Differential Expression of DNA Methyltransferase (DNMT1 and DNMT3), Histone Deacetylase (HDAC1 and HDAC2), and Upstream Target Regulators MiR-145 and Mir-152 among Oral Cancers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cell Lines
2.2. Cell Culture
Cell line | Culture | Sex | Age | Cell type | STR analysis |
HGF-1 (CRL-2014) | DMEM | Male | 28 | Fibroblast | 100% match |
CAL-27 (CRL-2095) | DMEM | Male | 56 | OSCC | 93% |
SCC-15 (CRL-1623) | DMEM:F12 | Male | 55 | OSCC | 95% |
SCC-25 (CRL-1628) | DMEM:F12 | Male | 70 | OSCC | 100% |
SCC-4 (CRL-1624) | DMEM:F12 | Male | 55 | OSCC | 95% |
SCC-9 (CRL-1629) | DMEM:F12 | Male | 25 | OSCC | 100% |
2.3. RNA Isolation
2.4. cDNA Synthesis
2.5. microRNA Amplification
2.6. qPCR Screening
Positive Control |
Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) |
GAPDH forward, 5′-ATC TTC CAG GAG CGA GAT CC-3′; Tm: 66 °C |
GAPDH reverse, 5′-ACC ACT GAC ACG TTG GCA GT-3′; Tm: 70 °C |
DNMT1 |
DNMT1 forward, 5′-GGC TAC CTG GCT AAA GTC AAG TCC-3′; Tm: 69 °C |
DNMT1 reverse, 5′-CAA AAA GGG TGT CAC TGT CCC GAC-3′; Tm: 70 °C |
DNMT3A |
DNMT3A forward, 5′-GAA GCG GAG TGA ACC CCA AC-3′; Tm: 69 °C |
DNMT3A reverse, 5′-CCT TGG TCA CAC AGC AGC C-3′; Tm: 69 °C |
DNMT3B |
DNMT3B forward, 5′-GCC AGC CTC ACG ACA GGA AAC-3′; Tm: 71 °C |
DNMT3B reverse, 5′-GAC TGG GGG TGA GGG AGC ATC-3′; Tm: 73 °C |
HDAC1 |
HDAC1 forward, 5′-GGT CCA AAT GCA GGC GAT TCC T-3′; Tm: 70 °C |
HDAC1 reverse, 5′-TCG GAG AAC TCT TCC TCA CAG G-3′; Tm: 68 °C |
HDAC2 |
HDAC2 forward, 5′-CTC ATG CAC CTG GTG TCC AGA T-3′; Tm: 69 °C |
HDAC2 reverse, 5′-GCT ATC CGC TTG TCT GAT GCT C-3′; Tm: 68 °C |
miRNA primers |
Positive control microRNA primer (miR16) |
miR-16 forward, 5′-TAG CAG CAC GTA AAT ATT GGC G-3′; Tm: 65 °C |
miR-16 reverse, 5′-TGC GTG TCG TGG AGT C-3′; Tm: 65 °C |
miR-21 |
miR-21 forward, 5′-GCC ACC ACA CCA GCT AAT TT-3′; Tm: 66 °C |
miR-21 reverse, 5′-CTG AAG TCG CCA TGC AGA TA-3′; Tm: 65 °C |
miR-145 |
miR-145 forward, 5′-AGA GAA CTC CAG CTG-3′; Tm: 56 °C |
miR-145 reverse, 5′-GGC AAC TGT GGG GTG-3′; Tm: 64 °C |
miR-152 |
miR-152 forward, 5′-GGT TCA AGA CAG TAC GTG ACT-3′; Tm: 64 °C |
miR-152 reverse, 5′-CCA AGT TCT GTA TGC ACT GA-3′; Tm: 62 °C |
miR-221 |
miR-221 reverse, 5′-TGT GAG ACC ATT TGG GTG AA-3′; Tm: 64 °C |
miR-222 forward, 5′-CGC AGC TAC ATC TGG CTA CTG-3′; Tm: 68 °C |
2.7. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, C.; Wang, Z.; Ding, Y.; Wang, L.; Wang, S.; Wang, H.; Qin, Y. DNA Methylation: From Cancer Biology to Clinical Perspectives. Front. Biosci. (Landmark Ed.) 2022, 27, 326. [Google Scholar] [CrossRef]
- Lyko, F. The DNA methyltransferase family: A versatile toolkit for epigenetic regulation. Nat. Rev. Genet. 2018, 19, 81–92. [Google Scholar] [CrossRef] [PubMed]
- Hillyar, C.; Rallis, K.S.; Varghese, J. Advances in Epigenetic Cancer Therapeutics. Cureus 2020, 12, e11725. [Google Scholar] [CrossRef] [PubMed]
