Repurposing FDA-Approved Drugs Against Potential Drug Targets Involved in Brain Inflammation Contributing to Alzheimer’s Disease
Abstract
:1. Introduction
2. Materials and Methods
2.1. Structure-Based Druggability Analysis
2.2. Sequence-Based Methods for Druggability Analysis
2.3. Small Molecule Docking for Repurposing FDA-Approved Drugs
2.4. Upstream RNA-Sequencing Analysis
3. Results
3.1. Druggability Analysis of Targets via Drug-like Density
3.2. Druggability Analysis of Targets via SITEMAP
3.3. Druggability Analysis of Targets via SPIDER
3.4. Comparison of Druggability Analysis Results
3.5. Validation of Certain Targets Identified from Druggability Analysis by Single-Nucleus Sequencing Data for Inflammation Contributing to Alzheimer’s Disease
3.6. Small Molecule Docking for Drug Repurposing for the Targets with the Highest Druggability
3.6.1. Repurposing FDA-Approved Drugs to Inhibit DRD2
3.6.2. Repurposing FDA-Approved Drugs to Inhibit C4B
3.6.3. Repurposing FDA-Approved Drugs to Inhibit GABA-A-R
3.6.4. Repurposing FDA-Approved Drugs to Inhibit C9
3.6.5. Repurposing FDA-Approved Drugs to Inhibit C5AR1
4. Discussion
4.1. Comprehensive Druggability Assessment of Inflammation-Related Alzheimer’s Disease Targets
4.2. Drug Repurposing for the Top Drug Targets Related to Inflammation for Alzheimer’s Disease
4.3. The Role of the Complement Cascade in Alzheimer’s Disease Progression
4.4. Limitation and Future Work
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Kinney, J.W.; Bemiller, S.M.; Murtishaw, A.S.; Leisgang, A.M.; Salazar, A.M.; Lamb, B.T. Inflammation as a central mechanism in Alzheimer’s disease. Alzheimer’s Dement. Transl. Res. Clin. Interv. 2018, 4, 575–590. [Google Scholar] [CrossRef] [PubMed]
- Tatulian, S.A. Challenges and hopes for Alzheimer’s disease. Drug Discov. Today 2022, 27, 1027–1043. [Google Scholar] [CrossRef] [PubMed]
- Finder, V.H. Alzheimer’s Disease: A General Introduction and Pathomechanism. J. Alzheimer’s Dis. 2010, 22, S5–S19. [Google Scholar] [CrossRef] [PubMed]
- Chohan, M.O.; Khatoon, S.; Iqbal, I.-G.; Iqbal, K. Involvement of in the abnormal hyperphosphorylation of tau and its reversal by Memantine. FEBS Lett. 2006, 580, 3973–3979. [Google Scholar] [CrossRef]
- Wang, L.; Bharti; Kumar, R.; Pavlov, P.F.; Winblad, B. Small molecule therapeutics for tauopathy in Alzheimer’s disease: Walking on the path of most resistance. Eur. J. Med. Chem. 2021, 209, 112915. [Google Scholar] [CrossRef]
- Mahase, E. Alzheimer’s disease: FDA approves lecanemab amid cost and safety concerns. BMJ 2023, 380, 73. [Google Scholar] [CrossRef]
- Canady, V.A. FDA approves new treatment for Alzheimer’s disease. Ment. Health Wkly. 2023, 33, 6–7. [Google Scholar] [CrossRef]
- Liu, J.; Xiao, Q.; Xiao, J.; Niu, C.; Li, Y.; Zhang, X.; Zhou, Z.; Shu, G.; Yin, G. Wnt/β-catenin signalling: Function, biological mechanisms, and therapeutic opportunities. Signal Transduct. Target. Ther. 2022, 7, 3. [Google Scholar] [CrossRef]
- Akiyama, H.; Barger, S.; Barnum, S.; Bradt, B.; Bauer, J.; Cole, G.M.; Cooper, N.R.; Eikelenboom, P.; Emmerling, M.; Fiebich, B.L.; et al. Inflammation and Alzheimer’s disease. Neurobiol. Aging 2000, 21, 383–421. [Google Scholar] [CrossRef]
- Perry, V. The influence of systemic inflammation on inflammation in the brain: Implications for chronic neurodegenerative disease. Brain Behav. Immun. 2004, 18, 407–413. [Google Scholar] [CrossRef]
- Zhu, M.; Wang, X.; Sun, L.; Schultzberg, M.; Hjorth, E. Can inflammation be resolved in Alzheimer’s disease? Ther. Adv. Neurol. Disord. 2018, 11, 175628641879110. [Google Scholar] [CrossRef] [PubMed]
