Biomarkers Differentiating RRMS and SPMS in Multiple Sclerosis—A Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Selection
2.2. Selected Studies
2.3. Data Extraction and Quality Assessment
3. Results
3.1. Neurofilament Light Chain (NfL)
3.2. YKL-40/CHI3L1
3.3. Glial Fibrillary Acidic Protein (GFAP)
3.4. Brain-Derived Neurotrophic Factor (BDNF)
3.5. Immunological Cytokines
3.6. Monocyte Chemoattractant Protein-1 (MCP-1/CCL2)
3.7. Tau-Protein
3.8. Neurofilament Heavy Chain (NfH)
3.9. MMP-2
3.10. Galectin-9
3.11. N-Acetylaspartate (NAA)
3.12. CD86
3.13. Osteopontin
3.14. TIMP-1, MMP-9, and MMP-9/TIMP-1
4. Discussion
4.1. Neurofilament Light Chain (NfL)
4.2. Glial Fibrillary Protein (GFAP)
4.3. Chitinase-3-like Protein 1 (CHI3L1/YKL-40)
4.4. IL-1β
4.5. N-Acetylaspartate (NAA)
4.6. Galectin-9
4.7. Neurofilament Heavy Chain (NfH)
4.8. Monocyte Chemoattractant Protein-1 (MCP-1/CCL2)
4.9. IFN-γ
4.10. Osteopontin
4.11. Main Findings and Perspectives
4.12. Strengths and Limitations
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Compston, A.; Coles, A. Multiple sclerosis. Lancet 2008, 372, 1502–1517. [Google Scholar] [CrossRef] [PubMed]
- Thompson, A.J.; Baranzini, S.E.; Geurts, J.; Hemmer, B.; Ciccarelli, O. Multiple sclerosis. Lancet 2018, 391, 1622–1636. [Google Scholar] [CrossRef] [PubMed]
- Lublin, F.D.; Reingold, S.C.; Cohen, J.A.; Cutter, G.R.; Sørensen, P.S.; Thompson, A.J.; Wolinsky, J.S.; Balcer, L.J.; Banwell, B.; Barkhof, F.; et al. Defining the clinical course of multiple sclerosis: The 2013 revisions. Neurology 2014, 83, 278–286. [Google Scholar] [CrossRef] [PubMed]
- Kurtzke, J.F. Rating neurologic impairment in multiple sclerosis: An expanded disability status scale (EDSS). Neurology 1983, 33, 1444–1452. [Google Scholar] [CrossRef] [PubMed]
- Bosma, L.; Kragt, J.J.; Polman, C.H.; Uitdehaag, B.M. Walking speed, rather than Expanded Disability Status Scale, relates to long-term patient-reported impact in progressive MS. Mult. Scler. 2013, 19, 326–333. [Google Scholar] [CrossRef] [PubMed]
- Cadavid, D.; Cohen, J.A.; Freedman, M.S.; Goldman, M.D.; Hartung, H.P.; Havrdova, E.; Jeffery, D.; Kapoor, R.; Miller, A.; Sellebjerg, F.; et al. The EDSS-Plus, an improved endpoint for disability progression in secondary progressive multiple sclerosis. Mult. Scler. 2017, 23, 94–105. [Google Scholar] [CrossRef] [PubMed]
- D’Amico, E.; Haase, R.; Ziemssen, T. Review: Patient-reported outcomes in multiple sclerosis care. Mult. Scler. Relat. Disord. 2019, 33, 61–66. [Google Scholar] [CrossRef]
- De Angelis, F.; Plantone, D.; Chataway, J. Pharmacotherapy in Secondary Progressive Multiple Sclerosis: An Overview. CNS Drugs 2018, 32, 499–526. [Google Scholar] [CrossRef]
- Hauser, S.L.; Bar-Or, A.; Comi, G.; Giovannoni, G.; Hartung, H.P.; Hemmer, B.; Lublin, F.; Montalban, X.; Rammohan, K.W.; Selmaj, K.; et al. Ocrelizumab versus Interferon Beta-1a in Relapsing Multiple Sclerosis. N. Engl. J. Med. 2017, 376, 221–234. [Google Scholar] [CrossRef]
- Ferrazzano, G.; Crisafulli, S.G.; Baione, V.; Tartaglia, M.; Cortese, A.; Frontoni, M.; Altieri, M.; Pauri, F.; Millefiorini, E.; Conte, A. Early diagnosis of secondary progressive multiple sclerosis: Focus on fluid and neurophysiological biomarkers. J. Neurol. 2021, 268, 3626–3645. [Google Scholar] [CrossRef]
- Kapoor, R.; Smith, K.E.; Allegretta, M.; Arnold, D.L.; Carroll, W.; Comabella, M.; Furlan, R.; Harp, C.; Kuhle, J.; Leppert, D.; et al. Serum neurofilament light as a biomarker in progressive multiple sclerosis. Neurology 2020, 95, 436–444. [Google Scholar] [CrossRef] [PubMed]
- Krajnc, N.; Bsteh, G.; Berger, T. Clinical and Paraclinical Biomarkers and the Hitches to Assess Conversion to Secondary Progressive Multiple Sclerosis: A Systematic Review. Front. Neurol. 2021, 12, 666868. [Google Scholar] [CrossRef] [PubMed]
- Page, M.J.; Moher, D.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. PRISMA 2020 explanation and elaboration: Updated guidance and exemplars for reporting systematic reviews. BMJ 2021, 372, n160. [Google Scholar] [CrossRef] [PubMed]
- Team, T.E. EndNote; Clarivate: Philadelphia, PA, USA, 2013. [Google Scholar]
- Innovation, V.H. Covidence Systematic Review Software. Covidence: Melbourne, Australia.
