Influence of Temperature and Precipitation on the Forage Quality of Bluebunch Wheatgrass and Idaho Fescue During the Dormant Season
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Field and Laboratory Methods
2.3. Environmental Data
- GDDi is the accumulated number of GDD on day i,
- Tmean is the mean temperature on day i, and
- Tbase is the threshold temperature above which plants are able to initiate growth.
Group | Code | Description |
---|---|---|
Growing degree day | gdd_5 | 5-day sum |
gdd_10 | 10-day sum | |
gdd_15 | 15-day sum | |
Precipitation | ppt_5 | 5-day sum |
ppt_10 | 10-day sum | |
ppt_15 | 15-day sum | |
Absolute temperature | temp_5 | 5-day mean |
temp_10 | 10-day mean | |
temp_15 | 15-day mean | |
Short-term thermal stress | stts5_5 | Difference of the 5-day mean from the previous 5-day mean |
stts5_10 | Difference of the 5-day mean from the previous 10-day mean | |
stts5_15 | Difference of the 5-day mean from the previous 15-day mean | |
stts5_20 | Difference of the 5-day mean from the previous 20-day mean | |
stts10_10 | Difference of the 10-day mean from the previous 10-day mean | |
stts10_20 | Difference of the 10-day mean from the previous 20-day mean | |
stts10_30 | Difference of the 10-day mean from the previous 30-day mean |
- Metrici is the calculated mean for day i,
- n is the number of days in the summation window, and
- V(i−j) is the daily value for the variable of interest on day i−j.
- STTSi is the STTS for day i,
- Tstim is the stimulus temperature, and
- Taccl is the acclimated temperature.
- N is the number of days in the calculation of the stimulus temperature on day i,
- M is the number of days in the calculation of the acclimated temperature, and
- T(i−j) and T[i−(N+k)] are the mean daily temperatures on days i−j and i−(N+k), respectively.
2.4. Statistical Analysis
2.4.1. Analysis of Sampling Date
2.4.2. Analysis of Environment
3. Results
3.1. Influence of Sampling Date
3.2. Influence of Environment
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Knight, H.G.; Nelson, A. Bulletin No. 65—Wyoming Forage Plants and Their Chemical Composition—Studies No. I; University of Wyoming Agricultural Experiment Station: Laramie, WY, USA, 1905. [Google Scholar]
- Green, J. Bulletin 283—Composition of Montana Feeds and Forages; Montana Agricultural Experiment Station: Bozeman, MT, USA, 1934; Volume 28, pp. 1–23. [Google Scholar]
- McCall, R. Seasonal variation in the composition of bluebunch fescue. J. Agric. Res. 1939, 58, 603–616. [Google Scholar]
- Davis, N.G.; Wyffels, S.; Damiran, D.; Darambazar, E.; Vavra, M.; Riggs, R.; DelCurto, T. Nutritional dynamics of plant growth forms in a forest-grassland mosaic. Rev. Rangel. Ecol. Manag. 2024. [Google Scholar]
- Larsen, R.E.; Shapero, M.W.; Striby, K.; Althouse, L.; Meade, D.E.; Brown, K.; Horney, M.R.; Rao, D.R.; Davy, J.S.; Rigby, C.W.; et al. Forage quantity and quality dynamics due to weathering over the dry season on California annual rangelands. Rangel. Ecol. Manag. 2021, 76, 150–156. [Google Scholar] [CrossRef]
- Tolleson, D.R.; Angerer, J.P.; Kreuter, U.P.; Sawyer, J.E. Growing degree day: Noninvasive remotely sensed method to monitor diet crude protein in free-ranging cattle. Rangel. Ecol. Manag. 2020, 73, 234–242. [Google Scholar] [CrossRef]
- DelCurto, T.; Wyffels, S.A.; Vavra, M.; Wisdom, M.J.; Posbergh, C.J. Western Rangeland Livestock Production Systems and Grazing Management. In Rangeland Wildlife Ecology and Conservation; McNew, L.B., Dahlgren, D.K., Beck, J.L., Eds.; Springer: Cham, Switzerland, 2023; pp. 75–106. [Google Scholar]
- Putnam, D.H.; DelCurto, T. Forage Systems for Arid Areas. In Forages; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2020; pp. 433–451. [Google Scholar]
- DelCurto, T.; Hess, B.W.; Huston, J.E.; Olson, K.C. Optimum supplementation strategies for beef cattle consuming low-quality roughages in the western United States. J. Anim. Sci. 2000, 77, 1–16. [Google Scholar] [CrossRef]
- Houseal, G.A.; Olson, B.E. Nutritive value of live and dead components of two bunchgrasses. Can. J. Anim. Sci. 1996, 76, 555–562. [Google Scholar] [CrossRef]
- Abouguendia, Z.M. Nutrient Content and Digestibility of Saskatchewan Range Plants; Saskatchewan Agriculture Development Fund: Regina, SK, USA, 1998.
