Structural Evaluation of Interleukin-19 Cytokine and Interleukin-19-Bound Receptor Complex Using Computational Immuno-Engineering Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. Selection of Protein Models
2.2. Modeling and Simulation
3. Results and Discussion
4. Conclusions
Supplementary Materials
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, X.; Wang, D.; Jiang, Y.-B.; Jiang, T. Design of Cell-Specific Targeting Peptides for Cancer Therapy. Targets 2024, 2, 186–201. [Google Scholar] [CrossRef]
- Liu, Y.; Xie, X.; Wang, Q.; Chen, D.; Qiu, D.; Yan, X.; Guo, L.; Chen, Q.; Zhang, X.; Ju, H. Lighting and rapid detection of the Coronavirus S protein using computationally speculated ligand and its application in SARS-CoV-2. Sens. Actuators B Chem. 2024, 418, 136284. [Google Scholar] [CrossRef]
- Krishnan, M.N.; Trombley, P.; Moczydlowski, E.G. Thermal stability of the K+ channel tetramer: Cation interactions and the conserved threonine residue at the innermost site (S4) of the KcsA selectivity filter. Biochemistry 2008, 47, 5354–5367. [Google Scholar] [CrossRef]
- Bi, S.; Chen, W.; Fang, Y.; Shen, J.; Zhang, Q.; Guo, H.; Ju, H.; Liu, Y. Cancer Cell-Selective PD-L1 Inhibition via a DNA Safety Catch to Enhance Immunotherapy Specificity. Angew. Chem. (Int. Ed. Engl.) 2024, 63, e202402522. [Google Scholar] [CrossRef] [PubMed]
- Abouhajar, F.; Chaudhuri, R.; Valiulis, S.N.; Stuart, D.D.; Malinick, A.S.; Xue, M.; Cheng, Q. Label-Free Analysis of Binding and Inhibition of SARS-Cov-19 Spike Proteins to ACE2 Receptor with ACE2-Derived Peptides by Surface Plasmon Resonance. ACS Appl. Bio Mater. 2023, 6, 182–190. [Google Scholar] [CrossRef]
- Safa, A.R.; Pollok, K.E. Targeting the Anti-Apoptotic Protein c-FLIP for Cancer Therapy. Cancers 2011, 3, 1639–1671. [Google Scholar] [CrossRef]
- Park, Y.; Lee, H.J.; Sim, D.Y.; Park, J.E.; Ahn, C.H.; Park, S.Y.; Lee, Y.C.; Shim, B.S.; Kim, B.; Kim, S.H. Inhibition of glycolysis and SIRT1/GLUT1 signaling ameliorates the apoptotic effect of Leptosidin in prostate cancer cells. Phytother. Res. PTR 2024, 38, 1235–1244. [Google Scholar] [CrossRef]
- Sohretoglu, D.; Zhang, C.; Luo, J.; Huang, S. ReishiMax inhibits mTORC1/2 by activating AMPK and inhibiting IGFR/PI3K/Rheb in tumor cells. Signal Transduct. Target. Ther. 2019, 4, 21. [Google Scholar] [CrossRef]
- Alotaibi, D.; Amara, S.; Johnson, T.L.; Tiriveedhi, V. Potential anticancer effect of prostratin through SIK3 inhibition. Oncol. Lett. 2018, 15, 3252–3258. [Google Scholar] [CrossRef]
- Rizzuti, B.; Abian, O.; Velazquez-Campoy, A.; Neira, J.L. Conformational Stability of the N-Terminal Region of MDM2. Molecules 2023, 28, 7578. [Google Scholar] [CrossRef]
- Honkala, A.T.; Tailor, D.; Malhotra, S.V. Guanylate-Binding Protein 1: An Emerging Target in Inflammation and Cancer. Front. Immunol. 2019, 10, 3139. [Google Scholar] [CrossRef] [PubMed]
- Logsdon, N.J.; Deshpande, A.; Harris, B.D.; Rajashankar, K.R.; Walter, M.R. Structural basis for receptor sharing and activation by interleukin-20 receptor-2 (IL-20R2) binding cytokines. Proc. Natl. Acad. Sci. USA 2012, 109, 12704–12709. [Google Scholar] [CrossRef] [PubMed]
- Zdanov, A. Structural analysis of cytokines comprising the IL-10 family. Cytokine Growth Factor Rev. 2010, 21, 325–330. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.; Magracheva, E.; Kozlov, S.; Fong, S.; Tobin, G.; Kotenko, S.; Wlodawer, A.; Zdanov, A. Crystal structure of interleukin-19 defines a new subfamily of helical cytokines. J. Biol. Chem. 2003, 278, 3308–3313. [Google Scholar] [CrossRef]