- Morgan, A.E.; Davies, T.J.; Mc Auley, M.T. The role of DNA methylation in ageing and cancer. Proc. Nutr. Soc. 2018, 77, 412–422. [Google Scholar] [CrossRef]
- Lee, A.V.; Nestler, K.A.; Chiappinelli, K.B. Therapeutic targeting of DNA methylation alterations in cancer. Pharmacol. Ther. 2024, 258, 108640. [Google Scholar] [CrossRef]
- Pan, Y.; Liu, G.; Zhou, F.; Su, B.; Li, Y. DNA methylation profiles in cancer diagnosis and therapeutics. Clin. Exp. Med. 2018, 18, 1–14. [Google Scholar] [CrossRef]
- Castillo-Aguilera, O.; Depreux, P.; Halby, L.; Arimondo, P.B.; Goossens, L. DNA Methylation Targeting: The DNMT/HMT Crosstalk Challenge. Biomolecules 2017, 7, 3. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Yang, C.; Wu, C.; Cui, W.; Wang, L. DNA Methyltransferases in Cancer: Biology, Paradox, Aberrations, and Targeted Therapy. Cancers 2020, 12, 2123. [Google Scholar] [CrossRef]
- Ren, Y. Regulatory mechanism and biological function of UHRF1-DNMT1-mediated DNA methylation. Funct. Integr. Genom. 2022, 22, 1113–1126. [Google Scholar] [CrossRef]
- Mohan, K.N. DNMT1: Catalytic and non-catalytic roles in different biological processes. Epigenomics 2022, 14, 629–643. [Google Scholar] [CrossRef] [PubMed]
- Velcheti, V.; Schrump, D.; Saunthararajah, Y. Ultimate Precision: Targeting Cancer but Not Normal Self-replication. Am. Soc. Clin. Oncol. Educ. Book. 2018, 38, 950–963. [Google Scholar] [CrossRef]
- Kanai, Y. Molecular pathological approach to cancer epigenomics and its clinical application. Pathol. Int. 2024, 74, 167–186. [Google Scholar] [CrossRef] [PubMed]
- Enane, F.O.; Saunthararajah, Y.; Korc, M. Differentiation therapy and the mechanisms that terminate cancer cell proliferation without harming normal cells. Cell Death Dis. 2018, 9, 912. [Google Scholar] [CrossRef]
- Kaur, J.; Daoud, A.; Eblen, S.T. Targeting Chromatin Remodeling for Cancer Therapy. Curr. Mol. Pharmacol. 2019, 12, 215–229. [Google Scholar] [CrossRef] [PubMed]
- Singh, V.; Sharma, P.; Capalash, N. DNA methyltransferase-1 inhibitors as epigenetic therapy for cancer. Curr. Cancer Drug Targets 2013, 13, 379–399. [Google Scholar] [CrossRef]
- Yadav, P.; Bandyopadhayaya, S.; Ford, B.M.; Mandal, C. Interplay between DNA Methyltransferase 1 and microRNAs During Tumorigenesis. Curr. Drug Targets 2021, 22, 1129–1148. [Google Scholar] [CrossRef]
- Chédin, F. The DNMT3 family of mammalian de novo DNA methyltransferases. Prog. Mol. Biol. Transl. Sci. 2011, 101, 255–285. [Google Scholar] [CrossRef]
- Del Castillo Falconi, V.M.; Torres-Arciga, K.; Matus-Ortega, G.; Díaz-Chávez, J.; Herrera, L.A. DNA Methyltransferases: From Evolution to Clinical Applications. Int. J. Mol. Sci. 2022, 23, 8994. [Google Scholar] [CrossRef]
- Jeltsch, A.; Jurkowska, R.Z. New concepts in DNA methylation. Trends Biochem. Sci. 2014, 39, 310–318. [Google Scholar] [CrossRef]
- Saravanaraman, P.; Selvam, M.; Ashok, C.; Srijyothi, L.; Baluchamy, S. De novo methyltransferases: Potential players in diseases and new directions for targeted therapy. Biochimie 2020, 176, 85–102. [Google Scholar] [CrossRef] [PubMed]
