The Ecotoxicity of Pesticides Used in Conventional Apple and Grapevine Production in Austria Is Much Higher for Honeybees, Birds and Earthworms than Nature-Based Substances Used in Organic Production
Abstract
:1. Introduction
2. Materials and Methods
2.1. Pesticide Use Data
2.2. Potential Toxic Loads in Conventional vs. Organic Apple and Grapevine Production
3. Results
3.1. Pesticides Used in Apple Production in Austria and Their Toxic Loads
3.2. Specific ASs Used in Apple Production in Austria Affecting Honeybees
3.3. Pesticides Used in Grapevine Production in Austria and Their Toxic Loads
3.4. Potential Toxic Loads in Austrian Grapevine Production
3.5. Specific ASs Used in Vineyards in Austria Affecting Birds
4. Discussion
4.1. Potential Ecotoxicological Impact of Apple Production in Austria
4.2. Potential Ecotoxicological Impact of Grapevine Production in Austria
4.3. Limitations of Our Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Brühl, C.A.; Zaller, J.G. Biodiversity Decline as a Consequence of an Inappropriate Environmental Risk Assessment of Pesticides. Front. Environ. Sci. 2019, 7, 177. [Google Scholar] [CrossRef]
- Brühl, C.A.; Bakanov, N.; Köthe, S.; Eichler, L.; Sorg, M.; Hörren, T.; Mühlethaler, R.; Meinel, G.; Lehmann, G.U.C. Direct pesticide exposure of insects in nature conservation areas in Germany. Sci. Rep. 2021, 11, 24144. [Google Scholar] [CrossRef] [PubMed]
- Köthe, S.; Bakanov, N.; Brühl, C.A.; Gemeinholzer, B.; Hörren, T.; Mühlethaler, R.; Sorg, M.; Sumser, H.; Swenson, S.J.; Lehmann, G.U.C. Negative spill-over effects of agricultural practices on plant species conservation in nature reserves. Ecol. Indic. 2023, 149, 110170. [Google Scholar] [CrossRef]
- Zaller, J.G.; Kruse-Plaß, M.; Schlechtriemen, U.; Gruber, E.; Peer, M.; Nadeem, I.; Formayer, H.; Hutter, H.-P.; Landler, L. Pesticides in ambient air, influenced by surrounding land use and weather, pose a potential threat to biodiversity and human. Sci. Total Environ. 2022, 838, 156012. [Google Scholar] [CrossRef] [PubMed]
- Brühl, C.A.; Engelhard, N.; Bakanov, N.; Wolfram, J.; Hertoge, K.; Zaller, J.G. Widespread contamination of soils and vegetation with current use pesticide residues along altitudinal gradients in a European Alpine valley. Commun. Earth Environ. 2024, 5, 72. [Google Scholar] [CrossRef]
- European Commission (EC). Farm to Fork Strategy for a Fair, Healthy and Environmentally-Friendly Food System. 2020. Available online: https://food.ec.europa.eu/horizontal-topics/farm-fork-strategy_en (accessed on 23 January 2023).
- McCoy, T.; Frank, D. Organic vs. Conventional (Synthetic) Pesticides: Advantages and Disadvantages. Available online: https://www.pubs.ext.vt.edu/content/dam/pubs_ext_vt_edu/ENTO/ento-384/ENTO-384.pdf (accessed on 9 August 2023).
- Cech, R.; Leisch, F.; Zaller, J.G. Pesticide Use and Associated Greenhouse Gas Emissions in Sugar Beet, Apples, and Viticulture in Austria from 2000 to 2019. Agriculture 2022, 12, 879. [Google Scholar] [CrossRef]
- European Union. Council Regulation (EC) No 834/2007 of 28 June 2007 on organic production and labelling of organic products and repealing Regulation (EEC) No 2092/91. Off. J. Eurpean Union 2007, L189, 1–23. [Google Scholar]
- Börner, H. Pflanzenkrankheiten und Pflanzenschutz (Springer-Lehrbuch) (German Edition), 8th ed.; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- Kühne, S.; Burth, U.; Marx, P. Biologischer Pflanzenschutz im Freiland. Pflanzengesundheit im Ökologischen Landbau; Ulmer: Stuttgart, Germany, 2006. [Google Scholar]
- Banks, J.; Ackleh, A.; Stark, J. The Use of Surrogate Species in Risk Assessment: Using Life History Data to Safeguard Against False Negatives. Risk Anal. Off. Publ. Soc. Risk Anal. 2010, 30, 175–182. [Google Scholar] [CrossRef]
- Donley, N. The USA lags behind other agricultural nations in banning harmful pesticides. Environ. Health 2019, 18, 44. [Google Scholar] [CrossRef]
- European Commission. Draft Working Document: Guidance Document on Terrestrial Ecotoxicology under Council Directive 91/414/EEC. 2002. Available online: https://food.ec.europa.eu/system/files/2016-10/pesticides_ppp_app-proc_guide_ecotox_terrestrial.pdf (accessed on 16 October 2024).
