Survival and Growth of Asellus aquaticus on Different Food Sources from Drinking Water Distribution Systems
Abstract
:1. Introduction
1.1. Distribution of A. aquaticus in DWDS
1.2. Food Sources for A. aquaticus
1.3. Study Goal
2. Materials and Methods
2.1. Experimental Design
2.2. Origin and Culture System of A. aquaticus Test Organism
2.3. Treatments: Water and Food Sources
2.4. Analyses
2.5. Statistical Analysis
2.6. Growth Rate
3. Results
3.1. Growth and Survival of A. aquaticus on Water and Sediment
3.2. Growth and Survival of A. aquaticus on Cultured and Natural Biofilm
4. Discussion
4.1. Nutritional Composition Food Sources
4.2. Growth and Survival A. aquaticus
4.3. Survival and Food Sources of A. aquaticus in the DWDS
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Correction Statement
References
- Sket, B. Distribution of Asellus aquaticus (Crustacea: Isopoda: Asellidae) and its hypogean populations at different geographic scales, with a note on Proasellus istrianus. Hydrobiologia 1994, 287, 39–47. [Google Scholar] [CrossRef]
- Verovnik, R.; Konec, M. Chapter 11—Asellus aquaticus: A model system for historical biogeography. In Encyclopedia of Caves, 3rd ed.; White, W.B., Culver, D.C., Pipan, T., Eds.; Academic Press: Cambridge, MA, USA, 2019; pp. 76–84. [Google Scholar] [CrossRef]
- Lafuente, E.; Lürig, M.D.; Rövekamp, M.; Matthews, B.; Buser, C.; Vorburger, C.; Räsänen, K. Building on 150 Years of Knowledge: The Freshwater Isopod Asellus aquaticus as an Integrative Eco-Evolutionary Model System. Front. Ecol. Evol. 2021, 9, 748212. [Google Scholar] [CrossRef]
- Van Lieverloo, J.H.M.; Van der Kooij, D.; Hoogenboezem, W. Invertebrates and Protozoa (Free-living) in Drinking Water Distribution Systems. In Encylopediaof Environmental Microbiology; Bitton, G., Ed.; John Wiley & Sons: New York, NY, USA, 2002; pp. 1718–1733. [Google Scholar]
- Whipple, G.C. The Microscopy of Drinking Water; Robert Drummond, Printer: New York, NY, USA, 1899. [Google Scholar]
- Gunkel, G.; Michels, U.; Scheideler, M.; Ripl, K. Vorkommen und Bedeutung von Kleintieren in Trinkwasser-Verteilungssystemen—Massnahmen zu deren Regulierung. Fachber. Wasserversorg. 2010, 3R, 716–724. [Google Scholar]
- Ketelaars, H.A.M.; Wagenvoort, A.J.; Peters, M.C.F.M.; Wunderer, J.; Hijnen, W.A.M. Taxonomic diversity and biomass of the invertebrate fauna of nine drinking water treatment plants and their non-chlorinated distribution systems. Water Res. 2023, 242, 120269. [Google Scholar] [CrossRef] [PubMed]
- Hijnen, W.A.M.; Brouwer-Hanzens, A.; Schurer, R.; Wagenvoort, A.J.; van Lieverloo, J.H.M.; van der Wielen, P.W.J.J. Influence of biopolymers, iron, biofouling and Asellus aquaticus on Aeromonas regrowth in three non-chlorinated drinking water distribution systems. J. Water Process Eng. 2024, 61, 105293. [Google Scholar] [CrossRef]
- Hijnen, W.A.M.; Reijnen, G.K.; Bos, R.H.M.; Veenendaal, G.; Van der Kooij, D. Lagere Aeromonas-aantallen in het drinkwater van pompstation Zuidwolde door verbeterde ontgassing en vernieuwen van het filtergrind. H2O 1992, 25, 370–375. [Google Scholar]
- Drinkwaterbesluit. Drinking Water Decree 2018 (Drinkwaterbesluit 2018). In BWBR0030111; Staatsblad: The Hague, The Netherlands, 2018. [Google Scholar]
