From Gene to Clinic: The Role of APOL1 in Focal Segmental Glomerulosclerosis
Abstract
:1. Introduction
2. Genetic Insights
2.1. Structure and Function of APOL1
2.2. APOL1 Variants (G1 and G2)
3. Pathogenic Mechanisms
3.1. Podocyte Injury
Mechanism | Description | Cellular Effects | References |
---|---|---|---|
Podocyte Dysfunction | Cytotoxic ion channel activity | Proteinuria; podocyte detachment | [26,32] |
Mitochondrial Dysfunction | Disruption of mitochondrial homeostasis | Energy deficits; oxidative stress | [35,36] |
ER Stress | Induction of unfolded protein response | Cellular apoptosis | [34,37] |
Lipid Dysregulation | Altered lipid metabolism in podocytes | Impaired membrane dynamics | [35] |
Inflammation | Activation of innate immune pathways (e.g., STING, JAK-STAT) | Chronic inflammatory signaling | [27,38,39] |
3.2. Non-Podocyte Injury
3.3. Cellular Pathways
3.3.1. Interferon Pathway
3.3.2. STING Pathway
3.3.3. JAK-STAT Pathway
4. Clinical Implications
4.1. ARIC Study
4.2. NEPTUNE Study
4.3. CKiD Study
4.4. CureGN Study
4.5. APOLLO Study
5. Treatment
5.1. Baricitinib
5.2. Sparsentan
5.3. Diacylglycerol O-Acyltransferase 2 Inhibitors
5.4. Small-Molecule Inhibitors
5.5. Antisense Oligonucleotides
5.6. CRISPR-Cas9 Technology
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
APOL1 | Apolipoprotein L1 |
CKD | Chronic Kidney Disease |
ESKD | End-Stage Kidney Disease |
FSGS | Focal Segmental Glomerulosclerosis |
HR | High Risk |
IFN | Interferon |
LR | Low Risk |
eGFR | Estimated Glomerular Filtration Rate |
SNP | Single-Nucleotide Polymorphism |
SRNS | Steroid-Resistant Nephrotic Syndrome |
FSGS-UC | FSGS of Undetermined Cause |
HDL | High-Density Lipoprotein |
SRA | Serum Resistance-Associated |
TCA | Tricarboxylic Acid |
OXPHOS | Oxidative Phosphorylation |
UPS | Ubiquitin-Proteasome System |
JAK-STAT | Janus Kinase-Signal Transducer and Activator of Transcription |
STING | Stimulator of Interferon Genes |
ASO | Antisense Oligonucleotide |
LBW | Low Birth Weight |
NEPTUNE | Nephrotic Syndrome Study Network |
CKiD | Chronic Kidney Disease in Children |
DUPLEX | Sparsentan FSGS Clinical Trial |
CRISPR | Clustered Regularly Interspaced Short Palindromic Repeats |
References
- Tato, A.M.; Carrera, N.; García-Murias, M.; Shabaka, A.; Ávila, A.; Mora Mora, M.T.; Rabasco, C.; Soto, K.; De La Prada Alvarez, F.J.; Fernández-Lorente, L.; et al. Genetic Testing in Focal Segmental Glomerulosclerosis: In Whom and When? Clin. Kidney J. 2023, 16, 2011–2022. [Google Scholar] [CrossRef] [PubMed]
- Durand, A.; Winkler, C.A.; Vince, N.; Douillard, V.; Geffard, E.; Binns-Roemer, E.; Ng, D.K.; Gourraud, P.-A.; Reidy, K.; Warady, B.; et al. Identification of Novel Genetic Risk Factors for Focal Segmental Glomerulosclerosis in Children: Results from the Chronic Kidney Disease in Children (CKiD) Cohort. Am. J. Kidney Dis. 2023, 81, 635–646.e1. [Google Scholar] [CrossRef] [PubMed]
- Raghubeer, S.; Pillay, T.S.; Matsha, T.E. Gene of the Month: APOL1. J. Clin. Pathol. 2020, 73, 441–443. [Google Scholar] [CrossRef]