- JKI. Behandlungsindex, Behandlungshäufigkeit, Wirstoffranking, Wirkstoffmengen und Behandlungsflächen. 2024. Available online: https://papa.julius-kuehn.de/index.php?menuid=43 (accessed on 30 July 2024).
- Garthwaite, D.; Sinclair, C.; Glass, R.; Pote, A.; Trevisan, M.; Sacchettini, G.; Spanoghe, P.; Doan Ngoc, K.; Fevery, D.; Machera, K.; et al. Collection of pesticide application data in view of performing Environmental Risk Assessments for pesticides. EFSA Support. Publ. 2015, 12, 846E. [Google Scholar] [CrossRef]
- Judt, C.; Korányi, D.; Zaller, J.G.; Batáry, P. Floral resources and ground covers promote natural enemies but not pest insects in apple orchards: A global meta-analysis. Sci. Total Environ. 2023, 903, 166139. [Google Scholar] [CrossRef] [PubMed]
- Giffard, B.; Winter, S.; Guidoni, S.; Nicolai, A.; Castaldini, M.; Cluzeau, D.; Coll, P.; Cortet, J.; Le Cadre, E.; d’Errico, G.; et al. Vineyard Management and Its Impacts on Soil Biodiversity, Functions, and Ecosystem Services. Front. Ecol. Evol. 2022, 10, 850272. [Google Scholar] [CrossRef]
- Khalifa, S.A.M.; Elshafiey, E.H.; Shetaia, A.A.; El-Wahed, A.A.A.; Algethami, A.F.; Musharraf, S.G.; Alajmi, M.F.; Zhao, C.; Masry, S.H.D.; Abdel-Daim, M.M.; et al. Overview of bee pollination and its economic value for crop production. Insects 2021, 12, 688. [Google Scholar] [CrossRef] [PubMed]
- Garratt, M.P.D.; Breeze, T.D.; Jenner, N.; Polce, C.; Biesmeijer, J.C.; Potts, S.G. Avoiding a bad apple: Insect pollination enhances fruit quality and economic value. Agric. Ecosyst. Environ. 2014, 184, 34–40. [Google Scholar] [CrossRef]
- Mayne, S.J.; King, D.I.; Andersen, J.C.; Elkinton, J.S. Pest control services on farms vary among bird species on diversified, low-intensity farms. Glob. Ecol. Conserv. 2023, 43, e02447. [Google Scholar] [CrossRef]
- Jambagi, S.R.; Kambrekar, D.N. Dual Role of Birds in Agriculture. Available online: http://bioingene.com/wp-content/uploads/2021/05/D20MLY20R10.pdf (accessed on 16 October 2024).