- van der Wielen, P.W.J.J.; Lut, M.C. Distribution of Microbial Activity and Specific Microorganisms across Sediment Size Fractions and Pipe Wall Biofilm in a Drinking Water Distribution System. Water Sci. Technol. Water Supply 2016, 16, 896–904. [Google Scholar] [CrossRef]
- Liu, G.; Tao, Y.; Zhang, Y.; Lut, M.; Knibbe, W.-J.; van der Wielen, P.; Liu, W.; Medema, G.; van der Meer, W. Hotspots for Selected Metal Elements and Microbes Accumulation and the Corresponding Water Quality Deterioration Potential in an Unchlorinated Drinking Water Distribution System. Water Res. 2017, 124, 435–445. [Google Scholar] [CrossRef] [PubMed]
- van Lieverloo, J.H.; Hoogenboezem, W.; Veenendaal, G.; van der Kooij, D. Variability of invertebrate abundance in drinking water distribution systems in the Netherlands in relation to biostability and sediment volumes. Water Res. 2012, 46, 4918–4932. [Google Scholar] [CrossRef] [PubMed]
- van der Wielen, P.W.J.J.; Bakker, G.; Atsma, A.; Lut, M.; Roeselers, G.; de Graaf, B. A Survey of Indicator Parameters to Monitor Regrowth in Unchlorinated Drinking Water. Environ. Sci. Water Res. Technol. 2016, 2, 683–692. [Google Scholar] [CrossRef]
- Christensen, S.C.B.; Nissen, E.; Arvin, E.; Albrechtsen, H.J. Influence of Asellus aquaticus on Escherichia coli, Klebsiella pneumoniae, Campylobacter jejuni and naturally occurring heterotrophic bacteria in drinking water. Water Res. 2012, 46, 5279–5286. [Google Scholar] [CrossRef] [PubMed]
- Christensen, S.C. Asellus aquaticus and Other Invertebrates in Drinking Water Distribution Systems—Occurrence and Influence on Microbial Water Quality; Technical University of Denmark (DTU): Lyngby, Denmark, 2011. [Google Scholar]
- van Lieverloo, J.H.; Bosboom, D.W.; Bakker, G.L.; Brouwer, A.J.; Voogt, R.; De Roos, J.E. Sampling and quantifying invertebrates from drinking water distribution mains. Water Res. 2004, 38, 1101–1112. [Google Scholar] [CrossRef] [PubMed]
- Birstein, Y.A.; Mercado, A.; Finesilver, R. Freshwater Isopods (Asellota); Israel Program for Scientific Translations: Jerusalem, Israel, 1964. [Google Scholar]
- Økland, K.A. Life history and growth of Asellus aquaticus (L.) in relation to environment in a eutrophic lake in Norway. Hydrobiologia 1978, 59, 243–259. [Google Scholar] [CrossRef]
- Ridley, M.; Thompson, D.J. Size and Mating in Asellus aquaticus (Crustacea: Isopoda). Z. Für Tierpsychol. 1979, 51, 380–397. [Google Scholar] [CrossRef]
- Gunkel, G.; Michels, U.; Scheideler, M. Climate Change: Water Temperature and Invertebrate Propagation in Drinking-Water Distribution Systems, Effects, and Risk Assessment. Water 2022, 14, 1246. [Google Scholar] [CrossRef]
- Ripl, K.; Slavik, I.; Uhl, W.; Michels, U.; Titze, D.; Gunkel, G.; Scheideler, M. Sampling of Asellus aquaticus (water lice) in a drinking water distribution system and consequences for drinking water supply. In Proceedings of the Urban Water Management: Challenges and Oppurtunities—11th International Conference on Computing and Control for the Water Industry, Exeter, UK, 5–7 September 2011. CCWI 2011. [Google Scholar]
- Wagenvoort, A.; van Asperen, R.; Sandrini, G.; Hijnen, W. Changes in water source cause shift in invertebrate biomass and composition, and regrowth in a non-chlorinated drinking water distribution system. Water 2023, 13, 732. [Google Scholar] [CrossRef]
- Gunkel, G.; Scheideler, M. Wasserasseln in Trinkwasser-Verteilungssystemen—Eintrag, Vorkommen, Bewertung und Bekämpfung der Wasserasseln. gwf Wasser Abwasser 2011, 152, 308–388. [Google Scholar]