- Garcez, M.L.; Jacobs, K.R.; Guillemin, G.J. Microbiota Alterations in Alzheimer’s Disease: Involvement of the Kynurenine Pathway and Inflammation. Neurotox. Res. 2019, 36, 424–436. [Google Scholar] [CrossRef] [PubMed]
- Perry, V.H.; Teeling, J. Microglia and macrophages of the central nervous system: The contribution of microglia priming and systemic inflammation to chronic neurodegeneration. Semin. Immunopathol. 2013, 35, 601–612. [Google Scholar] [CrossRef]
- Ryu, J.K.; Cho, T.; Choi, H.B.; Jantaratnotai, N.; McLarnon, J.G. Pharmacological antagonism of interleukin-8 receptor CXCR2 inhibits inflammatory reactivity and is neuroprotective in an animal model of Alzheimer’s disease. J. Neuroinflammation 2015, 12, 144. [Google Scholar] [CrossRef]
- Lundstrom, K. An Overview on GPCRs and Drug Discovery: Structure-Based Drug Design and Structural Biology on GPCRs. In G Protein-Coupled Receptors in Drug Discovery; Humana Press: Totowa, NJ, USA, 2009; pp. 51–66. [Google Scholar] [CrossRef]
- Sheridan, R.P.; Maiorov, V.N.; Holloway, M.K.; Cornell, W.D.; Gao, Y.-D. Drug-like Density: A Method of Quantifying the “Bindability” of a Protein Target Based on a Very Large Set of Pockets and Drug-like Ligands from the Protein Data Bank. J. Chem. Inf. Model. 2010, 50, 2029–2040. [Google Scholar] [CrossRef]
- Hanes, R.; Liu, Y.; Huang, Z. Druggability Analysis of Protein Targets for Drug Discovery to Combat Listeria monocytogenes. Microorganisms 2024, 12, 1073. [Google Scholar] [CrossRef]
- An, J.; Totrov, M.; Abagyan, R. Pocketome via Comprehensive Identification and Classification of Ligand Binding Envelopes. Mol. Cell. Proteom. 2005, 4, 752–761. [Google Scholar] [CrossRef]
- Borrel, A.; Regad, L.; Xhaard, H.; Petitjean, M.; Camproux, A.-C. PockDrug: A Model for Predicting Pocket Druggability That Overcomes Pocket Estimation Uncertainties. J. Chem. Inf. Model. 2015, 55, 882–895. [Google Scholar] [CrossRef]
- Rodriguez-Salarichs, J. PockDrug Descriptors (Druggability). Available online: https://github.com/rodriguez-salarichs/PockDrug_descriptors (accessed on 5 May 2024).
- Wang, S.; Xie, J.; Pei, J.; Lai, L. CavityPlus 2022 Update: An Integrated Platform for Comprehensive Protein Cavity Detection and Property Analyses with User-friendly Tools and Cavity Databases. J. Mol. Biol. 2023, 435, 168141. [Google Scholar] [CrossRef]
- Xu, Y.; Wang, S.; Hu, Q.; Gao, S.; Ma, X.; Zhang, W.; Shen, Y.; Chen, F.; Lai, L.; Pei, J. CavityPlus: A web server for protein cavity detection with pharmacophore modelling, allosteric site identification and covalent ligand binding ability prediction. Nucleic Acids Res. 2018, 46, W374–W379. [Google Scholar] [CrossRef]
- Schöning-Stierand, K.; Diedrich, K.; Ehrt, C.; Flachsenberg, F.; Graef, J.; Sieg, J.; Penner, P.; Poppinga, M.; Ungethüm, A.; Rarey, M. ProteinsPlus: A comprehensive collection of web-based molecular modeling tools. Nucleic Acids Res. 2022, 50, W611–W615. [Google Scholar] [CrossRef] [PubMed]
- Schöning-Stierand, K.; Schöning-Stierand, K.; Diedrich, K.; Diedrich, K.; Fährrolfes, R.; Fährrolfes, R.; Flachsenberg, F.; Flachsenberg, F.; Meyder, A.; Meyder, A.; et al. ProteinsPlus: Interactive analysis of protein–ligand binding interfaces. Nucleic Acids Res. 2020, 48, W48–W53. [Google Scholar] [CrossRef] [PubMed]
- Fährrolfes, R.; Bietz, S.; Flachsenberg, F.; Meyder, A.; Nittinger, E.; Otto, T.; Volkamer, A.; Rarey, M. ProteinsPlus: A web portal for structure analysis of macromolecules. Nucleic Acids Res. 2017, 45, W337–W343. [Google Scholar] [CrossRef]
- Schmidtke, P.; Le Guilloux, V.; Shorkar, M. fpocket. Available online: https://github.com/Discngine/fpocket (accessed on 5 May 2024).
- InDeep. Available online: https://gitlab.pasteur.fr/InDeep/InDeep (accessed on 5 May 2024).