- García, D.; Miñarro, M.; Martínez-Sastre, R. Birds as suppliers of pest control in cider apple orchards: Avian biodiversity drivers and insectivory effect. Agric. Ecosyst. Environ. 2018, 254, 233–243. [Google Scholar] [CrossRef]
- van Groenigen, J.W.; Lubbers, I.M.; Vos, H.M.J.; Brown, G.G.; De Deyn, G.B.; van Groenigen, K.J. Earthworms increase plant production: A meta-analysis. Sci. Rep. 2014, 4, 6365. [Google Scholar] [CrossRef]
- Blouin, M.; Hodson, M.E.; Delgado, E.A.; Baker, G.; Brussaard, L.; Butt, K.R.; Dai, J.; Dendooven, L.; Peres, G.; Tondoh, J.E.; et al. A review of earthworm impact on soil function and ecosystem services. Eur. J. Soil Sci. 2013, 64, 161–182. [Google Scholar] [CrossRef]
- Brandmaier, V.; Altmanninger, A.; Leisch, F.; Gruber, E.; Takács, E.; Mörtl, M.; Klátyik, S.; Székács, A.; Zaller, J.G. Glyphosate-Based Herbicide Formulations with Greater Impact on Earthworms and Water Infiltration than Pure Glyphosate. Soil Syst. 2023, 7, 66. [Google Scholar] [CrossRef]
- Biddinger, D.J.; Robertson, J.L.; Mullin, C.; Frazier, J.; Ashcraft, S.A.; Rajotte, E.G.; Joshi, N.K.; Vaughn, M. Comparative toxicities and synergism of apple orchard pesticides to Apis mellifera (L.) and Osmia cornifrons (Radoszkowski). PLoS ONE 2013, 8, e72587. [Google Scholar] [CrossRef]
- Zhang, L.; Xu, C.; Jiao, R.; Yu, L.; He, L.; Li, L. Effects of spraying pesticide and grass management on arthropod community and relative stability in the apple orchard. J. Fruit Sci. 2020, 37, 582–592. [Google Scholar] [CrossRef]
- Linhart, C.; Panzacchi, S.; Belpoggi, F.; Clausing, P.; Zaller, J.G.; Hertoge, K. Year-round pesticide contamination of public sites near intensively managed agricultural areas in South Tyrol. Environ. Sci. Eur. 2021, 33, 1. [Google Scholar] [CrossRef]
- Zaller, J.G. Daily Poison. Pesticides—An Underestimated Danger; Springer Nature: Cham, Switzerland, 2020; 315p. [Google Scholar]
- Sharma, A.; Kumar, V.; Shahzad, B.; Tanveer, M.; Sidhu, G.P.S.; Handa, N.; Kohli, S.K.; Yadav, P.; Bali, A.S.; Parihar, R.D.; et al. Worldwide pesticide usage and its impacts on ecosystem. SN Appl. Sci. 2019, 1, 1446. [Google Scholar] [CrossRef]
- Mesnage, R.; Straw, E.A.; Antoniou, M.N.; Benbrook, C.; Brown, M.J.F.; Chauzat, M.-P.; Finger, R.; Goulson, D.; Leadbeater, E.; López-Ballesteros, A.; et al. Improving pesticide-use data for the EU. Nat. Ecol. Evol. 2021, 5, 1560. [Google Scholar] [CrossRef] [PubMed]
- AGES. Pflanzenschutzmittel-Verwendungsstatistik. Umsetzung der EU-VO 1185/2009 Hinsichtlich Landwirtschaftlicher Verwendung von Pflanzenschutzmitteln in Österreich. 2022. Available online: https://www.ages.at/download/sdl-eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJpYXQiOjE2MDk0NTkyMDAsImV4cCI6NDA3MDkwODgwMCwidXNlciI6MCwiZ3JvdXBzIjpbMCwtMV0sImZpbGUiOiJmaWxlYWRtaW4vQUdFU18yMDIyLzRfUEZMQU5aRS9QZmxhbnplbnNjaHV0em1pdHRlbC9JbmZvcm1hdGlvbmVuX3p1X1ByXHUwMGZjZnVuZ19fQmV3ZXJ0dW5nX19fWnVsYXNzdW5nL0FfUGZsYW56ZW5zY2h1dHptaXR0ZWwtVmVyd2VuZHVuZ3NzdGF0aXN0aWtfQmVzZW5ob2Zlcl8xNC40LjIwMjJfRW5kdmVyc2lvbjQucGRmIiwicGFnZSI6ODQ3fQ._b0NC8twedchmmpzznMsBASmiH2L9hEBUw9lbuCNDfM/A_Pflanzenschutzmittel-Verwendungsstatistik_Besenhofer_14.4.2022_Endversion4.pdf (accessed on 8 August 2024).
- European Parliament. Regulation (EC) No 1185/2009 of the European Parliament and of the Council of 25 November 2009 concerning statistics on pesticides. Off. J. Eur. Union L 2009, L324, 22. [Google Scholar]
- Bundesministerium für Land- und Forstwirtschaft, Regionen und Wasserwirtschaft. Grüner Bericht 2022. 2022; 308p. Available online: https://info.bml.gv.at/service/publikationen/landwirtschaft/gruener-bericht-2022.html (accessed on 16 October 2024).