- Leppert, S.; Matarazzo, M.R. De novo DNMTs and DNA methylation: Novel insights into disease pathogenesis and therapy from epigenomics. Curr. Pharm. Des. 2014, 20, 1812–1818. [Google Scholar] [CrossRef]
- Jin, B.; Robertson, K.D. DNA methyltransferases, DNA damage repair, and cancer. Adv. Exp. Med. Biol. 2013, 754, 3–29. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez, J.R.; Salgado, A.R.M.; Arias, M.Á.; San-Juan-Vergara, H.; Rada, W.R.; Gómez, C.M.M. Epigenetic Modulators as Treatment Alternative to Diverse Types of Cancer. Curr. Med. Chem. 2022, 29, 1503–1542. [Google Scholar] [CrossRef]
- Akone, S.H.; Ntie-Kang, F.; Stuhldreier, F.; Ewonkem, M.B.; Noah, A.M.; Mouelle, S.E.M.; Müller, R. Natural Products Impacting DNA Methyltransferases and Histone Deacetylases. Front. Pharmacol. 2020, 11, 992. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Seto, E. HDACs and HDAC Inhibitors in Cancer Development and Therapy. Cold Spring Harb. Perspect. Med. 2016, 6, a026831. [Google Scholar] [CrossRef]
- Ramaiah, M.J.; Tangutur, A.D.; Manyam, R.R. Epigenetic modulation and understanding of HDAC inhibitors in cancer therapy. Life Sci. 2021, 277, 119504. [Google Scholar] [CrossRef] [PubMed]
- McClure, J.J.; Li, X.; Chou, C.J. Advances and Challenges of HDAC Inhibitors in Cancer Therapeutics. Adv. Cancer Res. 2018, 138, 183–211. [Google Scholar] [CrossRef] [PubMed]
- Cheng, B.; Pan, W.; Xiao, Y.; Ding, Z.; Zhou, Y.; Fei, X.; Liu, J.; Su, Z.; Peng, X.; Chen, J. HDAC-targeting epigenetic modulators for cancer immunotherapy. Eur. J. Med. Chem. 2024, 265, 116129. [Google Scholar] [CrossRef] [PubMed]
- Yoon, S.; Eom, G.H. HDAC and HDAC Inhibitor: From Cancer to Cardiovascular Diseases. Chonnam. Med. J. 2016, 52, 1–11. [Google Scholar] [CrossRef]
- Tasneem, S.; Alam, M.M.; Amir, M.; Akhter, M.; Parvez, S.; Verma, G.; Nainwal, L.M.; Equbal, A.; Anwer, T.; Shaquiquzzaman, M. Heterocyclic Moieties as HDAC Inhibitors: Role in Cancer Therapeutics. Mini Rev. Med. Chem. 2022, 22, 1648–1706. [Google Scholar] [CrossRef]
- Mesgari, H.; Esmaelian, S.; Nasiri, K.; Ghasemzadeh, S.; Doroudgar, P.; Payandeh, Z. Epigenetic Regulation in Oral Squamous Cell Carcinoma Microenvironment: A Comprehensive Review. Cancers 2023, 15, 5600. [Google Scholar] [CrossRef]
- Emfietzoglou, R.; Pachymanolis, E.; Piperi, C. Impact of Epigenetic Alterations in the Development of Oral Diseases. Curr. Med. Chem. 2021, 28, 1091–1103. [Google Scholar] [CrossRef]
- Hema, K.N.; Smitha, T.; Sheethal, H.S.; Mirnalini, S.A. Epigenetics in oral squamous cell carcinoma. J. Oral. Maxillofac. Pathol. 2017, 21, 252–259. [Google Scholar] [CrossRef] [PubMed]
- Cui, J.; Zheng, L.; Zhang, Y.; Xue, M. Bioinformatics analysis of DNMT1 expression and its role in head and neck squamous cell carcinoma prognosis. Sci. Rep. 2021, 11, 2267. [Google Scholar] [CrossRef] [PubMed]