- Shukha, K.; Mueller, J.L.; Chung, R.T.; Curry, M.P.; Friedman, D.J.; Pollak, M.R.; Berg, A.H. Most ApoL1 Is Secreted by the Liver. J. Am. Soc. Nephrol. 2017, 28, 1079–1083. [Google Scholar] [CrossRef]
- Pays, E. Apolipoprotein-L1 (APOL1): From Sleeping Sickness to Kidney Disease. Cells 2024, 13, 1738. [Google Scholar] [CrossRef]
- Schaub, C.; Lee, P.; Racho-Jansen, A.; Giovinazzo, J.; Terra, N.; Raper, J.; Thomson, R. Coiled-Coil Binding of the Leucine Zipper Domains of APOL1 Is Necessary for the Open Cation Channel Conformation. J. Biol. Chem. 2021, 297, 101009. [Google Scholar] [CrossRef]
- Ryu, J.-H.; Ge, M.; Merscher, S.; Rosenberg, A.Z.; Desante, M.; Roshanravan, H.; Okamoto, K.; Shin, M.K.; Hoek, M.; Fornoni, A.; et al. APOL1 Renal Risk Variants Promote Cholesterol Accumulation in Tissues and Cultured Macrophages from APOL1 Transgenic Mice. PLoS ONE 2019, 14, e0211559. [Google Scholar] [CrossRef]
- Blessing, N.A.; Wu, Z.; Madhavan, S.M.; Choy, J.W.; Chen, M.; Shin, M.K.; Hoek, M.; Sedor, J.R.; O’Toole, J.F.; Bruggeman, L.A. Lack of APOL1 in Proximal Tubules of Normal Human Kidneys and Proteinuric APOL1 Transgenic Mouse Kidneys. PLoS ONE 2021, 16, e0253197. [Google Scholar] [CrossRef]
- Mayanja, R.; Kintu, C.; Diabate, O.; Soremekun, O.; Oluwagbemi, O.O.; Wele, M.; Kalyesubula, R.; Jjingo, D.; Chikowore, T.; Fatumo, S. Molecular Dynamic Simulation Reveals Structure Differences in APOL1 Variants and Implication in Pathogenesis of Chronic Kidney Disease. Genes 2022, 13, 1460. [Google Scholar] [CrossRef]
- Abdu, A.; Duarte, R.; Dickens, C.; Dix-Peek, T.; Bala, S.M.; Ademola, B.; Naicker, S. High Risk APOL1 Genotypes and Kidney Disease among Treatment Naïve HIV Patients at Kano, Nigeria. PLoS ONE 2022, 17, e0275949. [Google Scholar] [CrossRef]
- Adamson, W.E.; Noyes, H.; Johnson, P.; Cooper, A.; Monckton, D.G.; Ogunsola, J.; Sullivan, M.; Mark, P.; Parekh, R.S.; MacLeod, A. Phenome-Wide Analysis of APOL1 Risk Variants Reveals Associations between One Combination of Haplotypes and Multiple Disease Phenotypes in Addition to Chronic Kidney Disease. medRxiv 2023. [Google Scholar] [CrossRef]
- Brandenburg, J.-T.; Govender, M.A.; Winkler, C.A.; Boua, P.R.; Agongo, G.; Fabian, J.; Ramsay, M. Apolipoprotein L1 High-Risk Genotypes and Albuminuria in Sub-Saharan African Populations. Clin. J. Am. Soc. Nephrol. 2022, 17, 798–808. [Google Scholar] [CrossRef] [PubMed]
- Song, H.; Dumas, S.J.; Ma, L.; Wang, G.; Witjas, F.; Berg, C.W.V.D.; Rocco, M.V.; Freedman, B.I.; Rabelink, T.J.; Spijker, S. APOL1 Risk Variants Induce Mitochondrial Dysfunction in Patient-Derived Kidney Organoids: SA-PO789. J. Am. Soc. Nephrol. 2023, 34, 947–948. [Google Scholar] [CrossRef]
- Pollak, M.R.; Friedman, D.J. APOL1 and APOL1-Associated Kidney Disease: A Common Disease, an Unusual Disease Gene—Proceedings of the Henry Shavelle Professorship. Glomerular Dis. 2023, 3, 75–87. [Google Scholar] [CrossRef]