- van Lieverloo, J.H.; Van Buuren, R.; Veenendaal, G.; van der Kooij, D. Controlling invertebrates in distribution systems with zero or low disinfectant residual. Water Supply 1998, 16, 199–204. [Google Scholar]
- Marcus, J.; Sutcliffe, D.; Willoughby, L. Feeding and growth of Asellus aquaticus_(Isopoda) on food items from the littoral of Windermere, including green leaves of Elodea canadensis. Freshw. Biol. 1978, 8, 505–519. [Google Scholar] [CrossRef]
- Franken, R.J.M.; Waluto, B.; Peeters, E.T.H.M.; Gardeniers, J.J.P.; Beijer, J.A.J.; Scheffer, M. Growth of shredders on leaf litter biofilms: The effect of light intensity. Freshw. Biol. 2005, 50, 459–466. [Google Scholar] [CrossRef]
- Wang, Y.; Brune, A.; Zimmer, M. Bacterial Symbionts in the Hepatopancreas of Isopods: Diversity and Environmental Transmission. FEMS Microbiol. Ecol. 2007, 61, 141–152. [Google Scholar] [CrossRef]
- Liao, A.; Hartikainen, H.; Buser, C.C. Individual level microbial communities in the digestive system of the freshwater isopod Asellus aquaticus: Complex, robust and prospective. Environ. Microbiol. Rep. 2023, 15, 188–196. [Google Scholar] [CrossRef]
- Fraune, S.; Zimmer, M. Host-specificity of environmentally transmitted Mycoplasma-like isopod symbionts. Environ. Microbiol. 2008, 10, 2497–2504. [Google Scholar] [CrossRef]
- Zimmer, M.; Danko, J.P.; Pennings, S.C.; Danford, A.R.; Ziegler, A.; Uglow, R.F.; Carefoot, T.H. Hepatopancreatic endosymbionts in coastal isopods (Crustacea: Isopoda), and their contribution to digestion. Mar. Biol. 2001, 138, 955–963. [Google Scholar] [CrossRef]
- Zimmer, M.; Bartholmé, S. Bacterial endosymbionts in Asellus aquaticus (Isopoda) and Gammarus pulex (Amphipoda) and their contribution to digestion. Limnol. Oceanogr. 2003, 48, 2208–2213. [Google Scholar] [CrossRef]
- Bloor, M.C. Animal standardisation for mixed species ecotoxicological studies: Establishing a laboratory breeding programme for Gammarus pulex and Asellus aquaticus. Zool. Baetica 2010, 21, 179–190. [Google Scholar]
- Graca, M.A.; Maltby, L.; Calow, P. Importance of fungi in the diet of Gammarus pulex and Asellus aquaticus I: Feeding strategies. Oecologia 1993, 93, 139–144. [Google Scholar] [CrossRef]
- Graca, M.A.; Maltby, L.; Calow, P. Importance of fungi in the diet of Gammarus pulex and Asellus aquaticus: II. Effects on growth, reproduction and physiology. Oecologia 1993, 96, 304–309. [Google Scholar] [CrossRef]
- Rossi, L.; Vitagliano-Tadini, G. Role of Adult Faeces in the Nutrition of Larvae of Asellus aquaticus (Isopoda). Oikos 1978, 30, 109–113. [Google Scholar] [CrossRef]
- Herczeg, G.; Balázs, G.; Biró, A.; Fišer, Ž.; Kralj-Fišer, S.; Fišer, C. Island and Rensch’s rules do not apply to cave vs. surface populations of Asellus aquaticus. Front. Ecol. Evol. 2023, 11, 1155261. [Google Scholar] [CrossRef]
- Berisha, H.; Horváth, G.; Fišer, Ž.; Balázs, G.; Fišer, C.; Herczeg, G. Sex-dependent increase of movement activity in the freshwater isopod Asellus aquaticus following adaptation to a predator-free cave habitat. Curr. Zool. 2022, 69, 418–425. [Google Scholar] [CrossRef]
- McCahon, C.P.; Pascoe, D. Culture techniques for three freshwater macroinvertebrate species and their use in toxicity tests. Chemosphere 1988, 17, 2471–2480. [Google Scholar] [CrossRef]
