antioxidant Activity and Neuroprotective Profile. Drugs and Drug Candidates. 2024; 3(4):796-812. https://doi.org/10.3390/ddc3040045
Chicago/Turabian StylePerfeito, Márcia Luana Gomes, Fábio de Oliveira Silva Ribeiro, Joilson Ramos de Jesus, Leiz Maria Costa Véras, Alyne Rodrigues de Araújo Nobre, Everton Moraes Lopes, José Carlos Eloi de Queiroz, Andreanne Gomes Vasconcelos, Miguel Gomes Cardoso, João Gonçalves, and et al. 2024. "Extraction and Identification of Flavonoids from the Leaves of Pilocarpus microphyllus: Focus on Antioxidant Activity and Neuroprotective Profile" Drugs and Drug Candidates 3, no. 4: 796-812. https://doi.org/10.3390/ddc3040045
APA StylePerfeito, M. L. G., Ribeiro, F. d. O. S., Jesus, J. R. d., Véras, L. M. C., Nobre, A. R. d. A., Lopes, E. M., Queiroz, J. C. E. d., Vasconcelos, A. G., Cardoso, M. G., Gonçalves, J., Almeida, F. R. d. C., Arcanjo, D. D. R., & Leite, J. R. d. S. d. A. (2024). Extraction and Identification of Flavonoids from the Leaves of Pilocarpus microphyllus: Focus on Antioxidant Activity and Neuroprotective Profile. Drugs and Drug Candidates, 3(4), 796-812. https://doi.org/10.3390/ddc3040045