- NIH; Blood Institute. Study Quality Assessment Tools. Available online: https://www.nhlbi.nih.gov/health-topics/study-quality-assessment-tools (accessed on 2 December 2022).
- Talaat, F.; Abdelatty, S.; Ragaie, C.; Dahshan, A. Chitinase-3-like 1-protein in CSF: A novel biomarker for progression in patients with multiple sclerosis. Neurol. Sci. 2023, 44, 3243–3252. [Google Scholar] [CrossRef]
- Loonstra, F.C.; de Ruiter, L.R.J.; Koel-Simmelink, M.J.A.; Schoonheim, M.M.; Strijbis, E.M.M.; Moraal, B.; Barkhof, F.; Uitdehaag, B.M.J.; Teunissen, C.; Killestein, J. Neuroaxonal and Glial Markers in Patients of the Same Age With Multiple Sclerosis. Neurol. Neuroimmunol. Neuroinflamm. 2023, 10, e200078. [Google Scholar] [CrossRef] [PubMed]
- Dias de Sousa, M.A.; Desidério, C.S.; da Silva Catarino, J.; Trevisan, R.O.; Alves da Silva, D.A.; Rocha, V.F.R.; Bovi, W.G.; Timoteo, R.P.; Bonatti, R.C.F.; da Silva, A.E.; et al. Role of Cytokines, Chemokines and IFN-γ(+) IL-17(+) Double-Positive CD4(+) T Cells in Patients with Multiple Sclerosis. Biomedicines 2022, 10, 2062. [Google Scholar] [CrossRef] [PubMed]
- Lamancová, P.; Urban, P.; Mašlanková, J.; Rabajdová, M.; Mareková, M. Correlation of selected serum protein levels with the degree of disability and NEDA-3 status in multiple sclerosis phenotypes. Eur. Rev. Med. Pharmacol. Sci. 2022, 26, 3933–3941. [Google Scholar] [CrossRef]
- Sağır, F.; Ersoy Tunalı, N.; Tombul, T.; Koral, G.; Çırak, S.; Yılmaz, V.; Türkoğlu, R.; Tüzün, E. miR-132-3p, miR-106b-5p, and miR-19b-3p Are Associated with Brain-Derived Neurotrophic Factor Production and Clinical Activity in Multiple Sclerosis: A Pilot Study. Genet. Test. Mol. Biomarkers 2021, 25, 720–726. [Google Scholar] [CrossRef]
- Uphaus, T.; Steffen, F.; Muthuraman, M.; Ripfel, N.; Fleischer, V.; Groppa, S.; Ruck, T.; Meuth, S.G.; Pul, R.; Kleinschnitz, C.; et al. NfL predicts relapse-free progression in a longitudinal multiple sclerosis cohort study. EBioMedicine 2021, 72, 103590. [Google Scholar] [CrossRef]
- Eslami, M.; Mirabi, A.M.; Baghbanian, M.; Rafiei, A. The Role of Interleukin-6 as an Indicator of Multiple Sclerosis Progression from Relapse Remitting to Secondary Progressive Status. Res. Mol. Med. 2020, 8, 1–8. [Google Scholar] [CrossRef]
- Ferraro, D.; Guicciardi, C.; De Biasi, S.; Pinti, M.; Bedin, R.; Camera, V.; Vitetta, F.; Nasi, M.; Meletti, S.; Sola, P. Plasma neurofilaments correlate with disability in progressive multiple sclerosis patients. Acta Neurol. Scand. 2020, 141, 16–21. [Google Scholar] [CrossRef] [PubMed]
- Högel, H.; Rissanen, E.; Barro, C.; Matilainen, M.; Nylund, M.; Kuhle, J.; Airas, L. Serum glial fibrillary acidic protein correlates with multiple sclerosis disease severity. Mult. Scler. 2020, 26, 210–219. [Google Scholar] [CrossRef] [PubMed]
- Naegelin, Y.; Saeuberli, K.; Schaedelin, S.; Dingsdale, H.; Magon, S.; Baranzini, S.; Amann, M.; Parmar, K.; Tsagkas, C.; Calabrese, P.; et al. Levels of brain-derived neurotrophic factor in patients with multiple sclerosis. Ann. Clin. Transl. Neurol. 2020, 7, 2251–2261. [Google Scholar] [CrossRef] [PubMed]
- Gencer, M.; Akbayir, E.; Sen, M.; Arsoy, E.; Yilmaz, V.; Bulut, N.; Tuzun, E.; Turkoglu, R. Serum orexin-A levels are associated with disease progression and motor impairment in multiple sclerosis. Neurol. Sci. 2019, 40, 1067–1070. [Google Scholar] [CrossRef] [PubMed]
- Gil-Perotin, S.; Castillo-Villalba, J.; Cubas-Nuñez, L.; Gasque, R.; Hervas, D.; Gomez-Mateu, J.; Alcala, C.; Perez-Miralles, F.; Gascon, F.; Dominguez, J.A.; et al. Combined Cerebrospinal Fluid Neurofilament Light Chain Protein and Chitinase-3 Like-1 Levels in Defining Disease Course and Prognosis in Multiple Sclerosis. Front. Neurol. 2019, 10, 1008. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, C.M.; Oliveira, S.R.; Alfieri, D.F.; Flauzino, T.; Kaimen-Maciel, D.R.; Simão, A.N.C.; Maes, M.; Reiche, E.M.V. Tumor necrosis factor alpha (TNF-α) and its soluble receptors are associated with disability, disability progression and clinical forms of multiple sclerosis. Inflamm. Res. 2019, 68, 1049–1059. [Google Scholar] [CrossRef] [PubMed]