- Screech, Y. Effects of temperature and microplastics concentration on the consumption of microplastic particles by the detrititvore A. aquaticus. Bachelor’s Thesis, Swedish University of Agricultural Sciences, Uppsala, Sweden, 2023. [Google Scholar]
- Christensen, S.C.; Nissen, E.; Arvin, E.; Albrechtsen, H.J. Distribution of Asellus aquaticus and microinvertebrates in a non-chlorinated drinking water supply system—Effects of pipe material and sedimentation. Water Res. 2011, 45, 3215–3224. [Google Scholar] [CrossRef]
- Gauthier, V.; Gérard, B.; Portal, J.-M.; Block, J.-C.; Gatel, D. Organic matter as loose deposits in a drinking water distribution system. Water Res. 1999, 33, 1014–1026. [Google Scholar] [CrossRef]
- Hijnen, W.A.M.; Schurer, R.; Bahlman, J.A.; Ketelaars, H.A.M.; Italiaander, R.; van der Wal, A.; van der Wielen, P.W.J.J. Slowly Biodegradable Organic Compounds Impact the Biostability of Non-Chlorinated Drinking Water Produced from Surface Water. Water Res. 2018, 129, 240–251. [Google Scholar] [CrossRef]
- Veenendaal, H.R.; Brouwer-Hanzens, A.H. TECHNEAU: A Method for the Concentration of Microbes in Large Volumes of Water; KWR Watercycle Research Institute: Nieuwegein, The Netherlands, 2007. [Google Scholar]
- van der Wielen, P.W.J.J.; Brouwer-Hanzens, A.J.; Italiaander, R.; Hijnen, W.A.M. Initiating guidance values for novel biological stability parameters in drinking water to control regrowth in the distribution system (Open Access). Sci. Total Environ. 2023, 871, 161930. [Google Scholar] [CrossRef]
- van der Kooij, D.; Bakker, G.L.; Italiaander, R.; Veenendaal, H.R.; Wullings, B.A. Biofilm Composition and Threshold Concentration for Growth of Legionella pneumophila on Surfaces Exposed to Flowing Warm Tap Water without Disinfectant. Appl. Environ. Microbiol. 2017, 83, e02737-16. [Google Scholar] [CrossRef]
- Magic-Knezev, A.; van der Kooij, D. Optimisation and significance of ATP analysis for measuring active biomass in granular activated carbon filters used in water treatment. Water Res. 2004, 38, 3971–3979. [Google Scholar] [CrossRef]
- van der Wielen, P.W.; van der Kooij, D. Effect of water composition, distance and season on the adenosine triphosphate concentration in unchlorinated drinking water in the Netherlands. Water Res. 2010, 44, 4860–4867. [Google Scholar] [CrossRef]
- van der Wielen, P.W.J.J.; van der Kooij, D. Nontuberculous mycobacteria, fungi, and opportunistic pathogens in unchlorinated drinking water in the Netherlands. Appl. Environ. Microbiol. 2013, 79, 825–834. [Google Scholar] [CrossRef]
- Dubois, M.; Gilles, K.A.; Hamilton, J.K.; Rebers, P.A.; Smith, F. Colorimetric Method for Determination of Sugars and Related Substances. Anal. Chem. 1956, 28, 350–356. [Google Scholar] [CrossRef]
- Huber, S.A.; Balz, A.; Abert, M.; Pronk, W. Characterisation of aquatic humic and non-humic matter with size-exclusion chromatography—Organic carbon detection—Organic nitrogen detection (LC-OCD-OND). Water Res. 2011, 45, 879–885. [Google Scholar] [CrossRef] [PubMed]
- Cox, D.R. Regression Models and Life-Tables. J. R. Stat. Soc. Ser. B (Methodol.) 1972, 34, 187–220. [Google Scholar] [CrossRef]
- Therneau, T. A Package for Survival Analysis in R. R Package Version 3.7-0. 2024. Available online: https://CRAN.R-project.org/package=survival (accessed on 4 April 2024).
