Preclinical and Clinical Data on Current Therapeutic Options for Micro- and Macrovascular Abnormalities in Systemic Sclerosis
Abstract
:1. Introduction
2. Pathogenesis of Vascular Abnormalities in SSc
2.1. Role of Autoantibodies in Immunopathogenesis of SSc
2.2. Immune Cell Involvement in SSc
2.3. Mechanisms of Endothelial Dysfunction and Injury in SSc
2.4. Biomarkers of Endothelial Damage
2.5. Fibrotic Processes and Remodeling Affecting Blood Vessels
2.6. Molecular Mediators of Fibrosis
2.7. Genetic Markers Associated with Vascular Abnormalities in SSc
2.8. Key Signaling Pathways Involved in Vascular Abnormalities
3. Microvascular Abnormalities in SSc
3.1. Microvascular Abnormalities Mechanisms
3.2. Clinical Manifestations of Microvascular Abnormalities in Systemic Sclerosis
3.3. Diagnostic Techniques for Microvascular Abnormalities
4. Macrovascular Abnormalities
4.1. Mechanisms of Macrovascular Involvement and Damage in SSc
4.2. Clinical Manifestations of Macrovascular Abnormalities
4.3. Diagnostic Techniques for Macrovascular Abnormalities
5. Treatment Approaches in Vascular Abnormalities in SSc Patients
5.1. Pharmacological Treatments
5.2. Specific Treatment Options for SSc-Associated Conditions
5.2.1. Pulmonary Hypertension
5.2.2. Raynaud’s Phenomenon
5.2.3. Scleroderma Renal Crisis
5.2.4. Other Vascular Complications in Scleroderma
5.3. Non-Pharmacological Treatments for SSc
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Denton, C.P.; Khonn, D. Systemic Sclerosis. Lancet 2017, 390, 1685–1699. [Google Scholar] [CrossRef] [PubMed]
- Van den Hoogen, F.; Khanna, D.; Fransen, J.; Johnson, S.R.; Baron, M.; Tyndall, A.; Matucci-Cerinic, M.; Naden, R.P.; Medsger, T.A., Jr.; Carreira, P.E.; et al. 2013 classification criteria for systemic sclerosis: An American college of rheumatology/European league against rheumatism collaborative initiative. Ann. Rheum. Dis. 2013, 72, 1747–1755. [Google Scholar] [CrossRef] [PubMed]
- Araujo, F.C.; Camargo, C.; Kayser, C. Validationof the ACR/EULAR classification criteria for systemic sclerosis in patients with early scleroderma. Rheumatol. Int. 2017, 37, 1825–1833. [Google Scholar] [CrossRef] [PubMed]
- Rubio-Rivas, M.; Royo, C.; Simeon, C.P.; Corbella, X.; Fanollosa PLa, V. Epidemiology of systemic sclerosis: A systemic review of population-based studies. Clin. Epidemiol. 2020, 12, 257–267. [Google Scholar]
- Pattanaik, D.; Brown, M.; Pastlethuaite, B.C.; Postkethuaite, A.E. Pathogenesis of systemic sclerosis. Front. Immunol. 2015, 6, 272. [Google Scholar] [CrossRef] [PubMed]
- Tsou, P.S.; Varga, J.; O’Reilly, S. Advances in epigenetics in systemic sclerosis: Molecular mechanisms and therapeutic potential. Nat. Rev. Rheumatol. 2021, 17, 596–607. [Google Scholar] [CrossRef]
- Raschi, E.; Privitera, D.; Bodio, C.; Lonati, P.A.; Borghi, M.O.; Ingegnoli, F.; Meroni, P.L.; Chighizola, C.B. Scleroderma-specific autoantibodies embedded in immune complexes mediate endothelial damage: An early event in the pathogenesis of systemic sclerosis. Arthritis Res. Ther. 2020, 22, 265. [Google Scholar] [CrossRef]
- Dib, H.; Tamby, M.C.; Bussone, G.; Regent, A.; Berezné, A.; Lafine, C.; Broussard, C.; Simonneau, G.; Guillevin, L.; Witko-Sarsat, V.; et al. Targets of anti-endothelial cell antibodies in pulmonary hypertension and scleroderma. Eur. Respir. J. 2012, 39, 1405–1414. [Google Scholar] [CrossRef]