- Cuchillo, R.; Pinto-Gil, K.; Michel, J. A Collective Variable for the Rapid Exploration of Protein Druggability. J. Chem. Theory Comput. 2015, 11, 1292–1307. [Google Scholar] [CrossRef] [PubMed]
- Krivák, R.; Hoksza, D. P2Rank: Machine learning based tool for rapid and accurate prediction of ligand binding sites from protein structure. J. Chemin. 2018, 10, 39. [Google Scholar] [CrossRef] [PubMed]
- Jakubec, D.; Skoda, P.; Krivak, R.; Novotny, M.; Hoksza, D. PrankWeb 3: Accelerated ligand-binding site predictions for experimental and modelled protein structures. Nucleic Acids Res. 2022, 50, W593–W597. [Google Scholar] [CrossRef]
- Jendele, L.; Krivak, R.; Skoda, P.; Novotny, M.; Hoksza, D. PrankWeb: A web server for ligand binding site prediction and visualization. Nucleic Acids Res. 2019, 47, W345–W349. [Google Scholar] [CrossRef]
- Krivák, R.; Hoksza, D. P2RANK: Knowledge-Based Ligand Binding Site Prediction Using Aggregated Local Features. In Algorithms for Computational Biology; Springer: Berlin/Heidelberg, Germany, 2015; pp. 41–52. [Google Scholar] [CrossRef]
- Krivák, R.; Hoksza, D. Improving protein-ligand binding site prediction accuracy by classification of inner pocket points using local features. J. Chemin. 2015, 7, 12. [Google Scholar] [CrossRef]
- Halgren, T.A. Identifying and Characterizing Binding Sites and Assessing Druggability. J. Chem. Inf. Model. 2009, 49, 377–389. [Google Scholar] [CrossRef]
- Yuan, J.-H.; Han, S.B.; Richter, S.; Wade, R.C.; Kokh, D.B. Druggability Assessment in TRAPP Using Machine Learning Approaches. J. Chem. Inf. Model. 2020, 60, 1685–1699. [Google Scholar] [CrossRef]
- Kozlovskii, I.; Popov, P. Spatiotemporal identification of druggable binding sites using deep learning. Commun. Biol. 2020, 3, 618. [Google Scholar] [CrossRef] [PubMed]
- Kozlovskii, I.; Popov, P. Protein–Peptide Binding Site Detection Using 3D Convolutional Neural Networks. J. Chem. Inf. Model. 2021, 61, 3814–3823. [Google Scholar] [CrossRef] [PubMed]
- Cimermancic, P.; Weinkam, P.; Rettenmaier, T.J.; Bichmann, L.; Keedy, D.A.; Woldeyes, R.A.; Schneidman-Duhovny, D.; Demerdash, O.N.; Mitchell, J.C.; Wells, J.A.; et al. CryptoSite: Expanding the Druggable Proteome by Characterization and Prediction of Cryptic Binding Sites. J. Mol. Biol. 2016, 428, 709–719. [Google Scholar] [CrossRef] [PubMed]
- Aggarwal, R.; Gupta, A.; Chelur, V.; Jawahar, C.V.; Priyakumar, U.D. DeepPocket: Ligand Binding Site Detection and Segmentation using 3D Convolutional Neural Networks. J. Chem. Inf. Model. 2022, 62, 5069–5079. [Google Scholar] [CrossRef] [PubMed]
- Jiménez, J.; Doerr, S.; Martínez-Rosell, G.; Rose, A.S.; De Fabritiis, G. DeepSite: Protein-binding site predictor using 3D-convolutional neural networks. Bioinformatics 2017, 33, 3036–3042. [Google Scholar] [CrossRef]
- Mylonas, S.K.; Axenopoulos, A.; Daras, P. DeepSurf: A surface-based deep learning approach for the prediction of ligand binding sites on proteins. Bioinformatics 2021, 37, 1681–1690. [Google Scholar] [CrossRef]
- Tan, K.P.; Nguyen, T.B.; Patel, S.; Varadarajan, R.; Madhusudhan, M.S. Depth: A web server to compute depth, cavity sizes, detect potential small-molecule ligand-binding cavities and predict the pKa of ionizable residues in proteins. Nucleic Acids Res. 2013, 41, W314–W321. [Google Scholar] [CrossRef]
- Wang, X.; Flannery, S.T.; Kihara, D. Protein Docking Model Evaluation by Graph Neural Networks. Front. Mol. Biosci. 2021, 8, 647915. [Google Scholar] [CrossRef]
- Kawabata, T. Detection of multiscale pockets on protein surfaces using mathematical morphology. Proteins: Struct. Funct. Bioinform. 2010, 78, 1195–1211. [Google Scholar] [CrossRef]
- Li, B.; Turuvekere, S.; Agrawal, M.; La, D.; Ramani, K.; Kihara, D. Characterization of local geometry of protein surfaces with the visibility criterion. Proteins Struct. Funct. Bioinform. 2008, 71, 670–683. [Google Scholar] [CrossRef]