- Migliore, L.; de Nicola Giudici, M. Toxicity of heavy metals to Asellus aquaticus (L.) (Crustacea, Isopoda). Hydrobiologia 1990, 203, 155–164. [Google Scholar] [CrossRef]
- Maltby, L.; Snart, J.O.H.; Calow, P. Acute toxicity tests on the freshwater isopod, Asellus aquaticus using FeSO4. 7H2O, with special reference to techniques and the possibility of intraspecific variation. Environ. Pollut. 1987, 43, 271–279. [Google Scholar] [CrossRef] [PubMed]
- Martin, T.R.; Holdich, D.M. The acute lethal toxicity of heavy metals to peracarid crustaceans (with particular reference to fresh-water asellids and gammarids). Water Res. 1986, 20, 1137–1147. [Google Scholar] [CrossRef]
- Braginskiy, L.; Shcherban, E. Acute toxicity of heavy metals to aquatic invertebrates at different temperatures. Hydrobiol. J. 1978, 14, 86–92. [Google Scholar]
- Mayer, M. Zur Ernährungsweise von Isopoden in Trinkwasserverteilungssystemen. Ph.D. Thesis, Technischen Universität Berlin, Berlin, Germany, 2013. [Google Scholar]
- Learbuch, K.L.G.; Smidt, H.; van der Wielen, P.W.J.J. Water and biofilm in drinking water distribution systems in the Netherlands (Open Access). Sci. Total Environ. 2022, 831, 154940. [Google Scholar] [CrossRef]
- Adcock, J.A. The Bioenergetics of a Population of Asellus aquaticus (L.) (Crustacea, Isopoda); University of Northampton: Northampton, UK, 1975; Available online: https://core.ac.uk/reader/287595900 (accessed on 4 April 2024).
- Gunkel, G.; Michels, U.; Scheideler, M. Water Lice and Other Macroinvertebrates in Drinking Water Pipes: Diversity, Abundance and Health Risk. Water 2021, 13, 276. [Google Scholar] [CrossRef]
- Shaddock, B. An Evaluation of Invertebrate Dynamics in a Drinking Water Distribution System: A South African Perspective; University of Johannesburg (South Africa): Johannesburg, South Africa, 2008. [Google Scholar]
- Levy, R.V.; Hart, F.L.; Cheetham, R.D. Occurrence and public health significance of invertebrates in drinking water. J. AWWA 1986, 78, 105–110. [Google Scholar] [CrossRef]
- Gunkel, G. Evaluation of Invertebrates in Drinking Water Networks. Water 2023, 15, 1391. [Google Scholar] [CrossRef]
- Smart, A.C.; Harper, D.M. Life after lakes: The ecology and management of the water distribution network. In The Ecological Bases for Lake and Reservoir Management; Harper, D.M., Brierley, B., Ferguson, A.J.D., Phillips, G., Eds.; Springer: Dordrecht, The Netherlands, 1999; pp. 379–386. [Google Scholar]
Code Used in Paper | Water Source | Food Source and Origin | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