- Waldron, B.L.; ZoBell, D.R.; Olson, K.C.; Jensen, K.B.; Snyder, D.L. Stockpiled forage kochia to maintain beef cows during winter. Rangel. Ecol. Manag. 2006, 59, 275–284. [Google Scholar] [CrossRef]
- Jensen, K.B.; Johnson, D.A.; Asay, K.H.; Olson, K.C. Seasonal-accumulated growth and forage quality of range grasses for fall and winter grazing. Can. J. Plant Sci. 2002, 82, 329–336. [Google Scholar] [CrossRef]
- Ganskopp, D.; Bohnert, D. Nutritional dynamics of 7 northern Great Basin grasses. J. Range Manag. 2001, 54, 640–647. [Google Scholar] [CrossRef]
- Ganskopp, D.; Aguilera, L.; Vavra, M. Livestock forage conditioning among six northern great basin grasses. Rangel. Ecol. Manag. 2007, 60, 71–78. [Google Scholar] [CrossRef]
- USDA, Forest Service. Range Plant Handbook; US Government Printing Office: Washington, DC, USA, 1937.
- Holechek, J.L.; Pieper, R.D.; Herbel, C.H. Range Management Principles and Practices; Prentice-Hall: Englewood Cliffs, NJ, USA, 1989. [Google Scholar]
- Rosiere, R.E. Range Types of North America. Available online: http://www.range.altervista.org/ (accessed on 24 September 2024).
- McLean, A.; Tisdale, E. Chemical compositions of native forage plants in British Columbia in relation to grazing practices. Can. J. Plant Sci. 1960, 40, 405–423. [Google Scholar] [CrossRef]
- Johnston, A.; Bezeau, L.M. Chemical composition of range forage plants of the Festuca scabrella association. Can. J. Plant Sci. 1961, 42, 105–115. [Google Scholar] [CrossRef]
- Skovlin, J.M. Fluctuations in Forage Quality on Summer Range in the Blue Mountains; Pacific Northwest Forest and Range Experiment Station, Forest Service, US Department of Agriculture: Portland, OR, USA, 1967.
- Peek, J.M. Annual Changes in Bluebunch Wheatgrass Biomass and Nutrients Related to Climate and Wildfire. Northwest Sci. 2014, 88, 129–139. [Google Scholar] [CrossRef]
- Bates, J.; Johnson, D.; Davies, K.W.; Svejcar, T.; Hardegree, S. Effects of Annual Weather Variation on Peak Herbaceous Yield Date in Sagebrush Steppe. West. N. Am. Nat. 2023, 83, 220–231. [Google Scholar] [CrossRef]
- Mainetti, A.; Ravetto Enri, S.; Pittarello, M.; Lombardi, G.; Lonati, M. Main ecological and environmental factors affecting forage yield and quality in alpine summer pastures (NW-Italy, Gran Paradiso National Park). Grass Forage Sci. 2023, 78, 254–267. [Google Scholar] [CrossRef]
- Kottek, M.; Grieser, J.; Beck, C.; Rudolf, B.; Rubel, F. World map of the Köppen-Geiger climate classification updated. Meteorol. Z. 2006, 15, 259–263. [Google Scholar] [CrossRef]
- PRISM Climate Group. Oregon State University. Available online: http://prism.oregonstate.edu (accessed on 18 July 2024).