- Stepniewska-Dziubinska, M.M.; Zielenkiewicz, P.; Siedlecki, P. Improving detection of protein-ligand binding sites with 3D segmentation. Sci. Rep. 2020, 10, 5035. [Google Scholar] [CrossRef] [PubMed]
- Jing, B.; Eismann, S.; Suriana, P.; Townshend, R.J.L.; Dror, R. Learning from Protein Structure with Geometric Vector Perceptrons. arXiv 2021, arXiv:2009.01411. [Google Scholar]
- Di Palma, F.; Abate, C.; Decherchi, S.; Cavalli, A. Ligandability and druggability assessment via machine learning. WIREs Comput. Mol. Sci. 2023, 13, e1676. [Google Scholar] [CrossRef]
- Liao, J.; Wang, Q.; Wu, F.; Huang, Z. In Silico Methods for Identification of Potential Active Sites of Therapeutic Targets. Molecules 2022, 27, 7103. [Google Scholar] [CrossRef]
- Jamali, A.A.; Ferdousi, R.; Razzaghi, S.; Li, J.; Safdari, R.; Ebrahimie, E. DrugMiner: Comparative analysis of machine learning algorithms for prediction of potential druggable proteins. Drug Discov. Today 2016, 21, 718–724. [Google Scholar] [CrossRef]
- Lin, J.; Chen, H.; Li, S.; Liu, Y.; Li, X.; Yu, B. Accurate prediction of potential druggable proteins based on genetic algorithm and Bagging-SVM ensemble classifier. Artif. Intell. Med. 2019, 98, 35–47. [Google Scholar] [CrossRef]
- Gong, Y.; Liao, B.; Wang, P.; Zou, Q. DrugHybrid_BS: Using Hybrid Feature Combined With Bagging-SVM to Predict Potentially Druggable Proteins. Front. Pharmacol. 2021, 12, 771808. [Google Scholar] [CrossRef]
- Sikander, R.; Ghulam, A.; Ali, F. XGB-DrugPred: Computational prediction of druggable proteins using eXtreme gradient boosting and optimized features set. Sci. Rep. 2022, 12, 5505. [Google Scholar] [CrossRef]
- Yu, L.; Xue, L.; Liu, F.; Li, Y.; Jing, R.; Luo, J. The applications of deep learning algorithms on in silico druggable proteins identification. J. Adv. Res. 2022, 41, 219–231. [Google Scholar] [CrossRef]
- Charoenkwan, P.; Schaduangrat, N.; Lio’, P.; Moni, M.A.; Shoombuatong, W.; Manavalan, B. Computational prediction and interpretation of druggable proteins using a stacked ensemble-learning framework. iScience 2022, 25, 104883. [Google Scholar] [CrossRef]
- Chen, J.; Gu, Z.; Xu, Y.; Deng, M.; Lai, L.; Pei, J. QuoteTarget: A sequence-based transformer protein language model to identify potentially druggable protein targets. Protein Sci. 2023, 32, e4555. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Wan, F.; Liu, T. DrugFinder: Druggable Protein Identification Model Based on Pre-Trained Models and Evolutionary Information. Algorithms 2023, 16, 263. [Google Scholar] [CrossRef]
- Sun, T.; Lai, L.; Pei, J. Analysis of protein features and machine learning algorithms for prediction of druggable proteins. Quant. Biol. 2018, 6, 334–343. [Google Scholar] [CrossRef]
- Iraji, M.S.; Tanha, J.; Habibinejad, M. Druggable protein prediction using a multi-canal deep convolutional neural network based on autocovariance method. Comput. Biol. Med. 2022, 151, 106276. [Google Scholar] [CrossRef]
- Shoombuatong, W.; Schaduangrat, N.; Nikom, J. Empirical comparison and analysis of machine learning-based approaches for druggable protein identification. EXCLI J. 2023, 22, 915–927. [Google Scholar] [CrossRef]
- Chilingaryan, G.; Abelyan, N.; Sargsyan, A.; Nazaryan, K.; Serobian, A.; Zakaryan, H. Combination of consensus and ensemble docking strategies for the discovery of human dihydroorotate dehydrogenase inhibitors. Sci. Rep. 2021, 11, 11417. [Google Scholar] [CrossRef]
- Lam, P.C.-H.; Abagyan, R.; Totrov, M. Hybrid receptor structure/ligand-based docking and activity prediction in ICM: Development and evaluation in D3R Grand Challenge 3. J. Comput. Mol. Des. 2019, 33, 35–46. [Google Scholar] [CrossRef]
- Sharo, C.; Zhai, T.; Huang, Z. Investigation of Potential Drug Targets Involved in Inflammation Contributing to Alzheimer’s Disease Progression. Pharmaceuticals 2024, 17, 137. [Google Scholar] [CrossRef]
- ICM User’s Guide 5.6 3D Predict. Molsoft, LLC. Available online: https://molsoft.com/gui/3d-predict.html (accessed on 10 December 2023).