- Gupta, Y.; Friedman, D.J.; McNulty, M.T.; Khan, A.; Lane, B.; Wang, C.; Ke, J.; Jin, G.; Wooden, B.; Knob, A.L.; et al. Strong Protective Effect of the APOL1 p.N264K Variant against G2-Associated Focal Segmental Glomerulosclerosis and Kidney Disease. Nat. Commun. 2023, 14, 7836. [Google Scholar] [CrossRef]
- Bruno, J.; Edwards, J.C. Kidney-Disease-Associated Variants of Apolipoprotein L1 Show Gain of Function in Cation Channel Activity. J. Biol. Chem. 2021, 296, 100238. [Google Scholar] [CrossRef]
- Datta, S.; Kataria, R.; Zhang, J.-Y.; Moore, S.; Petitpas, K.; Mohamed, A.; Zahler, N.; Pollak, M.R.; Olabisi, O.A. Kidney Disease-Associated APOL1 Variants Have Dose-Dependent, Dominant Toxic Gain-of-Function. J. Am. Soc. Nephrol. 2020, 31, 2083–2096. [Google Scholar] [CrossRef]
- Zhang, J.-Y.; Wang, M.; Tian, L.; Genovese, G.; Yan, P.; Wilson, J.G.; Thadhani, R.; Mottl, A.K.; Appel, G.B.; Bick, A.G.; et al. UBD Modifies APOL1 -Induced Kidney Disease Risk. Proc. Natl. Acad. Sci. USA 2018, 115, 3446–3451. [Google Scholar] [CrossRef]
- Zee, J.; McNulty, M.T.; Hodgin, J.B.; Zhdanova, O.; Hingorani, S.; Jefferson, J.A.; Gibson, K.L.; Trachtman, H.; Fornoni, A.; Dell, K.M.; et al. APOL1 Genotype-Associated Morphologic Changes among Patients with Focal Segmental Glomerulosclerosis. Pediatr. Nephrol. 2021, 36, 2747–2757. [Google Scholar] [CrossRef]
- Hogg, R.J. Childhood Nephrotic Syndrome Associated with Diffuse Mesangial Hypercellularity. A Report of the Southwest Pediatric Nephrology Study Group. Kidney Int. 1983, 24, 87–94. [Google Scholar] [CrossRef]
- Silverstein, D.M.; Craver, R.D. Mesangial Hypercellularity in Children: Presenting Features and Outcomes. Pediatr. Nephrol. 2008, 23, 921–928. [Google Scholar] [CrossRef] [PubMed]
- Fujinaga, S.; Urushihara, Y. Favorable Outcome in Children with Idiopathic Steroid-Resistant Nephrotic Syndrome Due to Mesangial Hypercellularity: A Distinct Disease Entity? Pediatr. Nephrol. 2016, 31, 509–510. [Google Scholar] [CrossRef] [PubMed]
- Wenderfer, S.E.; Swinford, R.D.; Braun, M.C. C1q Nephropathy in the Pediatric Population: Pathology and Pathogenesis. Pediatr. Nephrol. 2010, 25, 1385–1396. [Google Scholar] [CrossRef] [PubMed]
- Shi, S.-F.; Wang, S.-X.; Zhang, Y.-K.; Zhao, M.-H.; Zou, W.-Z. Ultrastructural Features and Expression of Cytoskeleton Proteins of Podocyte from Patients with Minimal Change Disease and Focal Segmental Glomerulosclerosis. Ren. Fail. 2008, 30, 477–483. [Google Scholar] [CrossRef]
- Mann, N.; Sun, H.; Majmundar, A.J. Mechanisms of Podocyte Injury in Genetic Kidney Disease. Pediatr. Nephrol. 2024. [Google Scholar] [CrossRef]
- Wakashin, H.; Heymann, J.; Roshanravan, H.; Daneshpajouhnejad, P.; Rosenberg, A.; Shin, M.K.; Hoek, M.; Kopp, J.B. APOL1 Renal Risk Variants Exacerbate Podocyte Injury by Increasing Inflammatory Stress. BMC Nephrol. 2020, 21, 371. [Google Scholar] [CrossRef]
- Wu, J.; Raman, A.; Coffey, N.J.; Sheng, X.; Wahba, J.; Seasock, M.J.; Ma, Z.; Beckerman, P.; Laczkó, D.; Palmer, M.B.; et al. The Key Role of NLRP3 and STING in APOL1-Associated Podocytopathy. J. Clin. Investig. 2021, 131, e136329. [Google Scholar] [CrossRef]