- Soil Survey Staff. Web Soil Survey. Available online: http://websoilsurvey.nrcs.usda.gov/ (accessed on 10 September 2024).
- Kluth, J.; Davis, N.; Wyffels, S.; Marlow, C.; Vermeire, L.; Sitz, T.; Hamilton, T.; DelCurto, T. Foraging Behavior, Botanical Composition, and Quality of Beef Cattle Diets on Burned Versus Unburned Foothill Rangelands. In Review. Grasses 2025. [Google Scholar]
- A Kluth, J.; Davis, N.G.; Wyffels, S.; Marlow, C.; Vermeire, L.; Van Emon, M.L.; Nack, M.; Sitz, T.; Hamilton, T.; Peterson, J.; et al. 245 The influence of deferment and season of use on beef cattle diet quality and composition following a rangeland wildfire. J. Anim. Sci. 2024, 102, 363–364. [Google Scholar] [CrossRef]
- Davis, N. Long-Term Vegetation Response to Grazing on a Southwest Montana Foothills Range. Intermt. J. Sci. 2018, 24, 175. [Google Scholar]
- Hamilton, T. Personal Communication; Montana State University: Bozeman, MT, USA, 2024. [Google Scholar]
- Association of Official Analytical Chemists. Official Methods of Analysis, 15th ed.; AOAC: Arlington, VA, USA, 1990; p. 1175. [Google Scholar]
- Goering, H.K.; Van Soest, P.J. Forage Fiber Analyses: Apparatus, Reagents, Procedures, and Some Applications; Agricultural Research Service, US Department of Agriculture: Washington, DC, USA, 1970.
- U.S. Geological Survey. Explanations for the National Water Conditions. Available online: https://water.usgs.gov/nwc/explain_data.html (accessed on 8 October 2024).
- McMaster, G.S.; Wilhelm, W.W. Growing degree-days: One equation, two interpretations. Agric. For. Meteorol. 1997, 87, 291–300. [Google Scholar] [CrossRef]
- Frank, A.; Hofmann, L. Relationship among grazing management, growing degree-days, and morphological development for native grasses on the Northern Great Plains. J. Range Manag. 1989, 42, 199–202. [Google Scholar] [CrossRef]
- Zavalloni, C.; Andresen, J.A.; Flore, J. Phenological models of flower bud stages and fruit growth ofmontmorency’sour cherry based on growing degree-day accumulation. J. Am. Soc. Hortic. Sci. 2006, 131, 601–607. [Google Scholar] [CrossRef]
- Peratoner, G.; Niedrist, G.; Figl, U.; Della Chiesa, S.; Vitalone, L.; Matteazzi, A. Effect of growing degree days and soil moisture on forage quality. In Proceedings of the 28th General Meeting of the European Grassland Federation, Meeting the Future Demands for Grassland Production, Helsinki, Finland, 19–22 October 2020; pp. 130–132. [Google Scholar]
- Moot, D.J.; Scott, W.R.; Roy, A.M.; Nicholls, A.C. Base temperature and thermal time requirements for germination and emergence of temperate pasture species. N. Z. J. Agric. Res. 2000, 43, 15–25. [Google Scholar] [CrossRef]
- Nagelmüller, S.; Kirchgessner, N.; Yates, S.; Hiltpold, M.; Walter, A. Leaf Length Tracker: A novel approach to analyse leaf elongation close to the thermal limit of growth in the field. J. Exp. Bot. 2016, 67, 1897–1906. [Google Scholar] [CrossRef]
- Senft, R.L.; Rittenhouse, L.R. A Model of Thermal Acclimation in Cattle. J. Anim. Sci. 1985, 61, 297–306. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2023. [Google Scholar]
- Kuznetsova, A.; Brockhoff, P.B.; Christensen, R.H.B. lmerTest package: Tests in linear mixed effects models. J. Stat. Softw. 2017, 82, 1–26. [Google Scholar] [CrossRef]
- Bates, D.; Machler, M.; Bolker, B.M.; Walker, S.C. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 2015, 67, 1–48. [Google Scholar] [CrossRef]
- Lenth, R.V. emmeans: Estimated Marginal Means, aka Least-Squares Means, R Package, Version 1.10.1, CRAN. 2024. Available online: https://CRAN.R-project.org/package=emmeans (accessed on 24 September 2024).