- Agoni, C.; Olotu, F.A.; Ramharack, P.; Soliman, M.E. Druggability and drug-likeness concepts in drug design: Are biomodelling and predictive tools having their say? J. Mol. Model. 2020, 26, 120. [Google Scholar] [CrossRef]
- Target Analysis with SiteMap and WaterMap. Schrodinger. Available online: https://learn.schrodinger.com/private/edu/release/current/Documentation/html/tutorials/target_analysis/target_analysis.htm (accessed on 5 May 2024).
- Schrodinger. How SiteMap Evaluates Sites. Available online: https://learn.schrodinger.com/private/edu/release/current/Documentation/html/sitemap/sitemap_user_manual/sitemap_methodology_evaluate_sites.htm (accessed on 5 May 2024).
- Zhou, W.; Yan, H. Alpha shape and Delaunay triangulation in studies of protein-related interactions. Brief. Bioinform. 2014, 15, 54–64. [Google Scholar] [CrossRef]
- Thérien, M.; Skorey, K.; Zamboni, R.; Li, C.S.; Lau, C.K.; LeRiche, T.; Truong, V.L.; Waddleton, D.; Ramachandran, C. Synthesis of a novel peptidic photoaffinity probe for the PTP-1B enzyme. Bioorganic Med. Chem. Lett. 2004, 14, 2319–2322. [Google Scholar] [CrossRef] [PubMed]
- Fleishman, S.J.; Whitehead, T.A.; Strauch, E.-M.; Corn, J.E.; Qin, S.; Zhou, H.-X.; Mitchell, J.C.; Demerdash, O.N.; Takeda-Shitaka, M.; Terashi, G.; et al. Community-Wide Assessment of Protein-Interface Modeling Suggests Improvements to Design Methodology. J. Mol. Biol. 2011, 414, 289–302. [Google Scholar] [CrossRef] [PubMed]
- Khashan, R.; Zheng, W.; Tropsha, A. Scoring protein interaction decoys using exposed residues (SPIDER): A novel multibody interaction scoring function based on frequent geometric patterns of interfacial residues. Proteins Struct. Funct. Bioinform. 2012, 80, 2207–2217. [Google Scholar] [CrossRef] [PubMed]
- Khashan, R. SPIDER—About. Available online: https://www.bioinformatics.org/spider/ (accessed on 5 May 2024).
- Krass, E.; Zhai, T.; Huang, Z. Identification of Apolipoprotein E4 inhibitors for Alzheimer’s Disease Therapy through a Large-Scale Virtual Screening. IFAC-PapersOnLine 2022, 55, 27–32. [Google Scholar] [CrossRef]
- Zhang, F.; Graham, J.; Zhai, T.; Liu, Y.; Huang, Z. Discovery of MurA Inhibitors as Novel Antimicrobials through an Integrated Computational and Experimental Approach. Antibiotics 2022, 11, 528. [Google Scholar] [CrossRef]
- Zhai, T.; Zhang, F.; Haider, S.; Kraut, D.; Huang, Z. An Integrated Computational and Experimental Approach to Identifying Inhibitors for SARS-CoV-2 3CL Protease. Front. Mol. Biosci. 2021, 8, 661424. [Google Scholar] [CrossRef]
- Zhang, F.; Zhai, T.; Haider, S.; Liu, Y.; Huang, Z.J. Synergistic Effect of Chlorogenic Acid and Caffeic Acid with Fosfomycin on Growth Inhibition of a Resistant Listeria monocytogenes Strain. ACS Omega 2020, 5, 7537–7544. [Google Scholar] [CrossRef]
- Mori, H.; Yoshino, Y.; Iga, J.-I.; Ochi, S.; Funahashi, Y.; Yamazaki, K.; Kumon, H.; Ozaki, Y.; Ueno, S.-I. Aberrant Expression of GABA-Related Genes in the Hippocampus of 3xTg-AD Model Mice from the Early to End Stages of Alzheimer’s Disease. J. Alzheimer’s Dis. 2023, 94, 177–188. [Google Scholar] [CrossRef]
- Yang, L.-B.; Li, R.; Meri, S.; Rogers, J.; Shen, Y. Deficiency of Complement Defense Protein CD59 May Contribute to Neurodegeneration in Alzheimer’s Disease. J. Neurosci. 2000, 20, 7505–7509. [Google Scholar] [CrossRef]
- Shah, A.; Kishore, U.; Shastri, A. Complement System in Alzheimer’s Disease. Int. J. Mol. Sci. 2021, 22, 13647. [Google Scholar] [CrossRef]
- Jordan, K.L.; Koss, D.J.; Outeiro, T.F.; Giorgini, F. Therapeutic Targeting of Rab GTPases: Relevance for Alzheimer’s Disease. Biomedicines 2022, 10, 1141. [Google Scholar] [CrossRef]
- National Center for Biotechnology Information. PubChem Compound Summary for CID 62959, Trovafloxcin. 2024. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Trovafloxacin (accessed on 8 May 2024).