- Lewis, K.A.; Tzilivakis, J.; Warner, D.J.; Green, A. An international database for pesticide risk assessments and management. Hum. Ecol. Risk Assessm 2016, 22, 1050–1064. [Google Scholar] [CrossRef]
- Cech, R.M.; Jovanovic, S.; Kegley, S.; Hertoge, K.; Leisch, F.; Zaller, J.G. Reducing overall herbicide use may reduce risks to humans but increase toxic loads to honeybees, earthworms and birds. Environ. Sci. Eur. 2022, 34, 44. [Google Scholar] [CrossRef]
- DiBartolomeis, M.; Kegley, S.; Mineau, P.; Radford, R.; Klein, K. An assessment of acute insecticide toxicity loading (AITL) of chemical pesticides used on agricultural land in the United States. PLoS ONE 2019, 14, e0220029. [Google Scholar] [CrossRef]
- Rigal, S.; Dakos, V.; Alonso, H.; Auniņš, A.; Benkő, Z.; Brotons, L.; Chodkiewicz, T.; Chylarecki, P.; de Carli, E.; del Moral, J.C.; et al. Farmland practices are driving bird population decline across Europe. PNAS 2023, 120, e2216573120. [Google Scholar] [CrossRef]
- Tassin de Montaigu, C.; Goulson, D. Identifying agricultural pesticides that may pose a risk for birds. PeerJ 2020, 8, e9526. [Google Scholar] [CrossRef]
- Drilling, N.; Titman, R.D.; McKinney, F. Mallard (Anas platyrhynchos), version 1.0. In Birds of the World; Billerman, S.M., Ed.; Cornell Lab of Ornithology: Ithaca, NY, USA, 2020. [Google Scholar] [CrossRef]
- McGowan, P.J.K.; Kirwan, G.M. Japanese Quail (Coturnix japonica), Version 1.0. Birds World 2020. Available online: https://doi.org/10.2173/bow.japqua.01 (accessed on 16 October 2024).
- Vogelwarte, S. Vögel der Schweiz: Serinus Serinus. Available online: https://www.vogelwarte.ch/de/voegel/voegel-der-schweiz/girlitz (accessed on 16 October 2024).
- Mineau, P.; Baril, A.; Collins, B.T.; Duffe, J.; Joerman, G.; Luttik, R. Pesticide acute toxicity reference values for birds. Rev. Environ. Contam. Toxicol. 2001, 170, 13–74. [Google Scholar] [PubMed]
- Euteneuer, P.; Wagentristl, H.; Steinkellner, S.; Fuchs, M.; Zaller, J.G.; Piepho, H.-P.; Butt, K.R. Contrasting effects of cover crops on earthworms: Results from field monitoring and laboratory experiments on growth, reproduction and food choice. Eur. J. Soil. Biol. 2020, 100, 103225. [Google Scholar] [CrossRef]
- Euteneuer, P.; Wagentristl, H.; Steinkellner, S.; Scheibreithner, C.; Zaller, J.G. Earthworms affect decomposition of soil-borne plant pathogen Sclerotinia sclerotiorum in a cover crop field experiment. Appl. Soil Ecol. 2019, 138, 88–93. [Google Scholar] [CrossRef]
- Goulson, D.; Thompson, J.; Croombs, A. Rapid rise in toxic load for bees revealed by analysis of pesticide use in Great Britain. PeerJ 2018, 6, e5255. [Google Scholar] [CrossRef] [PubMed]
- Brühl, C.A.; Zaller, J.G. Indirect herbicide effects on biodiversity, ecosystem functions, and interactions with global changes. In Herbicides: Chemistry, Efficacy, Toxicology, and Environmental Impacts; Mesnage, R., Zaller, J.G., Thomas, B.F., Eds.; Emerging Issues in Analytical Chemistry; Elsevier: Amsterdam, NL, USA, 2021; pp. 231–272. [Google Scholar]
- Bouma, E. Development of comparable agro-climatic zones for the international exchange of data on the efficacy and crop safety of plant protection products. EPPO Bull. 2005, 35, 233–238. [Google Scholar] [CrossRef]
- European Commission. Procedure to Apply for Authorisation of a PPP. 2024. Available online: https://food.ec.europa.eu/plants/pesticides/authorisation-plant-protection-products/ppp-auth_en (accessed on 16 October 2024).
- Goritschnig, L.; Burtscher-Schaden, H.; Durstberger, T.; Zaller, J.G. Ecotoxicity of Pesticides Approved for Use in European Conventional or Organic Agriculture for Honeybees, Birds, and Earthworms. Environments 2024, 11, 137. [Google Scholar] [CrossRef]
- Burtscher-Schaden, H.; Durstberger, T.; Zaller, J.G. Toxicological Comparison of Pesticide Active Substances Approved for Conventional vs. Organic Agriculture in Europe. Toxics 2022, 10, 753. [Google Scholar] [CrossRef]
- European Commission (EC). Organic Production and Products. European Commission. Available online: https://ec.europa.eu/info/food-farming-fisheries/farming/organic-farming/organic-production-and-products_en (accessed on 2 November 2022).