- Niess, J.H.; Hruz, P.; Kaymak, T. The Interleukin-20 Cytokines in Intestinal Diseases. Front. Immunol. 2018, 9, 1373. [Google Scholar] [CrossRef]
- Dumoutier, L.; Leemans, C.; Lejeune, D.; Kotenko, S.V.; Renauld, J.C. Cutting edge: STAT activation by IL-19, IL-20 and mda-7 through IL-20 receptor complexes of two types. J. Immunol. 2001, 167, 3545–3549. [Google Scholar] [CrossRef]
- Pletnev, S.; Magracheva, E.; Kozlov, S.; Tobin, G.; Kotenko, S.V.; Wlodawer, A.; Zdanov, A. Characterization of the recombinant extracellular domains of human interleukin-20 receptors and their complexes with interleukin-19 and interleukin-20. Biochemistry 2003, 42, 12617–12624. [Google Scholar] [CrossRef]
- Gallagher, G.; Eskdale, J.; Jordan, W.; Peat, J.; Campbell, J.; Boniotto, M.; Lennon, G.P.; Dickensheets, H.; Donnelly, R.P. Human interleukin-19 and its receptor: A potential role in the induction of Th2 responses. Int. Immunopharmacol. 2004, 4, 615–626. [Google Scholar] [CrossRef]
- Ouyang, W.; Rutz, S.; Crellin, N.K.; Valdez, P.A.; Hymowitz, S.G. Regulation and functions of the IL-10 family of cytokines in inflammation and disease. Annu. Rev. Immunol. 2011, 29, 71–109. [Google Scholar] [CrossRef]
- Wang, X.; Wong, K.; Ouyang, W.; Rutz, S. Targeting IL-10 Family Cytokines for the Treatment of Human Diseases. Cold Spring Harb. Perspect. Biol. 2019, 11, a028548. [Google Scholar] [CrossRef]
- Zdanov, A.; Schalk-Hihi, C.; Gustchina, A.; Tsang, M.; Weatherbee, J.; Wlodawer, A. Crystal structure of interleukin-10 reveals the functional dimer with an unexpected topological similarity to interferon gamma. Structure 1995, 3, 591–601. [Google Scholar] [CrossRef] [PubMed]
- Ravindran, A.; Joseph, P.R.; Rajarathnam, K. Structural basis for differential binding of the interleukin-8 monomer and dimer to the CXCR1 N-domain: Role of coupled interactions and dynamics. Biochemistry 2009, 48, 8795–8805. [Google Scholar] [CrossRef] [PubMed]
- Roy, U. Insight into the structures of Interleukin-18 systems. Comput. Biol. Chem. 2020, 88, 107353. [Google Scholar] [CrossRef]
- Roy, U. Structure and Function of an Inflammatory Cytokine, Interleukin-2, Analyzed Using the Bioinformatic Approach. Protein J. 2019, 38, 525–536. [Google Scholar] [CrossRef] [PubMed]
- Roy, U. Structural biology of tumor necrosis factor demonstrated for undergraduates instruction by computer simulation. Biochem. Mol. Biol. Educ. 2016, 44, 246–255. [Google Scholar] [CrossRef]
- Roy, U.; Woods, A.G.; Sokolowska, I.; Darie, C.C. Structural Evaluation and Analyses of Tumor Differentiation Factor. Protein J. 2013, 32, 512–518. [Google Scholar] [CrossRef]
- Roy, U. Computational Investigation of Selected Spike Protein Mutations in SARS-CoV-2: Delta, Omicron, and Some Circulating Subvariants. Pathogens 2023, 13, 10. [Google Scholar] [CrossRef]
- Fatouros, P.R.; Roy, U.; Sur, S. Modeling Substrate Coordination to Zn-Bound Angiotensin Converting Enzyme 2. Int. J. Pept. Res. Ther. 2022, 28, 65. [Google Scholar] [CrossRef]
- Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 2003, 13, 2498–2504. [Google Scholar] [CrossRef]
- Tovchigrechko, A.; Vakser, I.A. GRAMM-X public web server for protein–protein docking. Nucleic Acids Res. 2006, 34, W310–W314. [Google Scholar] [CrossRef]
