Elucidating the Epigenetic and Protein Interaction Landscapes in Amyotrophic Lateral Sclerosis: An Integrated Bioinformatics Analysis
Abstract
:1. Introduction
2. Methodology
2.1. Identification of Genetic Variations in ALS
2.2. Functional Prediction of Identified Mutations
2.3. Comprehensive Network Analysis of ALS-Associated Genes
2.4. Identification and Characterization of Methylation Sites in ALS-Associated Genes
2.5. Molecular Docking Analysis
2.6. Molecular Dynamics (MD) Simulation
3. Results
3.1. Identification and Functional Prediction of Pathogenic Mutations in ALS
3.2. Gene Ontology Analysis of Identified Genes in ALS
3.3. Network Analysis
3.4. Identification of Methylation Site within Target Genes
3.5. Molecular Docking Analysis
3.6. Molecular Dynamics Simulation
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Logroscino, G.; Traynor, B.J.; Hardiman, O.; Chiò, A.; Mitchell, D.; Swingler, R.J.; Millul, A.; Benn, E.; Beghi, E.; EURALS. Incidence of amyotrophic lateral sclerosis in Europe. J. Neurol. Neurosurg. Psychiatry 2010, 81, 385–390. [Google Scholar] [CrossRef] [PubMed]
- Hardiman, O.; van den Berg, L.; Kiernan, M. Clinical diagnosis and management of amyotrophic lateral sclerosis. Nat. Rev. Neurol. 2011, 7, 639–649. [Google Scholar] [CrossRef] [PubMed]
- Maruyama, H.; Morino, H.; Ito, H.; Izumi, Y.; Kato, H.; Watanabe, Y.; Kinoshita, Y.; Kamada, M.; Nodera, H.; Suzuki, H.; et al. Mutations of optineurin in amyotrophic lateral sclerosis. Nature 2010, 465, 223–226. [Google Scholar] [CrossRef]
- Neumann, M.; Sampathu, D.M.; Kwong, L.K.; Truax, A.C.; Micsenyi, M.C.; Chou, T.T.; Bruce, J.; Schuck, T.; Grossman, M.; Clark, C.M.; et al. Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science 2006, 314, 130–133. [Google Scholar] [CrossRef]
- Merrilees, J.; Klapper, J.; Murphy, J.; Lomen-Hoerth, C.; Miller, B.L. Cognitive and behavioral challenges in caring for patients with frontotemporal dementia and amyotrophic lateral sclerosis. Amyotroph. Lateral Scler. 2010, 11, 298–302. [Google Scholar] [CrossRef]
- Flaherty-Craig, C.; Eslinger, P.; Stephens, B.; Simmons, Z. A rapid screening battery to identify frontal dysfunction in patients with, A.L.S. Neurology 2006, 67, 2070–2072. [Google Scholar] [CrossRef] [PubMed]
- Cox, P.A.; Sacks, O.W. Cycad neurotoxins, consumption of flying foxes, and ALS-PDC disease in Guam. Neurology 2002, 58, 956–959. [Google Scholar] [CrossRef]
- Sreedharan, J.; Blair, I.P.; Tripathi, V.B.; Hu, X.; Vance, C.; Rogelj, B.; Ackerley, S.; Durnall, J.C.; Williams, K.L.; Buratti, E.; et al. TDP-43 mutations in familial and sporadic amyotrophic lateral sclerosis. Science 2008, 319, 1668–1672. [Google Scholar] [CrossRef] [PubMed]
- Vance, C.; Rogelj, B.; Hortobágyi, T.; De Vos, K.J.; Nishimura, A.L.; Sreedharan, J.; Hu, X.; Smith, B.; Ruddy, D.; Wright, P.; et al. Mutations in FUS, an RNA processing protein, cause familial amyotrophic lateral sclerosis type 6. Science 2009, 323, 1208–1211. [Google Scholar] [CrossRef] [PubMed]