- Vilaysane, A.; Chun, J.; Seamone, M.E.; Wang, W.; Chin, R.; Hirota, S.; Li, Y.; Clark, S.A.; Tschopp, J.; Trpkov, K.; et al. The NLRP3 Inflammasome Promotes Renal Inflammation and Contributes to CKD. J. Am. Soc. Nephrol. 2010, 21, 1732–1744. [Google Scholar] [CrossRef]
- Xiong, W.; Meng, X.-F.; Zhang, C. Inflammasome Activation in Podocytes: A New Mechanism of Glomerular Diseases. Inflamm. Res. 2020, 69, 731–743. [Google Scholar] [CrossRef]
- Kang, J.; Brajanovski, N.; Chan, K.T.; Xuan, J.; Pearson, R.B.; Sanij, E. Ribosomal Proteins and Human Diseases: Molecular Mechanisms and Targeted Therapy. Signal Transduct. Target. Ther. 2021, 6, 323. [Google Scholar] [CrossRef]
- Yoshida, T.; Latt, K.Z.; Rosenberg, A.Z.; Shrivastav, S.; Heymann, J.; Halushka, M.K.; Winkler, C.A.; Kopp, J.B. Transcriptomic Analysis of Human Podocytes In Vitro: Effects of Differentiation and APOL1 Genotype. Kidney Int. Rep. 2023, 8, 164–178. [Google Scholar] [CrossRef] [PubMed]
- Pays, E. APOL1 Variant–Associated Kidney Disease: From Trypanosomes to Podocyte Cytoskeleton. Kidney Int. 2020, 98, 1373–1377. [Google Scholar] [CrossRef] [PubMed]
- Heintz, L.; Meyer-Schwesinger, C. The Intertwining of Autophagy and the Ubiquitin Proteasome System in Podocyte (Patho)Physiology. Cell Physiol. Biochem. 2021, 55, 68–95. [Google Scholar] [CrossRef] [PubMed]
- Heymann, J.; Winkler, C.A.; Hoek, M.; Susztak, K.; Kopp, J.B. Therapeutics for APOL1 Nephropathies: Putting out the Fire in the Podocyte. Nephrol. Dial. Transplant. 2017, 32, i65–i70. [Google Scholar] [CrossRef] [PubMed]
- Ge, M.; Molina, J.; Ducasa, G.M.; Mallela, S.K.; Varona Santos, J.; Mitrofanova, A.; Kim, J.-J.; Liu, X.; Sloan, A.; Mendez, A.J.; et al. APOL1 Risk Variants Affect Podocyte Lipid Homeostasis and Energy Production in Focal Segmental Glomerulosclerosis. Hum. Mol. Genet. 2021, 30, 182–197. [Google Scholar] [CrossRef]
- Ma, L.; Palmer, N.D.; Choi, Y.A.; Murea, M.; Snipes, J.A.; Parks, J.S.; Langefeld, C.D.; Freedman, B.I. APOL1 Risk Variants Impair Multiple Mitochondrial Pathways in a Metabolomics Analysis. Kidney360 2020, 1, 1353–1362. [Google Scholar] [CrossRef]
- Zhu, J.; Lee, J.-G.; Fu, Y.; Van De Leemput, J.; Ray, P.E.; Han, Z. APOL1-G2 Accelerates Nephrocyte Cell Death by Inhibiting the Autophagy Pathway. Dis. Models Mech. 2023, 16, dmm050223. [Google Scholar] [CrossRef]
- Vasquez-Rios, G.; De Cos, M.; Campbell, K.N. Novel Therapies in APOL1-Mediated Kidney Disease: From Molecular Pathways to Therapeutic Options. Kidney Int. Rep. 2023, 8, 2226–2234. [Google Scholar] [CrossRef]
- Nystrom, S.E.; Li, G.; Datta, S.; Soldano, K.L.; Silas, D.; Weins, A.; Hall, G.; Thomas, D.B.; Olabisi, O.A. JAK Inhibitor Blocks COVID-19 Cytokine–Induced JAK/STAT/APOL1 Signaling in Glomerular Cells and Podocytopathy in Human Kidney Organoids. JCI Insight 2022, 7, e157432. [Google Scholar] [CrossRef]