- DRUGBANK Online. Trovafloxacin. Available online: https://go.drugbank.com/drugs/DB00685 (accessed on 8 May 2024).
- ChEBI. CHEBI:9763—Trovafloxacin. Available online: https://www.ebi.ac.uk/chebi/searchId.do?chebiId=CHEBI:9763 (accessed on 8 May 2024).
- DRUGBANK Online.Betrixaban. Available online: https://go.drugbank.com/drugs/DB12364 (accessed on 8 May 2024).
- National Center for Biotechnology. PubChem Compound Summary for CID 10275777, Betrixaban. 2024. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Betrixaban (accessed on 8 May 2024).
- DRUGBANK Online. Favipiravir. Available online: https://go.drugbank.com/drugs/DB12466 (accessed on 8 May 2024).
- PubChem Compound Summary for CID 90311989. Bictegravir. National Center for Biotechnology Information. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/90311989 (accessed on 15 October 2024).
- National Center for Biotechnology. PubChem Compound Summary for CID 5339, Sulfasalazine. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Sulfasalazine (accessed on 8 May 2024).
- National Center for Biotechnology Information. PubChem Compound Summary for CID 1983, Acetaminophen. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Acetaminophen (accessed on 8 May 2024).
- Shaughnessy, A. How Does Acetaminophen Work? Tufts University School of Medicine: Boston, MA, USA, 2022. [Google Scholar]
- Mines, P.D.; Byun, J.; Hwang, Y.; Patel, H.A.; Andersen, H.R.; Yavuz, C.T. Nanoporous networks as effective stabilisation matrices for nanoscale zero-valent iron and groundwater pollutant removal. J. Mater. Chem. A 2016, 4, 632–639. [Google Scholar] [CrossRef]
- National Center for Biotechnology Information. PubChem Compound Summary for CID 5460875, Asparaginate. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/5460875 (accessed on 15 October 2024).
- National Center for Biotechnology Information. PubChem Compound Summary for CID 6267, Asparagine. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/6267 (accessed on 15 October 2024).
- National Center for Biotechnology Information. PubChem Compound Summary for CID 3830, Kinetin. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/3830 (accessed on 15 October 2024).
- National Center for Biotechnology Inofrmation. PubChem Compound Summary for CID 151075, Nepafenac. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/151075 (accessed on 15 October 2024).
- Lira, R.P.C.; Zanetti, F.R.; Fulco, E.A.M.; Chaves, F.R.P.; Pinto, A.P.d.C.; Arieta, C.E.L. Effect of preoperative use of topical prednisolone acetate, ketorolac tromethamine, nepafenac and placebo, on the maintenance of intraoperative mydriasis during cataract surgery: A randomized trial. Indian J. Ophthalmol. 2012, 60, 277. [Google Scholar] [CrossRef] [PubMed]
- Stevens, B.; Allen, N.J.; Vazquez, L.E.; Howell, G.R.; Christopherson, K.S.; Nouri, N.; Micheva, K.D.; Mehalow, A.K.; Huberman, A.D.; Stafford, B.; et al. The Classical Complement Cascade Mediates CNS Synapse Elimination. Cell 2007, 131, 1164–1178. [Google Scholar] [CrossRef] [PubMed]
- Rogers, J.; Cooper, N.R.; Webster, S.; Schultz, J.; McGeer, P.L.; Styren, S.D.; Civin, W.H.; Brachova, L.; Bradt, B.; Ward, P.; et al. Complement activation by beta-amyloid in Alzheimer disease. Proc. Natl. Acad. Sci. USA 1992, 89, 10016–10020. [Google Scholar] [CrossRef]