- Supic, G.; Kozomara, R.; Zeljic, K.; Jovic, N.; Magic, Z. Prognostic value of the DNMTs mRNA expression and genetic polymorphisms on the clinical outcome in oral cancer patients. Clin. Oral. Investig. 2017, 21, 173–182. [Google Scholar] [CrossRef] [PubMed]
- Flausino, C.S.; Daniel, F.I.; Modolo, F. DNA methylation in oral squamous cell carcinoma: From its role in carcinogenesis to potential inhibitor drugs. Crit. Rev. Oncol. Hematol. 2021, 164, 103399. [Google Scholar] [CrossRef]
- Shiah, S.G.; Hsiao, J.R.; Chang, H.J.; Hsu, Y.M.; Wu, G.H.; Peng, H.Y.; Chou, S.T.; Kuo, C.C.; Chang, J.Y. MiR-30a and miR-379 modulate retinoic acid pathway by targeting DNA methyltransferase 3B in oral cancer. J. Biomed. Sci. 2020, 27, 46. [Google Scholar] [CrossRef]
- Iglesias-Linares, A.; Yañez-Vico, R.M.; González-Moles, M.A. Potential role of HDAC inhibitors in cancer therapy: Insights into oral squamous cell carcinoma. Oral. Oncol. 2010, 46, 323–329. [Google Scholar] [CrossRef]
- Sajnani, A.K.; Shah, S.G.; Rashid, M.; Natu, A.; Gera, P.B.; Gupta, S. In-Silico Analysis of Chromatin Modifiers and Profiling of Histone Deacetylases (HDAC’s) in Human Oral Cancer. Chonnam. Med. J. 2021, 57, 176–184. [Google Scholar] [CrossRef]
- Goutas, D.; Theocharis, S.; Tsourouflis, G. Unraveling the Epigenetic Role and Clinical Impact of Histone Deacetylases in Neoplasia. Diagnostics 2021, 11, 1346. [Google Scholar] [CrossRef] [PubMed]
- Belnap, C.; Divis, T.; Kingsley, K.; Howard, K.M. Differential Expression of MicroRNA MiR-145 and MiR-155 Downstream Targets in Oral Cancers Exhibiting Limited Chemotherapy Resistance. Int. J. Mol. Sci. 2024, 25, 2167. [Google Scholar] [CrossRef]
- Huni, K.C.; Cheung, J.; Sullivan, M.; Robison, W.T.; Howard, K.M.; Kingsley, K. Chemotherapeutic Drug Resistance Associated with Differential miRNA Expression of miR-375 and miR-27 among Oral Cancer Cell Lines. Int. J. Mol. Sci. 2023, 24, 1244. [Google Scholar] [CrossRef] [PubMed]
- Graves, A.; Sandhu, S.; Kingsley, K. Expression of miR-720 is correlated with DNMT3 in Oral squamous cell carcinomas. ExRNA 2020, 2, 13. [Google Scholar] [CrossRef]
- Liu, Y.; Sun, Y.; Yang, J.; Wu, D.; Yu, S.; Liu, J.; Hu, T.; Luo, J.; Zhou, H. DNMT1-targeting remodeling global DNA hypomethylation for enhanced tumor suppression and circumvented toxicity in oral squamous cell carcinoma. Mol. Cancer 2024, 23, 104. [Google Scholar] [CrossRef]
- Yang, S.C.; Wang, W.Y.; Zhou, J.J.; Wu, L.; Zhang, M.J.; Yang, Q.C.; Deng, W.W.; Sun, Z.J. Inhibition of DNMT1 potentiates antitumor immunity in oral squamous cell carcinoma. Int. Immunopharmacol. 2022, 111, 109113. [Google Scholar] [CrossRef]
- Adhikari, B.R.; Uehara, O.; Matsuoka, H.; Takai, R.; Harada, F.; Utsunomiya, M.; Chujo, T.; Morikawa, T.; Shakya, M.; Yoshida, K.; et al. Immunohistochemical evaluation of Klotho and DNA methyltransferase 3a in oral squamous cell carcinomas. Med. Mol. Morphol. 2017, 50, 155–160. [Google Scholar] [CrossRef]