- Brühl, C.A.; Zaller, J.G.; Liess, M.; Wogram, J. The rejection of synthetic pesticides in organic farming has multiple benefits. Trends Ecol. Evol. 2022, 37, 113–114. [Google Scholar] [CrossRef]
- Stein-Bachinger, K.; Preißel, S.; Kühne, S.; Reckling, M. More diverse but less intensive farming enhances biodiversity. Trends Ecol. Evol. 2022, 37, 395–396. [Google Scholar] [CrossRef]
- Sanders, J.; Heß, J. (Eds.) Leistungen des Ökologischen Landbaus für Umwelt und Gesellschaft 2; überarbeitete und ergänzte Auflage ed.; Johann Heinrich von Thünen-Institut: Braunschweig, Germany, 2019; 398p. [Google Scholar]
- Richardson, K.; Steffen, W.; Lucht, W.; Bendtsen, J.; Cornell, S.E.; Donges, J.F.; Drüke, M.; Fetzer, I.; Bala, G.; von Bloh, W.; et al. Earth beyond six of nine planetary boundaries. Sci. Adv. 2023, 9, eadh2458. [Google Scholar] [CrossRef]
- Marliac, G.; Penvern, S.; Barbier, J.-M.; Lescourret, F.; Capowiez, Y. Impact of crop protection strategies on natural enemies in organic apple production. Agron. Sustain. Dev. 2015, 35, 803–813. [Google Scholar] [CrossRef]
- Ruhnau, M. Apple Study—Obstacles and the Potential for Pesticide Reduction. 2022. Available online: https://www.pan-germany.org/download/apple.pdf (accessed on 23 January 2023).
- LKÖ. Obstbauwarndienst. Landwirtschaftskammer Österreich, Austria. 2023. Available online: https://obstwarndienst.lko.at/1091/Steiermark (accessed on 23 January 2023).
- Granatstein, D.; Andrews, P.; Groff, A. Productivity, economics, and fruit and soil quality of weed management systems in commercial organic orchards in Washington State, USA. Org. Agric. 2014, 4, 197–207. [Google Scholar] [CrossRef]
- Zaller, J.G.; Oswald, A.; Wildenberg, M.; Burtscher-Schaden, H.; Nadeem, I.; Formayer, H.; Paredes, D. Potential to reduce pesticides in intensive apple production through management practices could be challenged by climatic extremes. Sci. Total Environ. 2023, 872, 162237. [Google Scholar] [CrossRef] [PubMed]
- Baumert, V.; Vogt, C.; Neumeister, L. Pestizideinsatz im Apfelanbau. Auswertung der Pestizideinsatzdaten von Apfelbau-Betrieben aus dem Vinschgau 2017. 2023. Available online: https://umweltinstitut.org/wp-content/uploads/2023/01/20230125_Umweltinstitut_Auswertung-Pestizideinsatz-im-Apfelanbau-1.pdf (accessed on 28 January 2023).
- Porcel, M.; Andersson, G.K.S.; Pålsson, J.; Tasin, M. Organic management in apple orchards: Higher impacts on biological control than on pollination. J. Appl. Ecol. 2018, 55, 2779–2789. [Google Scholar] [CrossRef]
- Alaphilippe, A.; Simon, S.; Brun, L.; Hayer, F.; Gaillard, G. Life cycle analysis reveals higher agroecological benefits of organic and low-input apple production. Agron. Sustain. Dev. 2013, 33, 581–592. [Google Scholar] [CrossRef]
- Cech, R.; Zaller, J.G.; Lyssimachou, A.; Clausing, P.; Hertoge, K.; Linhart, C. Pesticide drift mitigation measures appear to reduce contamination of non-agricultural areas, but hazards to humans and the environment remain. Sci. Total Environ. 2023, 854, 158814. [Google Scholar] [CrossRef]
- Sanchez-Bayo, F.; Goka, K. Pesticide residues and bees—A risk assessment. PLoS ONE 2014, 9, e94482. [Google Scholar] [CrossRef]
- Tosi, S.; Sfeir, C.; Carnesecchi, E.; vanEngelsdorp, D.; Chauzat, M.-P. Lethal, sublethal, and combined effects of pesticides on bees: A meta-analysis and new risk assessment tools. Sci. Total Environ. 2022, 844, 156857. [Google Scholar] [CrossRef]
- Heller, S.; Joshi, N.K.; Chen, J.; Rajotte, E.G.; Mullin, C.; Biddinger, D.J. Pollinator exposure to systemic insecticides and fungicides applied in the previous fall and pre-bloom period in apple orchards. Environ. Pollut. 2020, 265, 114589. [Google Scholar] [CrossRef]
- Iwasaki, J.M.; Hogendoorn, K. Non-insecticide pesticide impacts on bees: A review of methods and reported outcomes. Agric. Ecosyst. Environ. 2021, 314, 107423. [Google Scholar] [CrossRef]
- Strandberg, B.; Sørensen, P.B.; Bruus, M.; Bossi, R.; Dupont, Y.L.; Link, M.; Damgaard, C.F. Effects of glyphosate spray-drift on plant flowering. Environ. Pollut. 2021, 280, 116953. [Google Scholar] [CrossRef] [PubMed]
- Höpli, H.-U.; Graf, B.; Höhn, H. Einsatz von Schmierseifen-Produkten zur Schädlingsbekämpfung im Obstbau. Available online: https://www.ecofruit.net/wp-content/uploads/2020/05/13_1992_Hopli_37-40.pdf (accessed on 3 June 2023).