- Walker, D.G.; McGeer, P.L. Complement gene expression in human brain: Comparison between normal and Alzheimer disease cases. Mol. Brain Res. 1992, 14, 109–116. [Google Scholar] [CrossRef]
- Batista, A.F.; Khan, K.A.; Papavergi, M.-T.; Lemere, C.A. The Importance of Complement-Mediated Immune Signaling in Alzheimer’s Disease Pathogenesis. Int. J. Mol. Sci. 2024, 25, 817. [Google Scholar] [CrossRef]
- Hong, S.; Beja-Glasser, V.F.; Nfonoyim, B.M.; Frouin, A.; Li, S.; Ramakrishnan, S.; Merry, K.M.; Shi, Q.; Rosenthal, A.; Barres, B.A.; et al. Complement and microglia mediate early synapse loss in Alzheimer mouse models. Science 2016, 352, 712–716. [Google Scholar] [CrossRef]
Target | Number of Pockets | Largest Volume | Highest Hydrophobicity | Buriedness Score | Number of Druggable Pockets |
---|---|---|---|---|---|
C1R | 17 | 386.7 | 0.682 | 0.995 | 0 |
C3 | 37 | 1024 | 0.88 | 0.993 | 6 |
C1S | 11 | 1761 | 0.586 | 0.824 | 1 |
C4B | 27 | 879.1 | 0.7595 | 0.9128 | 5 |
C4A | 4 | 295.1 | 0.631 | 0.859 | 0 |
CFH | 8 | 467.5 | 0.566 | 0.778 | 0 |
Serping1 | 3 | 259.5 | 0.575 | 0.803 | 0 |
C2A | 9 | 334.9 | 0.63 | 0.82 | 0 |
C2B | 2 | 393.5 | 0.568 | 0.87 | 0 |
C5AR1 | 5 | 348.8 | 0.771 | 0.865 | 0 |
RAB7 | 23 | 1368 | 0.593 | 0.884 | 5 |
BACE1 | 2 | 428.8 | 0.623 | 0.833 | 0 |
RAB11 | 4 | 387.9 | 0.529 | 0.805 | 0 |
ARF6 | 3 | 278.4 | 0.544 | 0.834 | 0 |
GABA-A R | 62 | 1923 | 0.893 | 0.998 | 9 |
OPRD1 | 13 | 452.4 | 0.685 | 0.917 | 0 |
VTN | 4 | 779.5 | 0.728 | 0.954 | 1 |
C1QB | 10 | 542.9 | 0.595 | 0.983 | 1 |
C6 | 16 | 715.4 | 0.626 | 0.87 | 0 |
Clusterin | 24 | 1035 | 0.885 | 0.949 | 0 |
C5 | 108 | 1686 | 0.838 | 0.98 | 11 |
C4BPA | 11 | 250.3 | 0.693 | 0.816 | 0 |
CD59 | 0 | - | - | - | 0 |
C9 | 23 | 614.1 | 0.895 | 0.996 | 5 |
DRD2 | 8 | 620.8 | 0.832 | 0.882 | 2 |
Target | DScore | SiteScore | Volume | Balance |
---|---|---|---|---|
C1R | 1.235 | 1.134 | 332.367 | 6.057 |
DRD2 | 1.213 | 1.103 | 167.384 | 12.82 |
OPRD1 | 1.176 | 1.096 | 1353.135 | 3.447 |
C4BPA | 1.093 | 1.016 | 343 | 1.479 |
C9 | 1.079 | 1.048 | 270.284 | 0.91 |
C5AR1 | 1.078 | 1.032 | 228.095 | 5.406 |
GABAAR | 1.065 | 1.035 | 2247.679 | 0.759 |
C4A | 1.061 | 1.015 | 370.44 | 0.906 |
C4B | 1.056 | 1.015 | 673.309 | 0.708 |
SERPING1 | 1.053 | 1.005 | 286.748 | 0.7 |
CLU | 1.052 | 1.007 | 294.98 | 0.732 |
C6 | 1.038 | 0.994 | 822.857 | 0.473 |
C3 | 1.02 | 1.034 | 439.726 | 0.294 |
C1QB | 1.011 | 1.126 | 479.171 | 0.549 |
RAB7 | 0.917 | 0.987 | 531.65 | 0.0005 |
CFH | 0.888 | 0.903 | 248.332 | 0.119 |
RAB11 | 0.88 | 0.881 | 164.983 | 0.435 |
C2B | 0.812 | 0.907 | 230.839 | 0.08 |
C1S | 0.738 | 0.947 | 98.441 | 0.223 |
VTN | 0.738 | 0.821 | 146.118 | 0.165 |
BACE1 | 0.735 | 0.806 | 244.559 | 0.034 |
C2A | 0.656 | 0.778 | 200.655 | 0.081 |
ARF6 | 0.564 | 0.756 | 86.093 | 0.087 |
CD59 | 0.384 | 0.51 | 45.276 | 0.021 |
C5 | - | - | - | - |
Target | DLID Score | Spider Score | SiteMap Score | Composite |
---|---|---|---|---|
ARF6 | 0 | 0.75 | 0 | 0.750 |
C4BPA | 0.113 | 0.5 | 0.788 | 1.401 |
C2B | 0.178 | 0.5 | 0.370 | 1.047 |
CFH | 0.196 | 0 | 0.483 | 0.679 |