- Cutolo, M.; Soldano, S.; Smith, V. Pathophysiology of systemic sclerosis: Current understanding and new insights. Expert. Rev. Clin. Immunol. 2019, 15, 753–764. [Google Scholar] [CrossRef] [PubMed]
- Bellando-Randone, S.; Della-Torre, E.; Balanescu, A. The role of interleukin-17 in the pathogenesis of systemic sclerosis: Pro-fibrotic or antifibrotic? J. Scleroderma Relat. Disord. 2021, 6, 227–235. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kurzinski, K.; Torok, K.S. Cytokine profiles in localized scleroderma and relationship to clinical features. Cytokine 2011, 55, 157–164. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ko, J.; Noviani, M.; Chellamuthu, V.R.; Albani, S.; Low, A.H.L. The Pathogenesis of Systemic Sclerosis: The Origin of Fibrosis and Interlink with Vasculopathy and Autoimmunity. Int. J. Mol. Sci. 2023, 24, 14287. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Brown, M.; O’Reilly, S. The immunopathogenesis of fibrosis in systemic sclerosis. Clin. Exp. Immunol. 2019, 195, 310–321. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bălănescu, P.; Bălănescu, E.; Bălănescu, A. IL-17 and Th17 cells in systemic sclerosis: A comprehensive review. Rom. J. Intern. Med. 2017, 55, 198–204. [Google Scholar] [CrossRef] [PubMed]
- Lei, L.; Zhao, C.; Qin, F.; He, Z.Y.; Wang, X.; Zhong, X.N. Th17 cells and IL-17 promote the skin and lung inflammation and fibrosis process in a bleomycin-induced murine model of systemic sclerosis. Clin. Exp. Rheumatol. 2016, 34 (Suppl. S100), 14–22. [Google Scholar] [PubMed]
- O’Reilly, S.; Ciechomska, M.; Cant, R.; van Laar, J.M. Interleukin-6 (IL-6) trans signaling drives a STAT3-dependent pathway that leads to hyperactive transforming growth factor-β (TGF-β) signaling promoting SMAD3 activation and fibrosis via Gremlin protein. J. Biol. Chem. 2014, 289, 9952–9960. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Denton, C.P.; Ong, V.H.; Xu, S.; Chen-Harris, H.; Modrusan, Z.; Lafyatis, R.; Khanna, D.; Jahreis, A.; Siegel, J.; Sornasse, T. Therapeutic interleukin-6 blockade reverses transforming growth factor-beta pathway activation in dermal fibroblasts: Insights from the faSScinate clinical trial in systemic sclerosis. Ann. Rheum. Dis. 2018, 77, 1362–1371. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Odell, I.D.; Agrawal, K.; Sefik, E.; Odell, A.V.; Caves, E.; Kirkiles-Smith, N.C.; Horsley, V.; Hinchcliff, M.; Pober, J.S.; Kluger, Y.; et al. IL-6 trans-signaling in a humanized mouse model of scleroderma. Proc. Natl. Acad. Sci. USA 2023, 120, e2306965120. [Google Scholar] [CrossRef]
- Steadman, T.; O’Reilly, S. Elevated interleukin-11 in systemic sclerosis and role in disease pathogenesis. J. Dermatol. 2023, 50, 1255–1261. [Google Scholar] [CrossRef] [PubMed]
- Ye, W.; Wang, Q.; Zhao, L.; Wang, C.; Zhang, D.; Zhou, M.; Chen, F.; Wang, W.; Zhu, Z.; Guo, W.; et al. Blockade of IL-11 Trans-Signaling or JAK2/STAT3 Signaling Ameliorates the Profibrotic Effect of IL-11. Immunol. Investig. 2023, 52, 703–716. [Google Scholar] [CrossRef] [PubMed]
- Zanin-Silva, D.C.; Santana-Gonçalves, M.; Kawashima-Vasconcelos, M.Y.; Oliveira, M.C. Management of Endothelial Dysfunction in Systemic Sclerosis: Current and Developing Strategies. Front. Med. 2021, 8, 788250. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Muruganandam, M.; Ariza-Hutchinson, A.; Patel, R.A.; Sibbitt, W.L., Jr. Biomarkers in the Pathogenesis, Diagnosis, and Treatment of Systemic Sclerosis. J. Inflamm. Res. 2023, 16, 4633–4660. [Google Scholar] [CrossRef] [PubMed]