- Jenuth, J.P. The NCBI. In Bioinformatics Methods and Protocols; Misener, S., Krawetz, S.A., Eds.; Humana Press: Totowa, NJ, USA, 2000; pp. 301–312. [Google Scholar] [CrossRef]
- Sim, L.; Kumar, P.; Hu, J.; Henikoff, S.; Schneider, G.; Ng, P.C. SIFT web server: Predicting effects of amino acid substitutions on proteins. Nucleic Acids Res. 2012, 40, W452. [Google Scholar] [CrossRef] [PubMed]
- Adzhubei, I.; Jordan, D.M.; Sunyaev, S.R. Predicting functional effect of human missense mutations using PolyPhen-2. Curr. Protoc. Hum. Genet. 2013, 76, 7–20. [Google Scholar] [CrossRef]
- Szklarczyk, D.; Kirsch, R.; Koutrouli, M.; Nastou, K.; Mehryary, F.; Hachilif, R.; Gable, A.L.; Fang, T.; Doncheva, N.T.; Pyysalo, S.; et al. The STRING database in 2023: Protein-protein association networks and functional enrichment analyses for any sequenced genome of interest. Nucleic Acids Res. 2023, 51, D638–D646. [Google Scholar] [CrossRef] [PubMed]
- Lafaye de Micheaux, P.; Drouilhet, R.; Liquet, B. The R Software: Fundamentals of Programming and Statistical Analysis; Springer: New York, NY, USA, 2013. [Google Scholar]
- Tomczak, K.; Czerwińska, P.; Wiznerowicz, M. ReviewThe Cancer Genome Atlas (TCGA): An immeasurable source of knowledge. Contemp. Oncol./Współczesna Onkol. 2015, 2013, 68–77. [Google Scholar] [CrossRef] [PubMed]
- Dallakyan, S.; Olson, A.J. Small-Molecule Library Screening by Docking with PyRx. In Chemical Biology: Methods in Molecular Biology; Hempel, J., Williams, C., Hong, C., Eds.; Humana Press: New York, NY, USA, 2015; Volume 1263. [Google Scholar] [CrossRef]
- Abraham, M.J.; Murtola, T.; Schulz, R.; Páll, S.; Smith, J.C.; Hess, B.; Lindahl, E. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 2015, 1, 19–25. [Google Scholar] [CrossRef]
- Liu, Q.; Liu, F.; Cui, B.; Lu, C.X.; Guo, X.N.; Wang, R.R.; Liu, M.S.; Li, X.G.; Cui, L.-Y.; Zhang, X. Mutation spectrum of Chinese patients with familial and sporadic amyotrophic lateral sclerosis. J. Neurol. Neurosurg. Psychiatry 2016, 87, 1272–1274. [Google Scholar] [CrossRef]
- Abel, O.; Powell, J.F.; Andersen, P.M.; Al-Chalabi, A. Credibility analysis of putative disease-causing genes using bioinformatics. PLoS ONE 2013, 8, e64899. [Google Scholar] [CrossRef] [PubMed]
- Tsai, C.P.; Soong, B.W.; Lin, K.P.; Tu, P.H.; Lin, J.L.; Lee, Y.C. FUS, TARDBP, and SOD1 mutations in a Taiwanese cohort with familial ALS. Neurobiol. Aging 2011, 32, 553.e13–553.e21. [Google Scholar] [CrossRef] [PubMed]
SNP | Amino Acid Change | Gene Name | Predictions | SNP | Amino Acid Change | Gene Name | Prediction |
---|---|---|---|---|---|---|---|
rs80356717 | D53G | TARDBP | Deleterious | rs267606685 | F224L | SLC52A3 | Deleterious |
rs80356723 | G179R | TARDBP | Deleterious | rs267606688 | P28T | SLC52A3 | Deleterious |
rs80356733 | G232C | TARDBP | Deleterious | rs281875284 | T46I | VAPB | Deleterious |