None | PE Pipe without Biofilm | Preconditioned Leaf | Sediment | HF Concentrate | Cultured Biofilm on PE Pipe | Natural Biofilm on PVC Pipe | ||||||
TP2 | TP3 | TP2 | TP3 | TP2 | TP3 | TP3 | ||||||
Experiment A (16 weeks, N = 54, growth and survival) | A_Water_2 | TP2 | X | |||||||||
A_Water_3 | TP3 | X | ||||||||||
A_Leaf | TP3 | X | ||||||||||
A_Sed_2 | TP2 | X | ||||||||||
A_Sed_3 | TP3 | X | ||||||||||
Experiment B (16 weeks, N = 54, growth and survival) | B_Water_4 | DWDS4 | X | |||||||||
B_Leaf | DWDS4 | X | ||||||||||
B_Sed_2 | DWDS4 | X | ||||||||||
B_Sed_3 | DWDS4 | X | ||||||||||
B_HF_2 | DWDS4 | X | ||||||||||
B_HF_3 | DWDS4 | X | ||||||||||
Experiment C (16 weeks, N = 54, growth and survival) | C_PE | DWDS4 | X | |||||||||
C_Leaf | DWDS4 | X | ||||||||||
C_BFC_2 | DWDS4 | X | ||||||||||
C_BFC_3 | DWDS4 | X | ||||||||||
Experiment D (6 weeks, N = 54, survival) | D_PE | DWDS4 | X | |||||||||
D_Leaf | DWDS4 | X | ||||||||||
D_BFC_3 | DWDS4 | X | ||||||||||
D_BFN_3 | DWDS4 | X |
Drinking Water | Sediment | |||||
---|---|---|---|---|---|---|
A_Water_2 | A_Water_3 | B_Water_4 | A_Sed_2 | A_Sed_3 | ||
ATP | (ng/L) | 6.5 ± 4.0 | 3.1 ± 2.0 | 1–4 | 5.4 × 104 | 2.5 × 104 |
DOC | (mg C/L) | 2189 | 2264 | 1769 | ND | ND |
CDOC | (mg C/L) | 2008 | 2146 | 1563 | 2146 | 2146 |
Biopolymers | (mg C/L) | 83 | 106 | <1 | 106 | 106 |
Humic acids | (mg C/L) | 1049 | 1158 | 1122 | 1158 | 1158 |
Building blocks | (mg C/L) | 552 | 527 | 262 | 527 | 527 |
LMW Acids | (mg C/L) | 16 | 31 | <1 | 31 | 31 |
LMW Neutrals | (mg C/L) | 308 | 325 | 179 | 325 | 325 |
C_BFC_2 | C_BFC_3 | D_BFN_3 | C_BFC_2 vs. C_BFC_3 | C_BFC_2 vs. D_BFN_3 | C_BFC_3 vs. D_BFN_3 | |
---|---|---|---|---|---|---|
Biofilm | Cultured | Natural | ||||
Water | TP2 | TP3 | DWDS2 | |||
ATP (pg/cm2) | 4.7 × 103 ± 2.8 × 103 | 4.2 × 103 ± 2.5 × 103 | 5.5 × 102 ± 3.0 × 102 | - | X | X |
FCM, intact (cells/cm2) | 2.14 × 107 ± 2.32 × 107 | 1.49 × 107 ± 2.04 × 107 | 2.21 × 106 ± 2.63 × 106 | - | X | - |
FCM, total (cells/cm2) | 2.21 × 107 ± 2.29 × 107 | 1.50 × 107 ± 2.03 × 107 | 3.22 × 106 ± 2.11 × 106 | - | - | - |
Food Source | None | Leaf | Sediment | HF – Concentrate | PE without Biofilm | Biofilm | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cultured | Natural | ||||||||||||||||||
Drinking Water | TP3 | TP2 | DWDS4 | TP3 | DWDS4 | DWDS4 | DWDS4 | TP3 | DWDS4 | TP2 | DWDS4 | DWDS4 | DWDS4 | DWDS4 | DWDS4 | DWDS4 | DWDS4 | DWDS4 | DWDS4 |
Code | A_Water_3 | A_Water_2 | B_Water_4 | A_Leaf | B_Leaf | C_Leaf | D_Leaf | A_Sed_3 | B_Sed_3 | A_Sed_2 | B_Sed_2 | B_HF_3 | B_HF_2 | C_PE | D_PE | C_BFC_3 | C_BFC_2 | D_BFC_3 | D_BFN_3 |
A_Water_3 | |||||||||||||||||||