- Ramadhiani, R.; Ikeda, K.; Hirata, K.I.; Emoto, N. Endothelial Cell Senescence Exacerbates Pulmonary Fibrosis Potentially Through Accelerated Endothelial to Mesenchymal Transition. Kobe J. Med. Sci. 2021, 67, E84–E91. [Google Scholar] [PubMed]
- Tsou, P.S.; Shi, B.; Varga, J. Role of cellular senescence in the pathogenesis of systemic sclerosis. Curr. Opin. Rheumatol. 2022, 34, 343–350. [Google Scholar] [CrossRef]
- Chiu, Y.H.; Spierings, J.; van Laar, J.M.; de Vries-Bouwstra, J.K.; van Dijk, M.; Goldschmeding, R. Association of endothelial to mesenchymal transition and cellular senescence with fibrosis in skin biopsies of systemic sclerosis patients: A cross-sectional study. Clin. Exp. Rheumatol. 2023, 41, 1612–1617. [Google Scholar] [CrossRef]
- Brindle, N.P.; Saharinen, P.; Alitalo, K. Signaling and functions of angiopoietin-1 in vascular protection. Circ. Res. 2006, 98, 1014–1023. [Google Scholar] [CrossRef]
- Di Maggio, G.; Confalonieri, P.; Salton, F.; Trotta, L.; Ruggero, L.; Kodric, M.; Geri, P.; Hughes, M.; Bellan, M.; Gilio, M.; et al. Biomarkers in Systemic Sclerosis: An Overview. Curr. Issues Mol. Biol. 2023, 45, 7775–7802. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Prajjwal, P.; Marsool, M.D.M.; Yadav, V.; Kanagala, R.S.D.; Reddy, Y.B.; John, J.; Lam, J.R.; Karra, N.; Amiri, B.; Islam, M.U.; et al. Neurological, cardiac, musculoskeletal, and renal manifestations of scleroderma along with insights into its genetics, pathophysiology, diagnostic, and therapeutic updates. Health Sci. Rep. 2024, 7, e2072. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- López-Isac, E.; Acosta-Herrera, M.; Kerick, M.; Assassi, S.; Satpathy, A.T.; Granja, J.; Mumbach, M.R.; Beretta, L.; Simeón, C.P.; Carreira, P.; et al. GWAS for systemic sclerosis identifies multiple risk loci and highlights fibrotic and vasculopathy pathways. Nat. Commun. 2019, 10, 4955. [Google Scholar] [CrossRef]
- Ishikawa, Y.; Tanaka, N.; Asano, Y.; Kodera, M.; Shirai, Y.; Akahoshi, M.; Hasegawa, M.; Matsushita, T.; Saito, K.; Motegi, S.-I.; et al. GWAS for systemic sclerosis identifies six novel susceptibility loci including one in the Fcγ receptor region. Nat. Commun. 2024, 15, 319. [Google Scholar] [CrossRef]
- Ota, Y.; Kuwana, M. Updates on genetics in systemic sclerosis. Inflamm. Regen. 2021, 41, 17. [Google Scholar] [CrossRef]
- Shumnalieva, R.; Kachakova, D.; Kaneva, R.; Kolarov, Z.; Monov, S. Serum miR-21 and miR-29a expression in systemic sclerosis patients. Clin. Exp. Rheumatol. 2023, 41, 1688–1694. [Google Scholar] [CrossRef] [PubMed]
- Ren, H.E.; Liu, L.; Xiao, Y.; Shi, Y.; Zeng, Z.; Ding, Y.; Zou, P.; Xiao, R. Further insight into systemic sclerosis from the vasculopathy perspective. Biomed. Pharmacother. 2023, 166, 115282. [Google Scholar] [CrossRef] [PubMed]
- Del Galdo, F.; Sotgia, F.; de Almeida, C.J.; Jasmin, J.; Musick, M.; Lisanti, M.P.; Jiménez, S.A. Decreased expression of caveolin 1 in patients with systemic sclerosis: Crucial role in the pathogenesis of tissue fibrosis. Arthritis Rheum. 2008, 58, 2854–2865. [Google Scholar] [CrossRef] [PubMed]
- Saygin, D.; Highland, K.; Tonelli, A. Microvascular involvement in Systemic Sclerosis and Systemic Lupus Erythematosus. Microcirculation 2019, 26, e12440. [Google Scholar] [CrossRef]