- Barro, C.; Benkert, P.; Disanto, G.; Tsagkas, C.; Amann, M.; Naegelin, Y.; Leppert, D.; Gobbi, C.; Granziera, C.; Yaldizli, Ö.; et al. Serum neurofilament as a predictor of disease worsening and brain and spinal cord atrophy in multiple sclerosis. Brain 2018, 141, 2382–2391. [Google Scholar] [CrossRef] [PubMed]
- Herman, S.; Khoonsari, P.E.; Tolf, A.; Steinmetz, J.; Zetterberg, H.; Åkerfeldt, T.; Jakobsson, P.J.; Larsson, A.; Spjuth, O.; Burman, J.; et al. Integration of magnetic resonance imaging and protein and metabolite CSF measurements to enable early diagnosis of secondary progressive multiple sclerosis. Theranostics 2018, 8, 4477–4490. [Google Scholar] [CrossRef] [PubMed]
- Iacobaeus, E.; Douagi, I.; Jitschin, R.; Marcusson-Ståhl, M.; Andrén, A.T.; Gavin, C.; Lefsihane, K.; Davies, L.C.; Mougiakakos, D.; Kadri, N.; et al. Phenotypic and functional alterations of myeloid-derived suppressor cells during the disease course of multiple sclerosis. Immunol. Cell Biol. 2018, 96, 820–830. [Google Scholar] [CrossRef]
- Stein, J.; Xu, Q.; Jackson, K.C.; Romm, E.; Wuest, S.C.; Kosa, P.; Wu, T.; Bielekova, B. Intrathecal B Cells in MS Have Significantly Greater Lymphangiogenic Potential Compared to B Cells Derived From Non-MS Subjects. Front. Neurol. 2018, 9, 554. [Google Scholar] [CrossRef]
- Kallaur, A.P.; Oliveira, S.R.; Simão, A.N.C.; Alfieri, D.F.; Flauzino, T.; Lopes, J.; de Carvalho Jennings Pereira, W.L.; de Meleck Proença, C.; Borelli, S.D.; Kaimen-Maciel, D.R.; et al. Cytokine Profile in Patients with Progressive Multiple Sclerosis and Its Association with Disease Progression and Disability. Mol. Neurobiol. 2017, 54, 2950–2960. [Google Scholar] [CrossRef] [PubMed]
- Burman, J.; Raininko, R.; Blennow, K.; Zetterberg, H.; Axelsson, M.; Malmeström, C. YKL-40 is a CSF biomarker of intrathecal inflammation in secondary progressive multiple sclerosis. J. Neuroimmunol. 2016, 292, 52–57. [Google Scholar] [CrossRef] [PubMed]
- Burman, J.; Svenningsson, A. Cerebrospinal fluid concentration of Galectin-9 is increased in secondary progressive multiple sclerosis. J. Neuroimmunol. 2016, 292, 40–44. [Google Scholar] [CrossRef]
- Salehi, Z.; Doosti, R.; Beheshti, M.; Janzamin, E.; Sahraian, M.A.; Izad, M. Differential Frequency of CD8+ T Cell Subsets in Multiple Sclerosis Patients with Various Clinical Patterns. PLoS ONE 2016, 11, e0159565. [Google Scholar] [CrossRef] [PubMed]
- Mañé-Martínez, M.A.; Olsson, B.; Bau, L.; Matas, E.; Cobo-Calvo, Á.; Andreasson, U.; Blennow, K.; Romero-Pinel, L.; Martínez-Yélamos, S.; Zetterberg, H. Glial and neuronal markers in cerebrospinal fluid in different types of multiple sclerosis. J. Neuroimmunol. 2016, 299, 112–117. [Google Scholar] [CrossRef]
- Pasquali, L.; Lucchesi, C.; Pecori, C.; Metelli, M.R.; Pellegrini, S.; Iudice, A.; Bonuccelli, U. A clinical and laboratory study evaluating the profile of cytokine levels in relapsing remitting and secondary progressive multiple sclerosis. J. Neuroimmunol. 2015, 278, 53–59. [Google Scholar] [CrossRef]
- Acar, B.A.; Oztekin, Z.N.; Oztekin, M.F.; Acar, T. Serum MMP-2, MMP-9, TIMP-1 and TIMP-2 levels in multiple sclerosis clinical subtypes and their diagnostic value in the progressive disease course. Biomed. Res. 2014, 25, 343–350. [Google Scholar]
- Gresle, M.; Liu, Y.; Dagley, L.F.; Haartsen, J.; Pearson, F.; Purcell, A.W.; Laverick, L.; Petzold, A.; Lucas, R.M.; Van Der Walt, A.; et al. Serum phosphorylated neurofilament-heavy chain levels in multiple sclerosis patients. J. Neurol. Neurosurg. Psychiatry 2014, 85, 1209–1213. [Google Scholar] [CrossRef]