- Daniel, F.I.; Alves, S.R.; Vieira, D.S.; Biz, M.T.; Daniel, I.W.; Modolo, F. Immunohistochemical expression of DNA methyltransferases 1, 3a, and 3b in actinic cheilitis and lip squamous cell carcinomas. J. Oral. Pathol. Med. 2016, 45, 774–779. [Google Scholar] [CrossRef] [PubMed]
- Daniel, F.I.; Rivero, E.R.; Modolo, F.; Lopes, T.G.; Salum, F.G. Immunohistochemical expression of DNA methyltransferases 1, 3a and 3b in oral leukoplakias and squamous cell carcinomas. Arch. Oral. Biol. 2010, 55, 1024–1030. [Google Scholar] [CrossRef]
- Cavaliéri Gomes, C.; da Silveira e Oliveira, C.; Santos Pimenta, L.G.; De Marco, L.; Santiago Gomez, R. Immunolocalization of DNMT1 and DNMT3a in salivary gland neoplasms. Pathobiology 2009, 76, 136–140. [Google Scholar] [CrossRef]
- Daniel, F.I.; Cherubini, K.; Yurgel, L.S.; de Figueiredo, M.A.; Salum, F.G. The role of epigenetic transcription repression and DNA methyltransferases in cancer. Cancer 2011, 117, 677–687. [Google Scholar] [CrossRef]
- Teh, M.T.; Gemenetzidis, E.; Patel, D.; Tariq, R.; Nadir, A.; Bahta, A.W.; Waseem, A.; Hutchison, I.L. FOXM1 induces a global methylation signature that mimics the cancer epigenome in head and neck squamous cell carcinoma. PLoS ONE 2012, 7, e34329. [Google Scholar] [CrossRef]
- Chen, W.C.; Chen, M.F.; Lin, P.Y. Significance of DNMT3b in oral cancer. PLoS ONE 2014, 9, e89956. [Google Scholar] [CrossRef] [PubMed]
- Kayser, S.; Levis, M.J. Updates on targeted therapies for acute myeloid leukaemia. Br. J. Haematol. 2022, 196, 316–328. [Google Scholar] [CrossRef]
- Garcia-Manero, G.; Döhner, H.; Wei, A.H.; La Torre, I.; Skikne, B.; Beach, C.L.; Santini, V. Oral. Azacitidine (CC-486) for the Treatment of Myeloid Malignancies. Clin. Lymphoma Myeloma Leuk. 2022, 22, 236–250. [Google Scholar] [CrossRef]
- Hodjat, M.; Jourshari, P.B.; Amirinia, F.; Asadi, N. 5-Azacitidine and Trichostatin A induce DNA damage and apoptotic responses in tongue squamous cell carcinoma: An in vitro study. Arch. Oral. Biol. 2022, 133, 105296. [Google Scholar] [CrossRef]
- Notarstefano, V.; Belloni, A.; Sabbatini, S.; Pro, C.; Orilisi, G.; Monterubbianesi, R.; Tosco, V.; Byrne, H.J.; Vaccari, L.; Giorgini, E. Cytotoxic Effects of 5-Azacytidine on Primary Tumour Cells and Cancer Stem Cells from Oral Squamous Cell Carcinoma: An In Vitro FTIRM Analysis. Cells 2021, 10, 2127. [Google Scholar] [CrossRef]
- Viet, C.T.; Dang, D.; Achdjian, S.; Ye, Y.; Katz, S.G.; Schmidt, B.L. Decitabine rescues cisplatin resistance in head and neck squamous cell carcinoma. PLoS ONE 2014, 9, e112880. [Google Scholar] [CrossRef] [PubMed]
- Haumschild, R.; Kennerly-Shah, J.; Barbarotta, L.; Zeidan, A.M. Clinical activity, pharmacokinetics, and pharmacodynamics of oral hypomethylating agents for myelodysplastic syndromes/neoplasms and acute myeloid leukemia: A multidisciplinary review. J. Oncol. Pharm. Pr. 2024, 30, 721–736. [Google Scholar] [CrossRef]