- BAES. Pflanzenschutzmittel-Register—Verzeichnis der in Österreich Zugelassenen/Genehmigten Pflanzenschutzmittel. 2023. Available online: https://psmregister.baes.gv.at/psmregister/faces/main?_afrLoop=4739298204069462&_afrWindowMode=0&_adf.ctrl-state=begqx7oro_4 (accessed on 15 January 2023).
- Cahenzli, F.; Sigsgaard, L.; Daniel, C.; Herz, A.; Jamar, L.; Kelderer, M.; Jacobsen, S.K.; Kruczyńska, D.; Matray, S.; Porcel, M.; et al. Perennial flower strips for pest control in organic apple orchards—A pan-European study. Agric. Ecosyst. Environ. 2019, 278, 43–53. [Google Scholar] [CrossRef]
- Herz, A.; Cahenzli, F.; Penvern, S.; Pfiffner, L.; Tasin, M.; Sigsgaard, L. Managing Floral Resources in Apple Orchards for Pest Control: Ideas, Experiences and Future Directions. Insects 2019, 10, 247. [Google Scholar] [CrossRef] [PubMed]
- Pfiffner, L.; Cahenzli, F.; Steinemann, B.; Jamar, L.; Bjørn, M.C.; Porcel, M.; Tasin, M.; Telfser, J.; Kelderer, M.; Lisek, J.; et al. Design, implementation and management of perennial flower strips to promote functional agrobiodiversity in organic apple orchards: A pan-European study. Agric. Ecosyst. Environ. 2019, 278, 61–71. [Google Scholar] [CrossRef]
- Bostanian, N.J.; Goulet, H.; O’Hara, J.; Masner, L.; Racette, G. Towards Insecticide Free Apple Orchards: Flowering Plants to Attract Beneficial Arthropods. Biocontrol Sci. Technol. 2004, 14, 25–37. [Google Scholar] [CrossRef]
- Dong, Z.; Xia, M.; Li, C.; Mu, B.; Zhang, Z. A Comparison of Flower and Grass Strips for Augmentation of Beneficial Arthropods in Apple Orchards. Front. Sustain. Food Syst. 2021, 5, 697864. [Google Scholar] [CrossRef]
- Gontijo, L.M.; Beers, E.H.; Snyder, W.E. Flowers promote aphid suppression in apple orchards. Biol. Control 2013, 66, 8–15. [Google Scholar] [CrossRef]
- Mia, M.J.; Massetani, F.; Murri, G.; Facchi, J.; Monaci, E.; Amadio, L.; Neri, D. Integrated Weed Management in High Density Fruit Orchards. Agronomy 2020, 10, 1492. [Google Scholar] [CrossRef]
- Neilsen, G.; Forge, T.; Angers, D.; Neilsen, D.; Hogue, E. Suitable orchard floor management strategies in organic apple orchards that augment soil organic matter and maintain tree performance. Plant Soil 2014, 378, 325–335. [Google Scholar] [CrossRef]
- Andersen, L.; Kühn, B.F.; Bertelsen, M.; Bruus, M.; Larsen, S.E.; Strandberg, M. Alternatives to herbicides in an apple orchard, effects on yield, earthworms and plant diversity. Agric. Ecosyst. Environ. 2013, 172, 1–5. [Google Scholar] [CrossRef]
- Fallahi, E.; Mohan, S.K. Influence of Nitrogen and Rootstock on Tree Growth, Precocity, Fruit Quality, Leaf Mineral Nutrients, and Fire Blight in ‘Scarlet Gala’ Apple. HortTechnology 2000, 10, 589–592. [Google Scholar] [CrossRef]
- Veresoglou, S.D.; Barto, E.K.; Menexes, G.; Rillig, M.C. Fertilization affects severity of disease caused by fungal plant pathogens. Plant Pathol. 2013, 62, 961–969. [Google Scholar] [CrossRef]
- Garratt, M.P.D.; Wright, D.J.; Leather, S.R. The effects of farming system and fertilisers on pests and natural enemies: A synthesis of current research. Agric. Ecosyst. Environ. 2011, 141, 261–270. [Google Scholar] [CrossRef]