- Huber, A.K.; Wang, L.; Han, P.; Zhang, X.; Ekholm, S.; Srinivasan, A.; Irani, D.N.; Segal, B.M. Dysregulation of the IL-23/IL-17 axis and myeloid factors in secondary progressive MS. Neurology 2014, 83, 1500–1507. [Google Scholar] [CrossRef]
- Shimizu, Y.; Ota, K.; Ikeguchi, R.; Kubo, S.; Kabasawa, C.; Uchiyama, S. Plasma osteopontin levels are associated with disease activity in the patients with multiple sclerosis and neuromyelitis optica. J. Neuroimmunol. 2013, 263, 148–151. [Google Scholar] [CrossRef]
- Jaworski, J.; Psujek, M.; Janczarek, M.; Szczerbo-Trojanowska, M.; Bartosik-Psujek, H. Total-tau in cerebrospinal fluid of patients with multiple sclerosis decreases in secondary progressive stage of disease and reflects degree of brain atrophy. Ups. J. Med. Sci. 2012, 117, 284–292. [Google Scholar] [CrossRef] [PubMed]
- Axelsson, M.; Malmeström, C.; Nilsson, S.; Haghighi, S.; Rosengren, L.; Lycke, J. Glial fibrillary acidic protein: A potential biomarker for progression in multiple sclerosis. J. Neurol. 2011, 258, 882–888. [Google Scholar] [CrossRef] [PubMed]
- Ragheb, S.; Li, Y.; Simon, K.; VanHaerents, S.; Galimberti, D.; De Riz, M.; Fenoglio, C.; Scarpini, E.; Lisak, R. Multiple sclerosis: BAFF and CXCL13 in cerebrospinal fluid. Mult. Scler. 2011, 17, 819–829. [Google Scholar] [CrossRef] [PubMed]
- Correale, J.; Fiol, M. Chitinase effects on immune cell response in neuromyelitis optica and multiple sclerosis. Mult. Scler. 2011, 17, 521–531. [Google Scholar] [CrossRef] [PubMed]
- Benesova, Y.; Vako, A.; Novotna, H.; Litzman, J.; Stourac, P.; Beranek, M.; Kadanka, Z.; Bednarak, J. Matrix metalloproteinase-9 and matrix metalloproteinase-2 as biomarkers of various courses in multiple sclerosis. Mult. Scler. 2009, 15, 316–322. [Google Scholar] [CrossRef] [PubMed]
- Teunissen, C.E.; Iacobaeus, E.; Khademi, M.; Brundin, L.; Norgren, N.; Koel-Simmelink, M.J.; Schepens, M.; Bouwman, F.; Twaalfhoven, H.A.; Blom, H.J.; et al. Combination of CSF N-acetylaspartate and neurofilaments in multiple sclerosis. Neurology 2009, 72, 1322–1329. [Google Scholar] [CrossRef] [PubMed]
- Jasperse, B.; Jakobs, C.; Eikelenboom, M.J.; Dijkstra, C.D.; Uitdehaag, B.M.; Barkhof, F.; Polman, C.H.; Teunissen, C.E. N-acetylaspartic acid in cerebrospinal fluid of multiple sclerosis patients determined by gas-chromatography-mass spectrometry. J. Neurol. 2007, 254, 631–637. [Google Scholar] [CrossRef]
- Comabella, M.; Pericot, I.; Goertsches, R.; Nos, C.; Castillo, M.; Blas Navarro, J.; Río, J.; Montalban, X. Plasma osteopontin levels in multiple sclerosis. J. Neuroimmunol. 2005, 158, 231–239. [Google Scholar] [CrossRef] [PubMed]
- Filion, L.G.; Matusevicius, D.; Graziani-Bowering, G.M.; Kumar, A.; Freedman, M.S. Monocyte-derived IL12, CD86 (B7-2) and CD40L expression in relapsing and progressive multiple sclerosis. Clin. Immunol. 2003, 106, 127–138. [Google Scholar] [CrossRef]
- Karni, A.; Koldzic, D.N.; Bharanidharan, P.; Khoury, S.J.; Weiner, H.L. IL-18 is linked to raised IFN-gamma in multiple sclerosis and is induced by activated CD4+ T cells via CD40-CD40 ligand interactions. J. Neuroimmunol. 2002, 125, 134–140. [Google Scholar] [CrossRef]
- Sarchielli, P.; Greco, L.; Stipa, A.; Floridi, A.; Gallai, V. Brain-derived neurotrophic factor in patients with multiple sclerosis. J. Neuroimmunol. 2002, 132, 180–188. [Google Scholar] [CrossRef]
- Semra, Y.K.; Seidi, O.A.; Sharief, M.K. Heightened intrathecal release of axonal cytoskeletal proteins in multiple sclerosis is associated with progressive disease and clinical disability. J. Neuroimmunol. 2002, 122, 132–139. [Google Scholar] [CrossRef]