rs72466487 | Q74P | DCTN1 | Deleterious | rs74315431 | P56S | VAPB | Deleterious |
rs67586389 | G71A | DCTN1 | Deleterious | rs121912444 | A5T | SOD1 | Deleterious |
rs121909342 | G59S | DCTN1 | Deleterious | rs121912442 | A5V | SOD1 | Deleterious |
rs121908138 | C157Y | ALS2 | Deleterious | rs121912448 | C7F | SOD1 | Deleterious |
rs368743618 | A383T | TUBA4A | Deleterious | rs121912453 | G17S | SOD1 | Deleterious |
rs63750653 | D118Y | CHMP2B | Deleterious | rs121912431 | G38R | SOD1 | Deleterious |
rs63751126 | Q206H | CHMP2B | Deleterious | rs121912433 | G42S | SOD1 | Deleterious |
rs207482230 | P281L | TFG | Deleterious | rs121912434 | G42D | SOD1 | Deleterious |
rs371575563 | R550G | NEK1 | Deleterious | rs121912457 | F27C | SOD1 | Deleterious |
rs121434591 | S85C | MATR3 | Deleterious | rs121912443 | H47R | SOD1 | Deleterious |
rs143511494 | G327S | SQSTM1 | Deleterious | rs121912458 | H81R | SOD1 | Deleterious |
rs387906829 | E102Q | SIGMAR1 | Deleterious | rs121912452 | L85V | SOD1 | Deleterious |
rs140376902 | L65Q | SIGMAR1 | Deleterious | rs121912436 | G86R | SOD1 | Deleterious |
rs267607087 | S331F | SPTLC1 | Deleterious | rs11556620 | N87S | SOD1 | Deleterious |
rs29001584 | L389S | SETX | Deleterious | rs121912437 | G94R | SOD1 | Deleterious |
rs267606929 | E472G | OPTN | Deleterious | rs121912438 | G75A | SOD1 | Deleterious |
rs397507527 | G268C | PTPN11 | Deleterious | rs121912440 | L88V | SOD1 | Deleterious |
rs121909535 | Q36L | ANG | Deleterious | rs74315452 | I113T | SOD1 | Deleterious |
rs121909539 | C63W | ANG | Deleterious | rs121912441 | I114T | SOD1 | Deleterious |
rs121909540 | K64I | ANG | Deleterious | rs121912451 | S135N | SOD1 | Deleterious |
rs147713329 | R2031G | SPG11 | Deleterious | rs121912449 | I133T | SOD1 | Deleterious |
rs267606831 | G507D | FUS | Deleterious | rs387906709 | P497H | UBQLN2 | Deleterious |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kadena, K.; Vlamos, P. Elucidating the Epigenetic and Protein Interaction Landscapes in Amyotrophic Lateral Sclerosis: An Integrated Bioinformatics Analysis. Sclerosis 2024, 2, 140-155. https://doi.org/10.3390/sclerosis2030010
Kadena K, Vlamos P. Elucidating the Epigenetic and Protein Interaction Landscapes in Amyotrophic Lateral Sclerosis: An Integrated Bioinformatics Analysis. Sclerosis. 2024; 2(3):140-155. https://doi.org/10.3390/sclerosis2030010
Chicago/Turabian StyleKadena, Katerina, and Panagiotis Vlamos. 2024. "Elucidating the Epigenetic and Protein Interaction Landscapes in Amyotrophic Lateral Sclerosis: An Integrated Bioinformatics Analysis" Sclerosis 2, no. 3: 140-155. https://doi.org/10.3390/sclerosis2030010
APA StyleKadena, K., & Vlamos, P. (2024). Elucidating the Epigenetic and Protein Interaction Landscapes in Amyotrophic Lateral Sclerosis: An Integrated Bioinformatics Analysis. Sclerosis, 2(3), 140-155. https://doi.org/10.3390/sclerosis2030010