A_Water_2 | 0 | ||||||||||||||||||
B_Water_4 | 1 | 0 | |||||||||||||||||
A_Leaf | 12 | 14 | 15 | ||||||||||||||||
B_Leaf | 11 | 13 | 15 | 0 | |||||||||||||||
C_Leaf | 8 | 9 | 12 | 1 | 0 | ||||||||||||||
D_Leaf | 1 | 1 | 2 | 2 | 1 | 1 | |||||||||||||
A_Sed_3 | 15 | 15 | 15 | 15 | 15 | 15 | 14 | ||||||||||||
B_Sed_3 | 13 | 14 | 15 | 0 | 0 | 1 | 2 | 15 | |||||||||||
A_Sed_2 | 15 | 15 | 15 | 8 | 8 | 11 | 9 | 15 | 6 | ||||||||||
B_Sed_2 | 15 | 15 | 15 | 5 | 5 | 8 | 6 | 15 | 4 | 1 | |||||||||
B_HF_3 | 4 | 3 | 1 | 15 | 15 | 15 | 4 | 8 | 15 | 15 | 15 | ||||||||
B_HF_2 | 3 | 2 | 1 | 15 | 15 | 15 | 3 | 10 | 15 | 15 | 15 | 0 | |||||||
C_PE | 1 | 1 | 0 | 15 | 15 | 15 | 3 | 13 | 15 | 15 | 15 | 0 | 0 | ||||||
D_PE | 0 | 0 | 0 | 6 | 6 | 4 | 0 | 13 | 7 | 15 | 15 | 2 | 2 | 1 | |||||
C_BFC_3 | 1 | 2 | 3 | 7 | 6 | 4 | 0 | 15 | 7 | 15 | 15 | 8 | 7 | 5 | 0 | ||||
C_BFC_2 | 1 | 2 | 4 | 6 | 5 | 3 | 0 | 15 | 7 | 15 | 15 | 9 | 8 | 6 | 0 | 0 | |||
D_BFC_3 | 1 | 2 | 3 | 0 | 0 | 0 | 0 | 14 | 1 | 6 | 4 | 5 | 4 | 4 | 1 | 0 | 0 | ||
D_BFN_3 | 4 | 3 | 2 | 15 | 15 | 15 | 4 | 4 | 15 | 15 | 15 | 0 | 0 | 1 | 3 | 7 | 5 | 8 |
Food Source | Condition | Added Biomass |
---|---|---|
(ng ATP) | ||
Sediment | A_Sed_3 | 10 |
A_Sed_2 | 21.6 | |
Cultured biofilm | C_BFC_3 | 47.5 |
C_BFC_2 | 52.2 | |
Natural biofilm | D_BFN_3 | 4.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
van Bel, N.; van Lieverloo, J.H.M.; Verschoor, A.M.; Pap-Veldhuizen, L.; Hijnen, W.A.M.; Peeters, E.T.H.M.; Wunderer, J. Survival and Growth of Asellus aquaticus on Different Food Sources from Drinking Water Distribution Systems. Arthropoda 2024, 2, 192-211. https://doi.org/10.3390/arthropoda2030015
van Bel N, van Lieverloo JHM, Verschoor AM, Pap-Veldhuizen L, Hijnen WAM, Peeters ETHM, Wunderer J. Survival and Growth of Asellus aquaticus on Different Food Sources from Drinking Water Distribution Systems. Arthropoda. 2024; 2(3):192-211. https://doi.org/10.3390/arthropoda2030015
Chicago/Turabian Stylevan Bel, Nikki, J. Hein M. van Lieverloo, Antonie M. Verschoor, Leonie Pap-Veldhuizen, Wim A. M. Hijnen, Edwin T. H. M. Peeters, and Julia Wunderer. 2024. "Survival and Growth of Asellus aquaticus on Different Food Sources from Drinking Water Distribution Systems" Arthropoda 2, no. 3: 192-211. https://doi.org/10.3390/arthropoda2030015
APA Stylevan Bel, N., van Lieverloo, J. H. M., Verschoor, A. M., Pap-Veldhuizen, L., Hijnen, W. A. M., Peeters, E. T. H. M., & Wunderer, J. (2024). Survival and Growth of Asellus aquaticus on Different Food Sources from Drinking Water Distribution Systems. Arthropoda, 2(3), 192-211. https://doi.org/10.3390/arthropoda2030015