- Disanto, G.; Barro, C.; Benkert, P.; Naegelin, Y.; Schädelin, S.; Giardiello, A.; Zecca, C.; Blennow, K.; Zetterberg, H.; Leppert, D.; et al. Serum Neurofilament light: A biomarker of neuronal damage in multiple sclerosis. Ann. Neurol. 2017, 81, 857–870. [Google Scholar] [CrossRef] [PubMed]
- Freedman, M.S.; Gnanapavan, S.; Booth, R.A.; Calabresi, P.A.; Khalil, M.; Kuhle, J.; Lycke, J.; Olsson, T. Guidance for use of neurofilament light chain as a cerebrospinal fluid and blood biomarker in multiple sclerosis management. EBioMedicine 2024, 101, 104970. [Google Scholar] [CrossRef] [PubMed]
- Casanova, B.; Castillo, J.; Quintanilla-Bordás, C.; Sanz, M.T.; Fernández-Velasco, J.I.; Alcalá, C.; Carratalá, S.; Gasque, R.; Rubio, A.; Cubas, L.; et al. Oligoclonal M bands unveil occult inflammation in multiple sclerosis. Mult. Scler. Relat. Disord. 2022, 68, 104118. [Google Scholar] [CrossRef]
- Floro, S.; Carandini, T.; Pietroboni, A.M.; De Riz, M.A.; Scarpini, E.; Galimberti, D. Role of Chitinase 3-like 1 as a Biomarker in Multiple Sclerosis: A Systematic Review and Meta-analysis. Neurol. Neuroimmunol. Neuroinflamm. 2022, 9, e1164. [Google Scholar] [CrossRef]
- Dujmovic, I.; Mangano, K.; Pekmezovic, T.; Quattrocchi, C.; Mesaros, S.; Stojsavljevic, N.; Nicoletti, F.; Drulovic, J. The analysis of IL-1 beta and its naturally occurring inhibitors in multiple sclerosis: The elevation of IL-1 receptor antagonist and IL-1 receptor type II after steroid therapy. J. Neuroimmunol. 2009, 207, 101–106. [Google Scholar] [CrossRef]
- Hjæresen, S.; Sejbaek, T.; Axelsson, M.; Mortensen, S.K.; Vinsløv-Jensen, H.; Pihl-Jensen, G.; Novakova, L.; Pedersen, C.B.; Halle, B.; Poulsen, F.R.; et al. MIF in the cerebrospinal fluid is decreased during relapsing-remitting while increased in secondary progressive multiple sclerosis. J. Neurol. Sci. 2022, 439, 120320. [Google Scholar] [CrossRef] [PubMed]
- Huss, A.; Otto, M.; Senel, M.; Ludolph, A.C.; Abdelhak, A.; Tumani, H. A Score Based on NfL and Glial Markers May Differentiate Between Relapsing-Remitting and Progressive MS Course. Front. Neurol. 2020, 11, 608. [Google Scholar] [CrossRef]
- Zahoor, I.; Rui, B.; Khan, J.; Datta, I.; Giri, S. An emerging potential of metabolomics in multiple sclerosis: A comprehensive overview. Cell Mol. Life Sci. 2021, 78, 3181–3203. [Google Scholar] [CrossRef]
First Author, Year of Publication, Country | Diagnostic Criteria | Study Design | Total Number of Participants | Sex (Female/Male) | Age | Biomarker(s) | p-Value | Mean/ Median Difference | Risk of Bias |
---|---|---|---|---|---|---|---|---|---|
Talaat, 2023, Egypt [17] | McDonald 2017 | Case–control study | RRMS (n = 30) SPMS (n = 16) PPMS (n = 6) | RRMS (24/6) SPMS (12/4) PPMS (4/2) | (Mean) RRMS 28.23 SPMS 32.31 PPMS 34.21 | CSF-CHI3L1 (ng/mL) | RRMS vs. PMS p ≤ 0.001 | 127% | Fair |
Loonstra, 2023, The Netherlands [18] | McDonald 2017 | Cross-sectional study | RRMS (n = 171) SPMS (n = 79) | RRMS (140/31) SPMS (47/32) | (Mean) RRMS 52.88 SPMS 52.9 | s-NfL (pg/mL) s-GFAP (pg/mL) | RRMS vs. SPMS p = 0.009 RRMS vs. SPMS p = 0.043 | 17% 19% | Good |
Dias de Sousa, 2022, Brazil [19] | McDonald 2010 | Cross-sectional study | RRMS (n = 21) SPMS (n = 6) | RRMS (17/4) SPMS (5/1) | (Mean) F-RRMS 40.1 M-RRMS 32.8 F-SPMS 52.2 M-SPMS 60 | p-IL-2 (pg/mL) p-IL-8 (pg/mL) p-IL-1β (pg/mL) p-IL-6 (pg/mL) p-IL-12 (pg/mL) p-TNF-α (pg/mL) p-IFN-γ (pg/mL) p-IL-4 (pg/mL) p-IL-10 (pg/mL) p-BDNF (pg/mL) Cultures of PBMC IL-4 (pg/mL) IFN-γ (pg/mL) IL-10 (pg/mL) IL-17 (pg/mL) TNF-α (pg/mL) IL-6 (pg/mL) | RRMS vs. SPMS ns RRMS vs. SPMS ns RRMS vs. SPMS ns RRMS vs. SPMS ns RRMS vs. SPMS ns RRMS vs. SPMS ns RRMS vs. SPMS ns RRMS vs. SPMS ns RRMS vs. SPMS ns RRMS vs. SPMS ns RRMS vs. SPMS p < 0.05 RRMS vs. SPMS p < 0.05 RRMS vs. SPMS ns RRMS vs. SPMS p < 0.05 RRMS vs. SPMS ns RRMS vs. SPMS ns | ND | Poor |