- Trojanowska, M. Cellular and molecular aspects of vascular dysfunction in systemic sclerosis. Nat. Rev. Rheumatol. 2010, 6, 453–460. [Google Scholar] [CrossRef]
- Mathon, L.; Berezne, A.; Kahaleh, B.; Guillevin, L.; Humbort, M. Endothelial cells and microparticles in systemic sclerosis. Autoimmun. Rev. 2009, 8, 595–599. [Google Scholar]
- Herrick, A.L. The pathogenesis, diagnosis and treatment of Raynaud phenomenon. Nat. Rev. Rheumatol. 2012, 8, 469–479. [Google Scholar] [CrossRef]
- Cutolo, M.; Pizzorni, C.; Silli, A. Capillaroscopy. Best Pract. Res. Clin. Rheumatol. 2008, 22, 1093–1108. [Google Scholar] [CrossRef]
- Roustit, M.; Gracowski, J.L. Assessment of endothelial and neurovascular function in human skin microcirculation. Trends Pharmacol. Sci. 2013, 33, 373–383. [Google Scholar] [CrossRef]
- D’Alessandro, R.; Garcia Gonzalez, E.; Falsetti, P.; Conticini, E.; d’Alessandro, M.; Selvi, E.; Bellisai, F.; Berlengiero, V.; Vallifuoco, G.; Pata, A.P.; et al. Peripheral Macrovascular Involvement in Systemic Sclerosis: A Cohort Study by Color and Spectral Doppler Ultrasonography. Life 2023, 13, 487. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Colaci, M.; Zanoli, L.; Lo Gullo, A.; Sambataro, D.; Sambataro, G.; Aprile, M.L.; Castellino, P.; Malatino, L. The Impaired Elasticity of Large Arteries in Systemic Sclerosis Patients. J. Clin. Med. 2022, 11, 3256. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bertolino, J.; Scafi, M.; Benyamine, A.; Aissi, K.; Boufi, M.; Schleinitz, N.; Sarlon, G.; Rossi, P.; Granel, B. Atteintes macrovasculaires de la sclérodermie: État de la question en 2019 [Systemic sclerosis and macrovascular involvement: Status of the issue in 2019]. J. Med. Vasc. 2019, 44, 400–421. (In French) [Google Scholar] [CrossRef] [PubMed]
- Matucci-Cerinic, M.; Kahaleh, B.; Wigley, F.M. Review: Evidence that systemic sclerosis is a vascular disease. Arthritis Rheum. 2013, 65, 1953–1962. [Google Scholar] [CrossRef] [PubMed]
- Lescoat, A.; Coiffier, G.; de Carlan, M.; Droitcourt, C.; Ballerie, A.; Cazalets, C.; Perdriger, A.; Jégo, P. Combination of Capillaroscopic and Ultrasonographic Evaluations in Systemic Sclerosis: Results of a Cross-Sectional Study. Arthritis Care Res. 2018, 70, 938–943. [Google Scholar] [CrossRef] [PubMed]
- Haque, A.; Kiely, D.G.; Kovacs, G.; Thompson, A.A.R.; Condliffe, R. Pulmonary hypertension phenotypes in patients with systemic sclerosis. Eur. Respir. Rev. 2021, 30, 210053. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lechartier, B.; Humbert, M. Pulmonary arterial hypertension in systemic sclerosis. Presse Med. 2021, 50, 104062. [Google Scholar] [CrossRef] [PubMed]
- Coghlan, J.G.; Denton, C.P.; Grünig, E.; Bonderman, D.; Distler, O.; Khanna, D.; Müller-Ladner, U.; Pope, J.E.; Vonk, M.C.; Doelberg, M.; et al. DETECT study group. Evidence-based detection of pulmonary arterial hypertension in systemic sclerosis: The DETECT study. Ann. Rheum. Dis. 2014, 73, 1340–1349. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Pattanaik, D.; Brown, M.; Postlethwaite, A.E. Vascular involvement in systemic sclerosis (scleroderma). J. Inflamm. Res. 2011, 4, 105–125. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Schioppo, T.; Orenti, A.; Boracchi, P.; De Lucia, O.; Murgo, A.; Ingegnoli, F. Evidence of macro- and micro-angiopathy in scleroderma: An integrated approach combining 22-MHz power Doppler ultrasonography and video-capillaroscopy. Microvasc. Res. 2019, 122, 125–130. [Google Scholar] [CrossRef] [PubMed]