- Kastelein, P.; Evenhuis, A.; van der Zouwen, P.S.; Krijger, M.; van der Wolf, J.M. Spread of Xanthomonas fragariae in strawberry fields by machinery. EPPO Bull. 2018, 48, 569–577. [Google Scholar] [CrossRef]
- Simon, S.; Brun, L.; Guinaudeau, J.; Sauphanor, B. Pesticide use in current and innovative apple orchard systems. Agron. Sustain. Dev. 2011, 31, 541–555. [Google Scholar] [CrossRef]
- Cai, J.; Xiong, J.; Hong, Y.; Hu, R. Pesticide overuse in apple production and its socioeconomic determinants: Evidence from Shaanxi and Shandong provinces, China. J. Clean. Prod. 2021, 315, 128179. [Google Scholar] [CrossRef]
- Organisation for Economic Co-operation and Development. Test. No. 223: Avian Acute Oral. Toxicity Test; OECD Guidelines for the Testing of Chemicals, Section 2; OECD Publishing: Paris, France, 2016; Volume 2, 28p. [Google Scholar] [CrossRef]
- Teufelbauer, N.; Seaman, B. Monitoring der Brutvögel Österreichs Bericht über die Saison 2021. Available online: https://www.birdlife.at/web/binary/saveas?filename_field=datas_fname&field=datas&model=ir.attachment&id=87775 (accessed on 16 October 2024).
- Mansouri, I.; Squalli, W.; Dakki, M.; Assouguem, A.; El Agy, A.; El Hassani, A.; Belarbi, C.; Dbiba, Y.; Kouali, H.; El Ghadraoui, L. Breeding Biology, Chronology, and Reproductive Success of the European Serin (Serinus serinus) at Moulouya High Plain (Morocco). Int. J. Zool. 2021, 2021, 8737951. [Google Scholar] [CrossRef]
- European Commission (EC). Commission implementing regulation (EU) 2022/1252 of 19 July 2022 amending Implementing Regulation (EU) 2015/408 to update the list of candidates for substitution. Off. J. Eur. Union. 2022, L191, 41–44. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32022R1252 (accessed on 16 October 2024).
- Kehrli, P.; Linder, C.; Fornek, A.; Fahrentrapp, J. Populationsgenetik und Bekämpfung der Reblaus. Schweizer Zeitschr. Obst Weinbau 2018, 154, 4–7. [Google Scholar] [CrossRef]
- Innerebner, G.; Roschatt, C. Kupferpräparate im Test. Südtiroler Landwirt 2014, 68, 31–33. [Google Scholar]
- Topping, C.J.; Aldrich, A.; Berny, P. Overhaul environmental risk assessment for pesticides. Science 2020, 367, 360–363. [Google Scholar] [CrossRef] [PubMed]
- Arts, G.; Dollinger, M.; Kohlschmid, E.; Maltby, L.; Ochoa-Acuna, H.; Poulsen, V. An ecosystem services approach to pesticide risk assessment and risk management of non-target terrestrial plants: Recommendations from a SETAC Europe workshop. Environ. Sci. Pollut. Res. 2015, 22, 2350–2355. [Google Scholar] [CrossRef] [PubMed]
- Laetz, C.A.; Baldwin, D.H.; Collier, T.K.; Hebert, V.; Stark, J.D.; Scholz, N.L. The Synergistic Toxicity of Pesticide Mixtures: Implications for Risk Assessment and the Conservation of Endangered Pacific Salmon. Environ. Health Perspect. 2009, 117, 348–353. [Google Scholar] [CrossRef] [PubMed]
- Draskau, M.K.; Svingen, T. Azole Fungicides and Their Endocrine Disrupting Properties: Perspectives on Sex Hormone-Dependent Reproductive Development. Front. Toxicol. 2022, 4, 883254. [Google Scholar] [CrossRef] [PubMed]