Lamancová, 2022, Slovakia [20] | Lublin 2013 | Cohort study | RRMS (n = 40) SPMS (n = 25) | RRMS (24/16) SPMS (10/15) | (Mean) RRMS 39 SPMS 49 | s-CXCL13 (pg/mL) s-CHI3L1 (pg/mL) s-NfL (pg/mL) s-MCP-1 (pg/mL) s-MMP-2 (pg/mL) s-MMP-9 (pg/mL) | RRMS vs. SPMS p < 0.001 RRMS vs. SPMS p < 0.01 RRMS vs. SPMS p < 0.001 RRMS vs. SPMS p < 0.01 RRMS vs. SPMS p < 0.001 RRMS vs. SPMS ns | 75% 81% 85% 31% Decrease Decrease | Poor/fair |
Sağir, 2021, Turkey [21] | McDonald 2017 | Cross-sectional study | RRMS (n = 12) SPMS (n = 7) | RRMS (9/3) SPMS (5/2) | (Mean) RRMS 44.0 SPMS 50.4 | s-BDNF (pg/mL) | RRMS vs. SPMS p < 0.05 | Decrease | Poor |
Uphaus, 2021, Germany [22] | McDonald 2017 | Cohort study | RRMS (n = 169) SPMS (n = 27) | RRMS (116/53) SPMS (21/6) | (Median) Follow-up: RRMS 39.1 SPMS 51.1 | s-NfL (pg/mL) | Follow-up: RRMS vs. SPMS p < 0.001 | 51% | Fair/good |
Eslami, 2020, Iran [23] | McDonald 2017 | Cross-sectional study | RRMS (n = 51) SPMS (n = 25) | RRMS (41/10) SPMS (13/12) | (Mean) RRMS 33.7 SPMS 37.6 | s-IL-6 (pg/mL) s-IL-8 (pg/mL) | RRMS vs. SPMS p = 0.008 RRMS vs. SPMS ns | 92% 12% | Poor |
Ferraro, 2020, Italy [24] | McDonald 2010 | Cohort study | RRMS (n = 21) SPMS (n = 43) PPMS (n = 27) | RRMS (15/6) PMS (49/21) | (Median) RRMS 40 PMS 60 | p-NfL (pg/mL) | RRMS vs. PMS p = 0.007 | 32% | Poor |
Högel, 2020, Finland [25] | ND | Cross-sectional study | RRMS (n = 46) SPMS (n = 33) | RRMS (36/10) SPMS (20/13) | (Median) RRMS 46.32 SPMS 56.12 | s-GFAP (pg/mL) s-NfL (pg/mL) | RRMS vs. SPMS p < 0.001 RRMS vs. SPMS p < 0.001 | 83% 71% | Fair |
Naegelin, 2020, Switzerland [26] | McDonald 2001 | Cohort study | RRMS (n = 178) SPMS (n = 56) | RRMS (138/40) SPMS (29/27) | (Mean) RRMS 41.74 SPMS 53.77 | s-BDNF (ng/mL) | RRMS vs. SPMS p = 0.004 | −6% | Good |
Gencer, 2019, Turkey [27] | McDonald 2010 | Cross-sectional study | RRMS (n = 25) SPMS (n = 15) | RRMS (19/6) SPMS (10/5) | (Median) RRMS 35 SPMS 45 | s-BDNF (ng/mL) | RRMS vs. SPMS p = 0.065 | Decrease | Poor |
Gil-Perotin, 2019, Spain [28] | McDonald 2017 | Cohort study | RRMS (n = 99) SPMS (n = 35) PPMS (n = 23) | RRMS (79/20) SPMS (21/14) PPMS (10/13) | (Median) RRMS 35 SPMS 45 PPMS 51 | CSF-NfL (pg/mL) CSF-CHI3L1 (ng/mL) | RRMS vs. PMS ns RRMS vs. SPMS ns | −10% 17% | Fair |
Ribeiro, 2019, Switzerland [29] | McDonald 2010 | Cross-sectional study | RRMS (n = 147) SPMS (n = 17) PPMS (n = 4) | All MS (119/49) | (Mean) All MS 42.02 | s-TNF-α (pg/mL) | RRMS vs. PMS p = 0.802 | No difference | Poor |
Barro, 2018, Switzerland [30] | Lublin 1996, McDonald 2001 and 2005 | Cohort study | RRMS + CIS (n = 189) SPMS (n = 54) PPMS (n = 14) | All MS (179/78) | (Median) All MS 44.0 | s-NFL (pg/mL) | RRMS + CIS vs. PMS < 0.001 | 41% | Good |
Herman, 2018, Sweden [31] | McDonald 2005 | Cohort study | RRMS (n = 30) SPMS (n = 16) | RRMS (21/9) SPMS (10/6) | (Mean) RRMS 39 SPMS 58 | CSF-Galectin-9 (pg/mL) CSF-MCP-1 (pg/mL) CSF-TNF-α (pg/mL) | RRMS vs. SPMS p = 0.007 RRMS vs. SPMS p = 0.006 RRMS vs. SPMS p = 0.08 | 30% 35% 42% | Fair/good |
Iacobaeus, 2018, Sweden [32] | McDonald 2010 | Cross-sectional study | RRMS (n = 47) SPMS (n = 29) | RRMS (31/16) SPMS (20/9) | (Mean) RRMS 34 SPMS 60 | p-CD86 p-IL-10 p-IL-17 p-TGF-beta1 | RRMS-rem vs. SPMS p < 0.01 RRMS vs. SPMS p < 0.05 RRMS vs. SPMS ns RRMS vs. SPMS ns | Decrease Decrease Decrease Increase | Poor |
Stein, 2018, USA [33] | McDonald 2010 | Cross-sectional study | RRMS (n = 26) SPMS (n = 24) | RRMS (15/11) SPMS (12/12) PPMS (9/20) | (Median) RRMS 38 SPMS 50 PPMS 53 | CSF-IL-1β (pg/mL) CSF-IL-6 (pg/mL) CSF-TNF-α (pg/mL) CSF-IL-10 (pg/mL) | RRMS vs. SPMS p = 0.0377 RRMS vs. SPMS ns RRMS vs. SPMS ns RRMS vs. SPMS ns | 65% 33% 63% 87% | Fair |