- Bandini, G.; Cometi, L.; Accogli, E.; Domanico, A.; Tofani, L.; Bruni, C.; Bellando-Randone, S.; Lepri, G.; Orlandi, M.; Guiducci, S.; et al. Ultrasound evaluation of bowel vasculopathy in systemic sclerosis. Eur. J. Intern. Med. 2022, 100, 62–68. [Google Scholar] [CrossRef] [PubMed]
- Hughes, M.; Kahaleh, B.; Denton, C.P.; Mason, J.C.; Matucci-Cerinic, M. ANCA in systemic sclerosis, when vasculitis overlaps with vasculopathy: A devastating combination of pathologies. Rheumatology 2021, 60, 5509–5516. [Google Scholar] [CrossRef] [PubMed]
- Condliffe, R.; Radon, M.; Hurdman, J.; Davies, C.; Hill, C.; Akil, M.; Guarasci, F.; Rajaram, S.; Swift, A.J.; Wragg, Z.; et al. CT pulmonary angiography combined with echocardiography in suspected systemic sclerosis-associated pulmonary arterial hypertension. Rheumatology 2011, 50, 1480–1486. [Google Scholar] [CrossRef] [PubMed]
- Pope, J.E.; Denton, C.P.; Johnson, S.R.; Fernandez-Codina, A.; Hudson, M.; Nevskaya, T. State-of-the-art evidence in the treatment of systemic sclerosis. Nat. Rev. Rheumatol. 2023, 19, 212–226. [Google Scholar] [CrossRef] [PubMed]
- Chung, L.; Spino, C.; McLain, R.; Johnson, S.R.; Denton, C.P.; Molitor, J.A.; Steen, V.D.; Lafyatis, R.; Simms, R.W.; Kafaja, S.; et al. Safety and efficacy of abatacept in early diffuse cutaneous systemic sclerosis (ASSET): Open-label extension of a phase 2, double-blind randomised trial. Lancet Rheumatol. 2020, 2, e743–e753. [Google Scholar] [CrossRef]
- Zamanian, R.T.; Badesch, D.; Chung, L.; Domsic, R.T.; Medsger, T.; Pinckney, A.; Keyes-Elstein, L.; D’Aveta, C.; Spychala, M.; White, R.J.; et al. Safety and Efficacy of B-Cell Depletion with Rituximab for the Treatment of Systemic Sclerosis-associated Pulmonary Arterial Hypertension: A Multicenter, Double-Blind, Randomized, Placebo-controlled Trial. Am. J. Respir. Crit. Care Med. 2021, 204, 209–221. [Google Scholar] [CrossRef]
- Moriana, C.; Moulinet, T.; Jaussaud, R.; Decker, P. JAK inhibitors and systemic sclerosis: A systematic review of the literature. Autoimmun. Rev. 2022, 21, 103168. [Google Scholar] [CrossRef]
- Strunz, P.P.; Labinsky, H.; Nagler, L.K.; Portegys, J.; Froehlich, M.; Gernert, M.; Schmalzing, M. Case Report: Effectiveness of secukinumab in systemic sclerosis with early skin progress after autologous hematopoietic stem cell transplantation and end-stage kidney disease. Front. Immunol. 2023, 14, 1294496. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hofmann, N.N.; Ambühl, R.A.; Jordan, S.; Distler, O. Calcineurin inhibitors in systemic sclerosis—A systematic literature review. Ther. Adv. Musculoskelet. Dis. 2022, 14, 1759720X221092374. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Volkmann, E.R.; Andréasson, K.; Smith, V. Systemic sclerosis. Lancet 2023, 401, 304–318. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- LiverTox: Clinical and Research Information on Drug-Induced Liver Injury [Internet]. Bethesda (MD): National Institute of Diabetes and Digestive and Kidney Diseases; 2012-. Phosphodiesterase Type 5 (PDE5) Inhibitors. Available online: https://www.ncbi.nlm.nih.gov/books/NBK548192/ (accessed on 2 August 2024).