- Hartleben, B.; Gödel, M.; Meyer-Schwesinger, C.; Liu, S.; Ulrich, T.; Köbler, S.; Wiech, T.; Grahammer, F.; Arnold, S.J.; Lindenmeyer, M.T.; et al. Autophagy Influences Glomerular Disease Susceptibility and Maintains Podocyte Homeostasis in Aging Mice. J. Clin. Investig. 2010, 120, 1084–1096. [Google Scholar] [CrossRef]
- Pell, J.; Nagata, S.; Menon, M.C. Nonpodocyte Roles of APOL1 Variants: An Evolving Paradigm. Kidney360 2023, 4, e1325–e1331. [Google Scholar] [CrossRef] [PubMed]
- Malone, A.F. APOL1 Risk Variants in Kidney Transplantation: A Modulation of Immune Cell Function. J. Clin. Investig. 2021, 131, e154676. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, T.; Latt, K.Z.; Heymann, J.; Kopp, J.B. Lessons from APOL1 Animal Models. Front. Med. 2021, 8, 762901. [Google Scholar] [CrossRef]
- Karttunen, H.; Ross, M.J. Editing of APOL1 mRNA Reduces APOL1 Expression and Activation of Innate Immunity. Kidney Int. 2023, 104, 230–233. [Google Scholar] [CrossRef]
- Ekulu, P.M.; Adebayo, O.C.; Decuypere, J.-P.; Bellucci, L.; Elmonem, M.A.; Nkoy, A.B.; Mekahli, D.; Bussolati, B.; Van Den Heuvel, L.P.; Arcolino, F.O.; et al. Novel Human Podocyte Cell Model Carrying G2/G2 APOL1 High-Risk Genotype. Cells 2021, 10, 1914. [Google Scholar] [CrossRef]
- Blazer, A.D.; Clancy, R.M. ApoL1 and the Immune Response of Patients with Systemic Lupus Erythematosus. Curr. Rheumatol. Rep. 2017, 19, 13. [Google Scholar] [CrossRef]
- Ji, L.; Li, T.; Chen, H.; Yang, Y.; Lu, E.; Liu, J.; Qiao, W.; Chen, H. The Crucial Regulatory Role of Type I Interferon in Inflammatory Diseases. Cell Biosci. 2023, 13, 230. [Google Scholar] [CrossRef]
- Pays, E. The Two Levels of Podocyte Dysfunctions Induced by Apolipoprotein L1 Risk Variants. Kidney Dial. 2024, 4, 126–143. [Google Scholar] [CrossRef]
- Tumlin, J.; Rovin, B.; Anders, H.-J.; Mysler, E.F.; Jayne, D.R.W.; Takeuchi, T.; Lindholm, C.; Weiss, G.; Sorrentino, A.; Woollard, K.; et al. Targeting the Type I Interferon Pathway in Glomerular Kidney Disease: Rationale and Therapeutic Opportunities. Kidney Int. Rep. 2025, 10, 29–39. [Google Scholar] [CrossRef]
- Liu, J.; Zhou, J.; Luan, Y.; Li, X.; Meng, X.; Liao, W.; Tang, J.; Wang, Z. cGAS-STING, Inflammasomes and Pyroptosis: An Overview of Crosstalk Mechanism of Activation and Regulation. Cell Commun. Signal 2024, 22, 22. [Google Scholar] [CrossRef]
- Davis, S.E.; Khatua, A.K.; Popik, W. Nucleosomal dsDNA Stimulates APOL1 Expression in Human Cultured Podocytes by Activating the cGAS/IFI16-STING Signaling Pathway. Sci. Rep. 2019, 9, 15485. [Google Scholar] [CrossRef] [PubMed]
- Muehlig, A.K.; Gies, S.; Huber, T.B.; Braun, F. Collapsing Focal Segmental Glomerulosclerosis in Viral Infections. Front. Immunol. 2022, 12, 800074. [Google Scholar] [CrossRef]
- Chen, J.; Chen, P.; Song, Y.; Wei, J.; Wu, F.; Sun, J.; Xu, Z. STING Upregulation Mediates Ferroptosis and Inflammatory Response in Lupus Nephritis by Upregulating TBK1 and Activating NF-κB Signal Pathway. J. Biosci. 2024, 49, 9. [Google Scholar] [CrossRef]