- Feltz, C.J.; Miller, G.E. An asymptotic test for the equality of coefficients of variation from k populations. Stat. Med. 1996, 15, 647–658. [Google Scholar] [CrossRef]
- Marwick, B.; Krishnamoorthy, K. cvequality: Tests for the Equality of Coefficients of Variation from Multiple Groups, R Package, Version 0.2.0, CRAN. 2019. Available online: https://CRAN.R-project.org/package=cvequality (accessed on 24 September 2024).
- Thioulouse, J.; Simier, M.; Chessel, D. Simultaneous analysis of a sequence of paired ecological tables. Ecology 2004, 85, 272–283. [Google Scholar] [CrossRef]
- Simier, M.; Blanc, L.; Pellegrin, F.; Nandris, D. Approche simultanée de K couples de tableaux: Application à l’étude des relations pathologie végétale-environnement. Rev. De Stat. Appliquée 1999, 47, 31–46. [Google Scholar]
- Thioulouse, J.; Dray, S.; Dufour, A.-B.; Siberchicot, A.; Jombart, T.; Pavoine, S. Multivariate Analysis of Ecological Data with ade4; Springer: Berlin/Heidelberg, Germany, 2018. [Google Scholar] [CrossRef]
- Kraus, C.N.; Maciel, D.A.; Bonnet, M.P.; de Moraes Novo, E.M.L. Phytoplankton Genera Structure Revealed from the Multispectral Vertical Diffuse Attenuation Coefficient. Remote Sens. 2021, 13, 4114. [Google Scholar] [CrossRef]
- Certain, G.; Masse, J.; Van Canneyt, O.; Petitgas, P.; Doremus, G.; Santos, M.B.; Ridoux, V. Investigating the coupling between small pelagic fish and marine top predators using data collected from ecosystem-based surveys. Mar. Ecol. Prog. Ser. 2011, 422, 23–39. [Google Scholar] [CrossRef]
- Andueza, D.; Rodrigues, A.M.; Picard, F.; Rossignol, N.; Baumont, R.; Cecato, U.; Farruggia, A. Relationships between botanical composition, yield and forage quality of permanent grasslands over the first growth cycle. Grass Forage Sci. 2016, 71, 366–378. [Google Scholar] [CrossRef]
- Scasta, J. Seasonal forage dynamics of three grasses with different origins and photosynthetic pathways in a rural North American cold steppe. Livest. Res. Rural Dev. 2017, 29. Available online: http://www.lrrd.org/lrrd29/11/jsca29208.html (accessed on 24 September 2024).
- Locke, J.C.; French, J.T.; Gonzalez, C.E.; Harveson, L.A.; Warnock, B.J.; Gray, S.S. The Effects of Continuous and Rotational Livestock Grazing on Forb Quality and Quantity: Implications for Pronghorn Habitat Management. Rangel. Ecol. Manag. 2021, 77, 75–81. [Google Scholar] [CrossRef]
- Smart, A.J.; Schacht, W.H.; Volesky, J.D.; Moser, L.E. Seasonal Changes in Dry Matter Partitioning, Yield, and Crude Protein of Intermediate Wheatgrass and Smooth Bromegrass. Agron. J. 2006, 98, 986–991. [Google Scholar] [CrossRef]
- Jensen, K.B.; Robins, J.G.; Rigby, C.; Waldron, B.L. Comparative trends in forage nutritional quality across the growing season in 13 grasses. Can. J. Plant Sci. 2017, 97, 72–82. [Google Scholar] [CrossRef]
- Clark, P.E.; Krueger, W.C.; Bryant, L.D.; Thomas, D.R. Livestock grazing effects on forage quality of elk winter range. J. Range Manag. 2000, 53, 97–105. [Google Scholar] [CrossRef]
- Wagner, G.D.; Peek, J.M. Bighorn sheep diet selection and forage quality in central Idaho. Northwest Sci. 2006, 80, 246. [Google Scholar]