- Schneidman-Duhovny, D.; Inbar, Y.; Nussinov, R.; Wolfson, H.J. PatchDock and SymmDock: Servers for rigid and symmetric docking. Nucleic Acids Res. 2005, 33, W363–W367. [Google Scholar] [CrossRef] [PubMed]
- Mashiach, E.; Schneidman-Duhovny, D.; Andrusier, N.; Nussinov, R.; Wolfson, H.J. FireDock: A web server for fast interaction refinement in molecular docking. Nucleic Acids Res. 2008, 36, W229–W232. [Google Scholar] [CrossRef] [PubMed]
- Phillips, J.; Braun, R.; Wang, W.; Gumbart, J.; Tajkhorshid, E.; Villa, E.; Chipot, C.; Skeel, R.; Kale, L.; Schulten, K. Scalable molecular dynamics with NAMD. J. Comput. Chem. 2005, 26, 1781–1802. [Google Scholar] [CrossRef] [PubMed]
- Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual molecular dynamics. J. Chem. Inf. Model. 1996, 14, 33–38. [Google Scholar] [CrossRef]
- Ribeiro, J.V.; Bernardi, R.C.; Rudack, T.; Stone, J.E.; Phillips, J.C.; Freddolino, P.L.; Schulten, K. QwikMD — Integrative Molecular Dynamics Toolkit for Novices and Experts. Sci. Rep. 2016, 6, 26536. [Google Scholar] [CrossRef]
- Tanner, D.E.; Phillips, J.C.; Schulten, K. GPU/CPU Algorithm for Generalized Born/Solvent-Accessible Surface Area Implicit Solvent Calculations. J. Chem. Theory Comput. 2012, 8, 2521–2530. [Google Scholar] [CrossRef]
- Dassault Systèmes. BIOVIA Discovery Studio Modeling Environment; Dassault Systèmes: San Diego, CA, USA, 2015. [Google Scholar]
- Consortium, T.U. UniProt: The Universal Protein Knowledgebase in 2023. Nucleic Acids Res. 2022, 51, D523–D531. [Google Scholar] [CrossRef]
- Razick, S.; Magklaras, G.; Donaldson, I.M. iRefIndex: A consolidated protein interaction database with provenance. BMC Bioinform. 2008, 9, 405. [Google Scholar] [CrossRef] [PubMed]
- Kolumam, G.; Wu, X.; Lee, W.P.; Hackney, J.A.; Zavala-Solorio, J.; Gandham, V.; Danilenko, D.M.; Arora, P.; Wang, X.; Ouyang, W. IL-22R Ligands IL-20, IL-22, and IL-24 Promote Wound Healing in Diabetic db/db Mice. PLoS ONE 2017, 12, e0170639. [Google Scholar] [CrossRef]
- Krissinel, E.; Henrick, K. Inference of macromolecular assemblies from crystalline state. J. Mol. Biol. 2007, 372, 774–797. [Google Scholar] [CrossRef]
- Xue, L.C.; Rodrigues, J.P.; Kastritis, P.L.; Bonvin, A.M.; Vangone, A. PRODIGY: A web server for predicting the binding affinity of protein-protein complexes. Bioinformatics 2016, 32, 3676–3678. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Roy, U. Structural Evaluation of Interleukin-19 Cytokine and Interleukin-19-Bound Receptor Complex Using Computational Immuno-Engineering Approach. Targets 2024, 2, 385-395. https://doi.org/10.3390/targets2040022
Roy U. Structural Evaluation of Interleukin-19 Cytokine and Interleukin-19-Bound Receptor Complex Using Computational Immuno-Engineering Approach. Targets. 2024; 2(4):385-395. https://doi.org/10.3390/targets2040022
Chicago/Turabian StyleRoy, Urmi. 2024. "Structural Evaluation of Interleukin-19 Cytokine and Interleukin-19-Bound Receptor Complex Using Computational Immuno-Engineering Approach" Targets 2, no. 4: 385-395. https://doi.org/10.3390/targets2040022
APA StyleRoy, U. (2024). Structural Evaluation of Interleukin-19 Cytokine and Interleukin-19-Bound Receptor Complex Using Computational Immuno-Engineering Approach. Targets, 2(4), 385-395. https://doi.org/10.3390/targets2040022