- Zhang, S.; Zheng, R.; Pan, Y.; Sun, H. Potential Therapeutic Value of the STING Inhibitors. Molecules 2023, 28, 3127. [Google Scholar] [CrossRef]
- Olabisi, O.A.; Barrett, N.J.; Lucas, A.; Smith, M.; Bethea, K.; Soldano, K.; Croall, S.; Sadeghpour, A.; Chakraborty, H.; Wolf, M. Design and Rationale of the Phase 2 Baricitinib Study in Apolipoprotein L1–Mediated Kidney Disease (JUSTICE). Kidney Int. Rep. 2024, 9, 2677–2684. [Google Scholar] [CrossRef]
- Kopp, J.B.; Nelson, G.W.; Sampath, K.; Johnson, R.C.; Genovese, G.; An, P.; Friedman, D.; Briggs, W.; Dart, R.; Korbet, S.; et al. APOL1 Genetic Variants in Focal Segmental Glomerulosclerosis and HIV-Associated Nephropathy. J. Am. Soc. Nephrol. 2011, 22, 2129–2137. [Google Scholar] [CrossRef]
- Genovese, G.; Friedman, D.J.; Ross, M.D.; Lecordier, L.; Uzureau, P.; Freedman, B.I.; Bowden, D.W.; Langefeld, C.D.; Oleksyk, T.K.; Uscinski Knob, A.L.; et al. Association of Trypanolytic ApoL1 Variants with Kidney Disease in African Americans. Science 2010, 329, 841–845. [Google Scholar] [CrossRef]
- Freedman, B.I.; Kopp, J.B.; Sampson, M.G.; Susztak, K. APOL1 at 10 Years: Progress and next Steps. Kidney Int. 2021, 99, 1296–1302. [Google Scholar] [CrossRef]
- Gulati, A.; Moxey-Mims, M. Defining Risk in APOL1-Associated Kidney Disease: The Story Is Evolving! Am. J. Kidney Dis. 2024, 84, 388–391. [Google Scholar] [CrossRef]
- Chen, T.K.; Coresh, J.; Daya, N.; Ballew, S.H.; Tin, A.; Crews, D.C.; Grams, M.E. Race, APOL1 Risk Variants, and Clinical Outcomes among Older Adults: The ARIC Study. J. Am. Geriatr. Soc. 2021, 69, 155–163. [Google Scholar] [CrossRef]
- Woroniecki, R.P.; Ng, D.K.; Limou, S.; Winkler, C.A.; Reidy, K.J.; Mitsnefes, M.; Sampson, M.G.; Wong, C.S.; Warady, B.A.; Furth, S.L.; et al. Renal and Cardiovascular Morbidities Associated with APOL1 Status among African-American and Non-African-American Children with Focal Segmental Glomerulosclerosis. Front. Pediatr. 2016, 4, 122. [Google Scholar] [CrossRef] [PubMed]
- Rheault, M.N.; Alpers, C.E.; Barratt, J.; Bieler, S.; Canetta, P.; Chae, D.-W.; Coppock, G.; Diva, U.; Gesualdo, L.; Heerspink, H.J.L.; et al. Sparsentan versus Irbesartan in Focal Segmental Glomerulosclerosis. N. Engl. J. Med. 2023, 389, 2436–2445. [Google Scholar] [CrossRef] [PubMed]
- Hingorani, S.; Gibson, K.L.; Xie, Y.; Wang, Y.; Eddy, S.; Hartman, J.; Sampson, M.; Cassol, C.; Thomas, D.; Gipson, D.S.; et al. The Association of Low Birthweight and Prematurity on Outcomes in Children and Adults with Nephrotic Syndrome—A NEPTUNE Cohort Study. Pediatr. Nephrol. 2023, 38, 3297–3308. [Google Scholar] [CrossRef] [PubMed]
- Ng, D.K.; Robertson, C.C.; Woroniecki, R.P.; Limou, S.; Gillies, C.E.; Reidy, K.J.; Winkler, C.A.; Hingorani, S.; Gibson, K.L.; Hjorten, R.; et al. APOL1 -Associated Glomerular Disease among African-American Children: A Collaboration of the Chronic Kidney Disease in Children (CKiD) and Nephrotic Syndrome Study Network (NEPTUNE) Cohorts. Nephrol. Dial. Transplant. 2016, 32, 983–990. [Google Scholar] [CrossRef]