Kallaur, 2017, Brazil [34] | McDonald 2010 | Cohort study | RRMS (n = 126) SPMS (n = 25) PPMS (n = 9) | All MS (99/59) | (Median) RRMS 44 PMS 53 | s-IL-1β (pg/mL) s-IL-6 (pg/mL) s-TNF-α (pg/mL) s-IFN-γ (pg/mL) s-IL-12 (pg/mL) s-IL-17 (pg/mL) s-IL-4 (pg/mL) s-IL-10 (pg/mL) | RRMS vs. PMS p = 0.0168 RRMS vs. PMS p = 0.6041 RRMS vs. PMS p = 0.8734 RRMS vs. PMS p = 0.0309 RRMS vs. PMS p = 0.0003 RRMS vs. PMS p = 0.9081 RRMS vs. PMS p = 0.0509 RRMS vs. PMS p = 0.2557 | 125% 17% 0% 21% 0% 0% 0% 12% | Good/fair |
Burman, 2016, Sweden [35] | McDonald 2010 | Cross-sectional study | Cohort A: RRMS-rem (n = 18) SPMS (n = 20) Cohort B RRMS-rem (n = 11) SPMS (n = 15) | Cohort A RRMS-rem (12/6) SPMS (11/9) | (Median) Cohort A RRMS-rem 39 SPMS 59 | CSF-YKL-40 (ng/mL) | Cohort A + B SPMS vs. RRMS-rem ns | Increase | Poor |
Burman, 2016, Sweden [36] | McDonald 2010 | Cross-sectional study | Cohort A RRMS (n = 25) SPMS (n = 22) Cohort B RRMS (n = 31) SPMS (n = 16) | Cohort A RRMS (18/7) SPMS (15/7) Cohort B RRMS (21/10) SPMS (9/7) | (Median) RRMS (A:36)(B:39) SPMS (A:59)(B:58.5) | CSF-Galectin-9 (pg/mL) | A: RRMS vs. SPMS p < 0.01 B: RRMS vs. SPMS p < 0.05 A+B: RRMS vs. SPMS p < 0.001 | 31% 24% 27% | Fair |
Salehi, 2016, Iran [37] | McDonald 2010 | Cross-sectional study | RRMS-rem (n = 14) SPMS (n = 10) | RRMS-rem (13/1) SPMS (8/2) | (Mean) RRMS-rem 35.07 SPMS 35.50 | s-CD8: IFN-γ s-CD8: IL-17 s-CD8: TNF-α | RRMS-rem vs. SPMS ns RRMS-rem vs. SPMS ns RRMS-rem vs. SPMS ns | 9% −28% −3% | Poor/fair |
Mañé-Martínez, 2016, Spain [38] | Poser, McDonald 2001 and 2005 | Cross-sectional study | RRMS (n = 192) SPMS (n = 6) | RRMS (121/71) SPMS (4/6) | (Mean) RRMS 34.8 SPMS 43.5 | CSF-NfL (ng/L) CSF-GFAP (ng/L) CSF-YKL-40 (ng/mL) CSF-MCP-1 (pg/mL) CSF-t-tau (pg/mL) CSF-p-tau (pg/mL) | RRMS vs. SPMS ns RRMS vs. SPMS ns RRMS vs. SPMS ns RRMS vs. SPMS ns RRMS vs. SPMS ns RRMS vs. SPMS ns | −51% 47% −11% 5% 47% 33% | Fair |
Pasquali, 2015, Italy [39] | McDonald 2010 | Cross-sectional study | RRMS (n = 30) SPMS (n = 30) | RRMS (21/9) SPMS (19/11) | (Mean) RRMS 40.8 SPMS 56.4 | s-IL-17 s-IFN-γ s-TGF-beta1 s-IL-2 s-IL-4 s-IL-6 s-IL-8 s-IL-10 s-IL-12 s-TNF-alfa | RRMS vs. SPMS p = 0.003 RRMS vs. SPMS p = 0.013 RRMS vs. SPMS p = 0.029 RRMS vs. SPMS ns RRMS vs. SPMS ns RRMS vs. SPMS ns RRMS vs. SPMS ns RRMS vs. SPMS ns RRMS vs. SPMS ns RRMS vs. SPMS ns | −69% −37% 42% 22% 6% −42% 49% −17% 17% 40% | Good |
Acar, 2014, Turkey [40] | McDonald 2010 | Cross-sectional study | RRMS (n = 58) SPMS (n = 21) PPMS (n = 4) PRMS (n = 6) | RRMS (40/18) PMS (19/12) | (Mean) RRMS 34.5 PMS 40.4 | s-TIMP1 (ng/mL) s-MMP9/TIMP1 | RRMS vs. PMS ns RRMS vs. PMS ns | 14% −28% | Fair |
Gresle, 2014, Australia [41] | ND | Cohort study | RRMS (n = 81) SPMS (n = 13) | RRMS (55/26) SPMS (10/3) | (Median) RRMS 44.5 SPMS 55 | s-pNfH (ng/mL) | RRMS vs. SPMS p = 0.048 | Δ0.18 ng/mL | Fair |
Huber, 2014, USA [42] | McDonald 2010 | Cohort study | RRMS (n = 12) SPMS (n = 26) | RRMS (5/7) SPMS (11/15) | (Mean) RRMS 46.3 SPMS 53.8 | Cultures of PBMC p-IL-17 (pg/mL) p-IFN-γ (pg/mL) | RRMS vs. SPMS p = 0.114 RRMS vs. SPMS p = 0.792 | Increase Decrease | Good |
Shimizu, 2013, Japan [43] | ND | Cross-sectional study | RRMS (n = 11) SPMS (n = 6) | All MS (6/11) | (Mean) All MS 38.3 | s-osteopontin (ng/mL) | RRMS vs. SPMS p < 0.05 | 75% | Poor |
Jaworski, 2012, Poland [44] | McDonald 2001 | Cross-sectional study | RRMS (n = 34) SPMS (n = 14) | RRMS (22/12) SPMS (5/9) | (Mean) RRMS 32.8 SPMS 44.5 | CSF t-tau (pg/mL) CSF p-tau (pg/mL) s-p-tau (pg/mL) | RRMS vs. SPMS p = 0.01 RRMS vs. SPMS ns RRMS vs. SPMS ns | −38% −21% 24% | Poor |
Axelsson, 2011, Sweden [45] | McDonald 2001 | Cohort study | Baseline: RRMS (n = 15) SPMS (n = 10) 8–10 years follow-up: RRMS (n = 10) SPMS (n = 15) | RRMS (3/12) SPMS (6/4) | (Mean) RRMS 40 SPMS 43 | CSF-GFAP (ng/L) CSF-NfL (ng/L) | Follow up: RRMS vs. SPMS ns RRMS vs. SPMS ns | 16% −1% | Fair |