- Linhart, C.; Niedrist, G.H.; Nagler, M.; Nagrani, R.; Temml, V.; Bardelli, T.; Wilhalm, T.; Riedl, A.; Zaller, J.G.; Clausing, P.; et al. Pesticide contamination and associated risk factors at public playgrounds near intensively managed apple and wine orchards. Environ. Sci. Eur. 2019, 31, 28. [Google Scholar] [CrossRef]
- Damalas, C.A.; Eleftherohorinos, I.G. Pesticide Exposure, Safety Issues, and Risk Assessment Indicators. Int. J. Environ. Res. Public Health 2011, 8, 1402–1419. [Google Scholar] [CrossRef]
- Zubrod, J.P.; Bundschuh, M.; Arts, G.; Brühl, C.A.; Imfeld, G.; Knäbel, A.; Payraudeau, S.; Rasmussen, J.J.; Rohr, J.; Scharmüller, A.; et al. Fungicides: An Overlooked Pesticide Class? Environ. Sci. Technol. 2019, 53, 3347–3365. [Google Scholar] [CrossRef]
- Fouillet, E.; Gosme, M.; Metay, A.; Rapidel, B.; Rigal, C.; Smits, N.; Merot, A. Lowering pesticide use in vineyards over a 10-year period did not reduce yield or work intensity. Eur. J. Agron. 2024, 158, 127199. [Google Scholar] [CrossRef]
- Winter, S.; Bauer, T.; Strauss, P.; Kratschmer, S.; Paredes, D.; Popescu, D.; Landa, B.; Guzmán, G.; Gómez, J.A.; Guernion, M.; et al. Effects of vegetation management intensity on biodiversity and ecosystem services in vineyards: A meta-analysis. J. Appl. Ecol. 2018, 55, 2484–2495. [Google Scholar] [CrossRef]
Crop | Farming System | Area Cultivated (ha) | Amount Applied (kg) | |||||
---|---|---|---|---|---|---|---|---|
2017 | 2021 | Area Change 2017–2021 (%) | Fungicides | Herbicides | Insecticides | Others | ||
Apple | Conventional | 7675 | 4820 | −37.2 | 118,749 | 3910 | 18,500 | 3728 |
Organic | 1619 | 1529 | −5.6 | 74,337 | 0 | 19,887 | 791 | |
Grapevine | Conventional | 40,618 | 35,859 | −11.7 | 783,440 | 14,978 | 8862 | 6 |
Organic | 5717 | 6976 | +22.0 | 201,526 | 0 | 7074 | 20 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Goritschnig, L.; Durstberger, T.; Burtscher-Schaden, H.; Zaller, J.G. The Ecotoxicity of Pesticides Used in Conventional Apple and Grapevine Production in Austria Is Much Higher for Honeybees, Birds and Earthworms than Nature-Based Substances Used in Organic Production. Agrochemicals 2024, 3, 232-252. https://doi.org/10.3390/agrochemicals3040016
Goritschnig L, Durstberger T, Burtscher-Schaden H, Zaller JG. The Ecotoxicity of Pesticides Used in Conventional Apple and Grapevine Production in Austria Is Much Higher for Honeybees, Birds and Earthworms than Nature-Based Substances Used in Organic Production. Agrochemicals. 2024; 3(4):232-252. https://doi.org/10.3390/agrochemicals3040016
Chicago/Turabian StyleGoritschnig, Lena, Thomas Durstberger, Helmut Burtscher-Schaden, and Johann G. Zaller. 2024. "The Ecotoxicity of Pesticides Used in Conventional Apple and Grapevine Production in Austria Is Much Higher for Honeybees, Birds and Earthworms than Nature-Based Substances Used in Organic Production" Agrochemicals 3, no. 4: 232-252. https://doi.org/10.3390/agrochemicals3040016
APA StyleGoritschnig, L., Durstberger, T., Burtscher-Schaden, H., & Zaller, J. G. (2024). The Ecotoxicity of Pesticides Used in Conventional Apple and Grapevine Production in Austria Is Much Higher for Honeybees, Birds and Earthworms than Nature-Based Substances Used in Organic Production. Agrochemicals, 3(4), 232-252. https://doi.org/10.3390/agrochemicals3040016