- Venugopal, S.; Shallis, R.M.; Zeidan, A.M. Oral therapy for myelodysplastic syndromes/neoplasms and acute myeloid leukemia: A revolution in progress. Expert. Rev. Anticancer. Ther. 2023, 23, 903–911. [Google Scholar] [CrossRef]
- Higuchi, T.; Han, Q.; Sugisawa, N.; Yamamoto, J.; Yamamoto, N.; Hayashi, K.; Kimura, H.; Miwa, S.; Igarashi, K.; Bouvet, M.; et al. Combination Methionine-methylation-axis Blockade: A Novel Approach to Target the Methionine Addiction of Cancer. Cancer Genom. Proteom. 2021, 18, 113–120. [Google Scholar] [CrossRef] [PubMed]
- Renneville, A.; Patnaik, M.M.; Chan, O.; Padron, E.; Solary, E. Increasing recognition and emerging therapies argue for dedicated clinical trials in chronic myelomonocytic leukemia. Leukemia 2021, 35, 2739–2751. [Google Scholar] [CrossRef]
- Kantarjian, H.; Short, N.J.; DiNardo, C.; Stein, E.M.; Daver, N.; Perl, A.E.; Wang, E.S.; Wei, A.; Tallman, M. Harnessing the benefits of available targeted therapies in acute myeloid leukaemia. Lancet Haematol. 2021, 8, e922–e933. [Google Scholar] [CrossRef]
- Chang, C.C.; Lin, B.R.; Chen, S.T.; Hsieh, T.H.; Li, Y.J.; Kuo, M.Y. HDAC2 promotes cell migration/invasion abilities through HIF-1α stabilization in human oral squamous cell carcinoma. J. Oral. Pathol. Med. 2011, 40, 567–575. [Google Scholar] [CrossRef]
- Datta, J.; Islam, M.; Dutta, S.; Roy, S.; Pan, Q.; Teknos, T.N. Suberoylanilide hydroxamic acid inhibits growth of head and neck cancer cell lines by reactivation of tumor suppressor microRNAs. Oral. Oncol. 2016, 56, 32–39. [Google Scholar] [CrossRef] [PubMed]
- Yuan, F.; Yong, J.; Liu, X.; Wang, Y. Selinexor assists vorinostat in inhibiting HDAC activity via promoting the accumulation of maspin in the nucleus of oral tongue squamous cell carcinoma cells. Cytotechnology 2023, 75, 1–16. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Holloway, T.; Kingsley, K. Differential Expression of DNA Methyltransferase (DNMT1 and DNMT3), Histone Deacetylase (HDAC1 and HDAC2), and Upstream Target Regulators MiR-145 and Mir-152 among Oral Cancers. Targets 2024, 2, 224-236. https://doi.org/10.3390/targets2030013
Holloway T, Kingsley K. Differential Expression of DNA Methyltransferase (DNMT1 and DNMT3), Histone Deacetylase (HDAC1 and HDAC2), and Upstream Target Regulators MiR-145 and Mir-152 among Oral Cancers. Targets. 2024; 2(3):224-236. https://doi.org/10.3390/targets2030013
Chicago/Turabian StyleHolloway, Trevor, and Karl Kingsley. 2024. "Differential Expression of DNA Methyltransferase (DNMT1 and DNMT3), Histone Deacetylase (HDAC1 and HDAC2), and Upstream Target Regulators MiR-145 and Mir-152 among Oral Cancers" Targets 2, no. 3: 224-236. https://doi.org/10.3390/targets2030013
APA StyleHolloway, T., & Kingsley, K. (2024). Differential Expression of DNA Methyltransferase (DNMT1 and DNMT3), Histone Deacetylase (HDAC1 and HDAC2), and Upstream Target Regulators MiR-145 and Mir-152 among Oral Cancers. Targets, 2(3), 224-236. https://doi.org/10.3390/targets2030013