Ragheb, 2011, USA [46] | McDonald 2001 or 2005 | Case–control study | RRMS (n = 42) SPMS (n = 8) | All MS (39/11) | (Mean) All MS 43.9 | CSF-CXCL13 (pg/mL) | RRMS vs. SPMS ns | −77% | Poor/fair |
Correale, 2010, Argentina [47] | Poser and McDonald 2001 | Cross-sectional study | RRMS (n = 24) SPMS (n = 24) | RRMS (16/8) SPMS (16/8) | (Mean) RRMS 37.3 SPMS 38.5 | CSF-CHI3L1 (ng/mL) s-CHI3L1 (ng/mL) | RRMS vs. SPMS p < 0.01 RRMS vs. SPMS ns | −26% Equal | Fair |
Benešová, 2009, Czech Republic [48] | McDonald 2001 | Cross-sectional study | RRMS (n = 40) SPMS (n = 20) | RRMS (29/11) SPMS (14/6) | (Mean) RRMS 32.2 SPMS 47.5 | s-MMP-9 (ng/mL) s-MMP-2 (ng/mL) s-MMP-9/TIMP-1 s-TIMP-1 (ng/mL) | RRMS vs. SPMS ns RRMS vs. SPMS p < 0.002 RRMS vs. SPMS ns RRMS vs. SPMS ns | 7% 26% 4% −6% | Fair |
Teunissen, 2009, The Netherlands [49] | McDonald 2001 | Cross-sectional study | RRMS (n = 42) SPMS (n = 28) | RRMS (26/16) SPMS (17/11) | (Mean) RRMS 37 SPMS 54 | CSF-NAA (mmol/L) CSF-NfH (Unit/mL) CSF-NfL (ng/L) CSF-t-Tau (ng/L) | RRMS vs. SPMS p < 0.05 RRMS vs. SPMS p < 0.05 RRMS vs. SPMS ns RRMS vs. SPMS ns | Decrease Increase Decrease Decrease | Fair |
Jasperse, 2007, The Netherlands [50] | Poser | Cross-sectional study | RRMS (n = 26) SPMS (n = 12) | RRMS (17/9) SPMS (5/7) | (Median) RRMS 43.5 SPMS 49.6 | CSF-NAA (μmol/L) | RRMS vs. SPMS p = 0.015 | Decrease | Fair |
Comabella, 2004, Spain [51] | Lublin 1996 | Cross-sectional study | RRMS (n = 46) SPMS (n = 35) | RRMS (29/17) SPMS (28/7) | (Mean) RRMS 35.6 SPMS 47.5 | p-osteopontin (ng/mL) | RRMS-rem vs. SPMS p < 0.0005 | Increase | Fair |
Filion, 2003, Canada [52] | Poser | Cross-sectional study | RRMS − therapy (n = 23) RRMS + therapy (n = 23) SPMS (n = 29) | RRMS − therapy (13/10) RRMS +therapy (15/8) SPMS (18/11) | (Median) RRMS − therapy 38 RRMS +therapy 40 SPMS 50 | s-CD86 (MFI) s-IL-1β (pg/mL) s-IL-6 (pg/mL) s-IL-10 (pg/mL) s-IL-12 (pg/mL) s-TNF-α (pg/mL) | RRMS− vs. SPMS p < 0.05 RRMS+ vs. SPMS ns RRMS− vs. SPMS ns RRMS+ vs. SPMS p < 0.05 RRMS− vs. SPMS ns RRMS+ vs. SPMS ns RRMS− vs. SPMS ns RRMS+ vs. SPMS ns RRMS− vs. SPMS p < 0.001 RRMS+ vs. SPMS p < 0.001 RRMS− vs. SPMS p < 0.05 RRMS+ vs. SPMS p < 0.001 | Increase Increase Increase Increase Increase Increase Increase Increase Increase Increase Increase Increase | Fair |
Karni, 2002, USA [53] | ND | Cross-sectional study | RRMS (n = 39) SPMS (n = 18) | RRMS (34/5) SPMS (13/5) | (Mean) RRMS 36.7 SPMS 56.5 | s-IFN-γ (pg/mL) | RRMS vs. SPMS p = 0.028 | 55% | Poor |
Sarchielli, 2002, Italy [54] | Poser | Cross-sectional study | RRMS (n = 20) SPMS (n = 15) | RRMS (13/7) SPMS (10/5) | (Mean) RRMS 33.5 SPMS 38.4 | CSF-BDNF (pg/mL) | RRMS vs. SPMS ns | −6% | Fair |
Semra, 2002, England [55] | Poser | Cross-sectional study | RRMS (n = 16) SPMS (n = 13) PPMS (n = 6) | RRMS (9/7) SPMS (8/5) PMS (2/4) | (Mean) RRMS 32.6 SPMS 45.3 PPMS 41.2 | CSF-NfL (Unit/mg) | RRMS vs. PMS p = 0.14 | Increase | Poor |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Toftegaard, C.; Severinsen, C.M.; Jensen, H.B. Biomarkers Differentiating RRMS and SPMS in Multiple Sclerosis—A Systematic Review. Sclerosis 2024, 2, 166-185. https://doi.org/10.3390/sclerosis2030012
Toftegaard C, Severinsen CM, Jensen HB. Biomarkers Differentiating RRMS and SPMS in Multiple Sclerosis—A Systematic Review. Sclerosis. 2024; 2(3):166-185. https://doi.org/10.3390/sclerosis2030012
Chicago/Turabian StyleToftegaard, Camilla, Charlotte Marie Severinsen, and Henrik Boye Jensen. 2024. "Biomarkers Differentiating RRMS and SPMS in Multiple Sclerosis—A Systematic Review" Sclerosis 2, no. 3: 166-185. https://doi.org/10.3390/sclerosis2030012
APA StyleToftegaard, C., Severinsen, C. M., & Jensen, H. B. (2024). Biomarkers Differentiating RRMS and SPMS in Multiple Sclerosis—A Systematic Review. Sclerosis, 2(3), 166-185. https://doi.org/10.3390/sclerosis2030012