C2A | 0.198 | 0.5 | 0.137 | 0.835 |
Serping1 | 0.213 | 0.5 | 0.729 | 1.442 |
RAB11 | 0.234 | 0.5 | 0.471 | 1.205 |
BACE1 | 0.277 | 0.75 | 0.255 | 1.282 |
Clusterin | 0.302 | 0.75 | 0.727 | 1.779 |
OPRD1 | 0.317 | 0.5 | 0.912 | 1.729 |
C5AR1 | 0.373 | 0.75 | 0.766 | 1.889 |
C4A | 0.396 | 0.75 | 0.741 | 1.887 |
C6 | 0.432 | 0.25 | 0.706 | 1.388 |
C1R | 0.512 | 1 | 1 | 2.512 |
VTN | 0.585 | 1 | 0.259 | 1.844 |
RAB7 | 0.651 | 0.5 | 0.526 | 1.677 |
C3 | 0.705 | 0.75 | 0.680 | 2.135 |
DRD2 | 0.746 | 0.75 | 0.967 | 2.464 |
C1QB | 0.783 | 0.75 | 0.666 | 2.199 |
GABA-A R | 0.896 | 0.75 | 0.747 | 2.393 |
C1S | 0.931 | 0.5 | 0.259 | 1.690 |
C4B | 0.959 | 0.75 | 0.733 | 2.442 |
C9 | 1 | 0.25 | 0.768 | 2.018 |
Molecule | Name | Binding Score |
---|---|---|
C20H15F3N4O3 | −24.0 | |
C23H22ClN5O3 | −23.94 | |
v629 | −20.87 | |
v242 | −20.3 | |
v763 | −20.28 | |
v451 | −20.15 | |
v1099 | −20.1 | |
C20H17F3N2O4 | −20.01 |
Molecule | Name | Binding Score |
---|---|---|
C21H18F3N3O5 | −26.13 | |
m | −24.36 | |
C4H9N3O2 | −21.65 | |
C16H13Cl2 | −21.51 | |
v316 | −21.45 | |
C4H3N3O4 | −21.21 | |
v487 | −20.36 | |
v787 | −20.26 | |
v668 | −20.18 | |
v2148 | −20.13 |
Molecule | Name | Binding Score |
---|---|---|
v555 | −29.3 | |
C16H10N2O8S2 | −26.8 | |
CH6O7P2 | −26.4 | |
C21H19ClN4O4 | −25.3 | |
C6H11KO7 | −23.8 | |
C17H15ClO4 | −23.7 | |
v963 | −23.1 | |
C18H15NO8S2 | −22.8 | |
v1165 | −22.8 | |
C12H22MnO14 | −22.3 |
Molecule | Name | Binding Score |
---|---|---|
v174 | −33.2 | |
C13H11NO3 | −32.7 | |
v5147 | −31.2 | |
v634 | −31.2 | |
C15H14N2O2 | −29.2 | |
C13H10O3 | −29.1 | |
v723 | −28.7 | |
v316 | −28.6 | |
C11H6ClN3O6 | −28.3 | |
v233 | −28.1 |
Molecule | Name | Binding Score |
---|---|---|
C10H9N5O | −35.3 | |
v173 | −30.1 | |
v1024 | −29 | |
C17H15N3O6 | −26.5 | |
C20H12O5 | −26.5 | |
v461 | −26.5 | |
C8H10IN3 | −25.9 | |
C16H14N2O3 | −25.8 | |
C15H14N2O2 | −25.7 | |
v744 | −25.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sharo, C.; Zhang, J.; Zhai, T.; Bao, J.; Garcia-Epelboim, A.; Mamourian, E.; Shen, L.; Huang, Z. Repurposing FDA-Approved Drugs Against Potential Drug Targets Involved in Brain Inflammation Contributing to Alzheimer’s Disease. Targets 2024, 2, 446-469. https://doi.org/10.3390/targets2040025
Sharo C, Zhang J, Zhai T, Bao J, Garcia-Epelboim A, Mamourian E, Shen L, Huang Z. Repurposing FDA-Approved Drugs Against Potential Drug Targets Involved in Brain Inflammation Contributing to Alzheimer’s Disease. Targets. 2024; 2(4):446-469. https://doi.org/10.3390/targets2040025
Chicago/Turabian StyleSharo, Catherine, Jiayu Zhang, Tianhua Zhai, Jingxuan Bao, Andrés Garcia-Epelboim, Elizabeth Mamourian, Li Shen, and Zuyi Huang. 2024. "Repurposing FDA-Approved Drugs Against Potential Drug Targets Involved in Brain Inflammation Contributing to Alzheimer’s Disease" Targets 2, no. 4: 446-469. https://doi.org/10.3390/targets2040025
APA StyleSharo, C., Zhang, J., Zhai, T., Bao, J., Garcia-Epelboim, A., Mamourian, E., Shen, L., & Huang, Z. (2024). Repurposing FDA-Approved Drugs Against Potential Drug Targets Involved in Brain Inflammation Contributing to Alzheimer’s Disease. Targets, 2(4), 446-469. https://doi.org/10.3390/targets2040025