- Kallash, M.; Wang, Y.; Smith, A.; Trachtman, H.; Gbadegesin, R.; Nester, C.; Canetta, P.; Wang, C.; Hunley, T.E.; Sperati, C.J.; et al. Rapid Progression of Focal Segmental Glomerulosclerosis in Patients with High-Risk APOL1 Genotypes. Clin. J. Am. Soc. Nephrol. 2023, 18, 344–355. [Google Scholar] [CrossRef]
- Hughson, M.D.; Hoy, W.E.; Mott, S.A.; Puelles, V.G.; Bertram, J.F.; Winkler, C.A.; Kopp, J.B. APOL1 Risk Alleles Are Associated with More Severe Arteriosclerosis in Renal Resistance Vessels with Aging and Hypertension. Kidney Int. Rep. 2016, 1, 10–23. [Google Scholar] [CrossRef]
- Freedman, B.I.; Moxey-Mims, M.M.; Alexander, A.A.; Astor, B.C.; Birdwell, K.A.; Bowden, D.W.; Bowen, G.; Bromberg, J.; Craven, T.E.; Dadhania, D.M.; et al. APOL1 Long-Term Kidney Transplantation Outcomes Network (APOLLO): Design and Rationale. Kidney Int. Rep. 2020, 5, 278–288. [Google Scholar] [CrossRef]
- Olabisi, O.A. APOL1 Channel Blocker Reduces Proteinuria in FSGS. Kidney Int. 2023, 104, 228–230. [Google Scholar] [CrossRef]
- Friedman, D.J.; Pollak, M.R. APOL1 Nephropathy: From Genetics to Clinical Applications. Clin. J. Am. Soc. Nephrol. 2021, 16, 294–303. [Google Scholar] [CrossRef]
- Egbuna, O.; Zimmerman, B.; Manos, G.; Fortier, A.; Chirieac, M.C.; Dakin, L.A.; Friedman, D.J.; Bramham, K.; Campbell, K.; Knebelmann, B.; et al. Inaxaplin for Proteinuric Kidney Disease in Persons with Two APOL1 Variants. N. Engl. J. Med. 2023, 388, 969–979. [Google Scholar] [CrossRef]
- Greasley, P.J.; Agrawal, N.; Althage, M.; Sanchez, J.; Kirk, S.; Egeland, E.J.; Åstrand, M.; Westergren, H.; Sherwood, J.; Mccarthy, M.; et al. #1003 Safety, Tolerability, Pharmacokinetics, and Pharmacodynamics of Multiple Ascending Doses of AZD2373, an Antisense Oligonucleotide Targeting APOL1. Nephrol. Dial. Transplant. 2024, 39, gfae069-0695-1003. [Google Scholar] [CrossRef]
- Chun, J.; Riella, C.V.; Chung, H.; Shah, S.S.; Wang, M.; Magraner, J.M.; Ribas, G.T.; Ribas, H.T.; Zhang, J.-Y.; Alper, S.L.; et al. DGAT2 Inhibition Potentiates Lipid Droplet Formation To Reduce Cytotoxicity in APOL1 Kidney Risk Variants. J. Am. Soc. Nephrol. 2022, 33, 889–907. [Google Scholar] [CrossRef] [PubMed]
- Gyarmati, G.; Shroff, U.N.; Izuhara, A.; Deepak, S.; Komers, R.; Bedard, P.W.; Peti-Peterdi, J. Sparsentan Improves Glomerular Hemodynamics, Cell Functions, and Tissue Repair in a Mouse Model of FSGS. JCI Insight 2024, 9, e177775. [Google Scholar] [CrossRef] [PubMed]
- Trachtman, H.; Radhakrishnan, J.; Rheault, M.N.; Alpers, C.E.; Barratt, J.; Heerspink, H.J.L.; Noronha, I.L.; Perkovic, V.; Rovin, B.; Trimarchi, H.; et al. Focal Segmental Glomerulosclerosis Patient Baseline Characteristics in the Sparsentan Phase 3 DUPLEX Study. Kidney Int. Rep. 2024, 9, 1020–1030. [Google Scholar] [CrossRef]
- Rovin, B.H.; Barratt, J.; Heerspink, H.J.L.; Alpers, C.E.; Bieler, S.; Chae, D.-W.; Diva, U.A.; Floege, J.; Gesualdo, L.; Inrig, J.K.; et al. Efficacy and Safety of Sparsentan versus Irbesartan in Patients with IgA Nephropathy (PROTECT): 2-Year Results from a Randomised, Active-Controlled, Phase 3 Trial. Lancet 2023, 402, 2077–2090. [Google Scholar] [CrossRef]