- Kudsi, M.; Khalayli, N.; Tarcha, R.; Al-Darwish, L. Tocilizumab in systemic sclerosis treatment: A case report. Ann. Med. Surg. 2023, 85, 4586–4588. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Fernández-Lázaro, D.; Iglesias-Lázaro, M.; Garrosa, E.; Rodríguez-García, S.; Jerves Donoso, D.; Gutiérrez-Abejón, E.; Jorge-Finnigan, C. Impact of Innovative Treatment Using Biological Drugs for the Modulation of Diffuse Cutaneous Systemic Sclerosis: A Systematic Review. Medicina 2023, 59, 247. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Naranjo, M.; Hassoun, P.M. Systemic Sclerosis-Associated Pulmonary Hypertension: Spectrum and Impact. Diagnostics 2021, 11, 911. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bahi, M.; Li, C.; Wang, G.; Korman, B.D. Systemic Sclerosis-Associated Pulmonary Arterial Hypertension: From Bedside to Bench and Back Again. Int. J. Mol. Sci. 2024, 25, 4728. [Google Scholar] [CrossRef] [PubMed]
- Jin, Q.; Chen, D.; Zhang, X.; Zhang, F.; Zhong, D.; Lin, D.; Guan, L.; Pan, W.; Zhou, D.; Ge, J. Medical Management of Pulmonary Arterial Hypertension: Current Approaches and Investigational Drugs. Pharmaceutics 2023, 15, 1579. [Google Scholar] [CrossRef]
- Fernández-Codina, A.; Cañas-Ruano, E.; Pope, J.E. Management of Raynaud’s phenomenon in systemic sclerosis-a practical approach. J. Scleroderma Relat. Disord. 2019, 4, 102–110. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Roustit, M.; Giai, J.; Gaget, O.; Khouri, C.; Mouhib, M.; Lotito, A.; Blaise, S.; Seinturier, C.; Subtil, F.; Paris, A.; et al. On-Demand Sildenafil as a Treatment for Raynaud Phenomenon: A Series of n-of-1 Trials. Ann. Intern. Med. 2018, 169, 694–703. [Google Scholar] [CrossRef] [PubMed]
- Nagaraja, V. Management of scleroderma renal crisis. Curr. Opin. Rheumatol. 2019, 31, 223–230. [Google Scholar] [CrossRef] [PubMed]
- Hachulla, E.; Agard, C.; Allanore, Y.; Avouac, J.; Bader-Meunier, B.; Belot, A.; Berezne, A.; Bouthors, A.S.; Condette-Wojtasik, G.; Constans, J.; et al. French recommendations for the management of systemic sclerosis. Orphanet J. Rare Dis. 2021, 16 (Suppl. S2), 322. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhu, J.L.; Black, S.M.; Chen, H.W.; Jacobe, H.T. Emerging treatments for scleroderma/systemic sclerosis. Fac. Rev. 2021, 10, 43. [Google Scholar] [CrossRef]
- O’Reilly, S. Emerging therapeutic targets in systemic sclerosis. J. Mol. Med. 2024, 102, 465–478. [Google Scholar] [CrossRef] [PubMed]
Groups | Medications | Mechanism of Action | Useful for Vascular Complications of SSc |
---|---|---|---|
Vasodilators | Calcium channel blockers (e.g., Nifedipine, Amlodipine) | Relax blood vessels, improve blood flow | Yes, useful for Raynaud’s phenomenon and digital ulcers |
Prostacyclin analogs (Prostanoids) (e.g., Iloprost, Epoprostenol, Treprostinil) | Vasodilation, platelet inhibition | Yes, used for severe Raynaud’s phenomenon and pulmonary hypertension | |
Endothelin receptor antagonists (e.g., Bosentan, Macitentan) | Block endothelin-mediated vasoconstriction | Yes, used for pulmonary arterial hypertension (PAH) and digital ulcers | |
Phosphodiesterase Inhibitors (i.e., Sildenafil, Tadalafil) | Enhance nitric-oxide-mediated vasodilation | Yes, primarily for PAH treatment | |
ACE Inhibitors | Enalapril, Captopril | Inhibit angiotensin-converting enzyme, reduce blood pressure | Yes, useful in scleroderma renal crisis |
Immunosuppressants | Mycophenolate mofetil, Cyclophosphamide | Suppress immune response to slow fibrosis progression | Limited, mainly for skin and lung involvement, not directly for vascular issues |
Anti-Platelet Agents | Aspirin, Clopidogrel | Prevent blood clot formation | May provide some benefits for digital ulcers |
Angiotensin II Receptor Blockers (ARBs) | Losartan, Valsartan | Block angiotensin II, reduce vascular resistance | Useful for controlling hypertension, limited for other vascular complications |