- Gbadegesin, R.; Lane, B. Inaxaplin for the Treatment of APOL1-Associated Kidney Disease. Nat. Rev. Nephrol. 2023, 19, 479–480. [Google Scholar] [CrossRef]
Study Name | Population Characteristics | Key Findings | Implications | References |
---|---|---|---|---|
NEPTUNE cohort | African American children with nephropathy | APOL1 HR variants linked to faster eGFR decline | Highlights need for early intervention | [61] |
CKiD Cohort | Children with CKD, including APOL1 variant carriers | APOL1 HR associated with faster progression of CKD | Underscores importance of genetic risk stratification | [2] |
ARIC Study | Older adults, APOL1 genotype association with CKD outcomes | APOL1 HR linked to increased risk of ESKD and cardiovascular events | Emphasizes systemic impact of APOL1 variants | [60] |
DUPLEX Trial | Adults with biopsy-proven FSGS | Sparsentan reduced proteinuria significantly | Supports dual endothelin–angiotensin blockade | [62] |
Genetic Epidemiology Study | Global population; APOL1 variant frequencies | G1 and G2 alleles prevalent in African ancestry | Emphasizes health disparities in CKD | [12,15] |
Therapeutic Approach | Mechanism of Action | Advantages | Limitations | References |
---|---|---|---|---|
Small-Molecule Inhibitors | Inhibit APOL1-mediated ion channel activity | Oral administration; promising preclinical data | Limited long-term data; early clinical stage | [68,69,70] |
Antisense Oligonucleotides | Reduce APOL1 mRNA expression | High specificity; targeted therapy | Requires frequent administration; high cost | [71] |
Gene-Editing Technologies | Correct APOL1 genetic variants via CRISPR | Potential for permanent correction | Ethical concerns; early-stage research | [43,69] |
JAK-STAT Pathway Inhibitors | Modulate inflammatory signaling pathways | Addresses downstream effects of APOL1 | Non-specific action on immune signaling | [38,39,55] |
Lipid Metabolism Modulators | Restore lipid homeostasis disrupted by APOL1 | Broad metabolic benefits | Indirect action on APOL1 mechanisms | [35,72] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Delrue, C.; Speeckaert, M.M. From Gene to Clinic: The Role of APOL1 in Focal Segmental Glomerulosclerosis. Sclerosis 2025, 3, 6. https://doi.org/10.3390/sclerosis3010006
Delrue C, Speeckaert MM. From Gene to Clinic: The Role of APOL1 in Focal Segmental Glomerulosclerosis. Sclerosis. 2025; 3(1):6. https://doi.org/10.3390/sclerosis3010006
Chicago/Turabian StyleDelrue, Charlotte, and Marijn M. Speeckaert. 2025. "From Gene to Clinic: The Role of APOL1 in Focal Segmental Glomerulosclerosis" Sclerosis 3, no. 1: 6. https://doi.org/10.3390/sclerosis3010006
APA StyleDelrue, C., & Speeckaert, M. M. (2025). From Gene to Clinic: The Role of APOL1 in Focal Segmental Glomerulosclerosis. Sclerosis, 3(1), 6. https://doi.org/10.3390/sclerosis3010006