Antifibrotic Agents | Nintedanib | Inhibit pathways leading to fibrosis | Primarily for lung fibrosis, limited direct vascular benefits |
Anticoagulants | Warfarin | Prevent blood clot formation | Limited, mainly for secondary complications like thrombosis |
Statins | Atorvastatin, Simvastatin | Improve endothelial function, reduce cholesterol levels | May have some vascular benefits, but not widely used specifically for SSc |
Antifibrotic Immunomodulators | Tocilizumab (IL-6 inhibitor) | Block IL-6-mediated inflammation, slow fibrosis | Limited efficacy in direct vascular complications, useful in lung involvement |
B-cell-Depleting Agents | Rituximab | Deplete B-cells, reduce autoantibody production | Limited direct vascular benefit, under investigation for broader effects |
T-cell Modulators | Abatacept (CTLA-4 Ig) | Inhibit T-cell activation, reduce immune-mediated tissue damage | Currently, there is limited evidence for vascular benefits, mainly for skin and joint disease |
Janus Kinase (JAK) Inhibitors | Tofacitinib, Baricitinib | Inhibit the JAK-STAT pathway, reducing immune signaling | Limited evidence for vascular benefit, mainly used for inflammation and fibrosis |
TNF-alpha Inhibitors | Infliximab, Adalimumab | Block TNF-alpha, reducing inflammation | Not typically used for SSc due to lack of efficacy in vascular or fibrotic complications |
IL-1 Inhibitors | Anakinra (IL-1 receptor antagonist) | Block IL-1 signaling, reduce inflammation | Not commonly used for SSc vascular issues, limited data on efficacy |
Anti-Th17 Agents | Secukinumab (IL-17 inhibitor) | Inhibit IL-17 activity, reduce inflammation | Minimal evidence for impact on vascular complications in SSc |
Calcineurin Inhibitors | Tacrolimus, Cyclosporine | Suppress T-cell activation, reduce immune responses | Rarely used for SSc, limited benefit for vascular complications |
PDGF receptor-α and -β, FGF receptor-1–3, and VEGFR-1–3 inhibitors | Nintedanib | Block signaling, improves spirometry parameters | Mainly for ILD |
Botulinum toxin | Inhibits the release of acetylcholine from presynaptic nerve endings and reduces vascular smooth muscle contraction, thereby improving local circulation | Pain relief and promotes healing of limb ulcers. | |
Adipose tissue-derived mesenchymal stem cells | Healing of the DU and pain relief in some patients. It improves perioral fibrosis | Promise for treating SSc vascular involvement; healing digital ulcers, and pain relief in some patients. It improves perioral fibrosis |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bakopoulou, K.; Kaouri, I.E.; Siliogka, E.; Siliogkas, P.; Shumnalieva, R.; Velikova, T. Preclinical and Clinical Data on Current Therapeutic Options for Micro- and Macrovascular Abnormalities in Systemic Sclerosis. Sclerosis 2024, 2, 322-340. https://doi.org/10.3390/sclerosis2040021
Bakopoulou K, Kaouri IE, Siliogka E, Siliogkas P, Shumnalieva R, Velikova T. Preclinical and Clinical Data on Current Therapeutic Options for Micro- and Macrovascular Abnormalities in Systemic Sclerosis. Sclerosis. 2024; 2(4):322-340. https://doi.org/10.3390/sclerosis2040021
Chicago/Turabian StyleBakopoulou, Konstantina, Issa El Kaouri, Elina Siliogka, Periklis Siliogkas, Russka Shumnalieva, and Tsvetelina Velikova. 2024. "Preclinical and Clinical Data on Current Therapeutic Options for Micro- and Macrovascular Abnormalities in Systemic Sclerosis" Sclerosis 2, no. 4: 322-340. https://doi.org/10.3390/sclerosis2040021
APA StyleBakopoulou, K., Kaouri, I. E., Siliogka, E., Siliogkas, P., Shumnalieva, R., & Velikova, T. (2024). Preclinical and Clinical Data on Current Therapeutic Options for Micro- and Macrovascular Abnormalities in Systemic Sclerosis. Sclerosis, 2(4), 322-340. https://doi.org/10.3390/sclerosis2040021