- Cook, C.W.; Harris, L.E. Bulletin No. 342—The Nutritive Content of the Grazing Sheep’s Diet on Summer and Winter Ranges of Utah. In UAES Bulletins; Utah State University: Logan, UT, USA, 1950; p. 303. [Google Scholar]
- Cook, C.W.; Stoddart, L.A.; Harris, L.E. Bulletin No. 372—The Nutritive Value of Winter Range Plants in the Great Basin as Determined with Digestion Trials with Sheep. In UAES Bulletins; Utah State University: Logan, UT, USA, 1954; p. 331. [Google Scholar]
- Cook, C.W.; Harris, L.E. Bulletin No. 472—Nutritive Value of Seasonal Ranges. In UAES Bulletins; Utah State University: Logan, UT, USA, 1968; p. 350. [Google Scholar]
- McInnis, M.L.; Vavra, M. Dietary relationships among feral horses, cattle, and pronghorn in southeastern Oregon. J. Range Manag. 1987, 40, 60–66. [Google Scholar] [CrossRef]
- Wambolt, C.L.; Frisina, M.R.; Douglass, K.S.; Sherwood, H.W. Grazing effects on nutritional quality of bluebunch wheatgrass for elk. J. Range Manag. 1997, 50, 503–506. [Google Scholar] [CrossRef]
- Beck, J.L.; Peek, J.M. Great Basin summer range forage quality: Do plant nutrients meet elk requirements? West. N. Am. Nat. 2005, 65, 516–527. [Google Scholar]
- McCall, R. The Digestibility of Mature Range Grasses and Range Mixtures Fed Alone and with Supplements. J. Agric. Res. 1940, 60, 39–50. [Google Scholar]
- Dragt, W.; Havstad, K. Effects of cattle grazing upon chemical constituents within important forages for elk. Northwest Sci. 1987, 61, 70–73. [Google Scholar]
- Frisina, M.R.; Wambolt, C.L.; Fraas, W.W.; Guenther, G. Mule deer and elk winter diet as an indicator of habitat competition. In Proceedings RMRS-P-52; U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station: Fort Collins, CO, USA, 2008; pp. 123–126. [Google Scholar]
- Franco Urcos, R.C. Personal Communication; Montana State University: Norris, MT, USA, 2024. [Google Scholar]
- Holechek, J.L.; Vavra, M.; Skovlin, J.; Krueger, W.C. Cattle Diets in the Blue Mountains of Oregon, I. Grasslands. J. Range Manag. 1982, 35, 109–112. [Google Scholar] [CrossRef]
- Hart, R.; Abdalla, O.; Clark, D.; Marshall, M.; Hamid, M. Quality of forage and cattle diets on the Wyoming high plains. J. Range Manag. 1983, 36, 46–51. [Google Scholar] [CrossRef]
- Cruz, R.; Ganskopp, D. Seasonal preferences of steers for prominent northern Great Basin grasses. J. Range Manag. 1998, 51, 557–565. [Google Scholar] [CrossRef]
- Clark, A.; DelCurto, T.; Vavra, M.; Dick, B.L. Stocking Rate and Fuels Reduction Effects on Beef Cattle Diet Composition and Quality. Rangel. Ecol. Manag. 2013, 66, 714–720. [Google Scholar] [CrossRef]
- Van Dyne, G.M.; Thomas, O.O.; Van Horn, J.L. Diets of Cattle and Sheep Grazing on Winter Range. Proc. West. Sec. Am. Soc. Anim. Sci. 1964, 15, LXI 1-6. [Google Scholar]
- Ganskopp, D.; Bohnert, D. Mineral concentration dynamics among 7 northern Great Basin grasses. J. Range Manag. 2003, 56, 174–184. [Google Scholar] [CrossRef]
- Smallwood, M.; Bowles, D.J. Plants in a cold climate. Philos. Trans. R. Soc. London. Ser. B 2002, 357, 831–847. [Google Scholar] [CrossRef] [PubMed]
- Źróbek-Sokolnik, A. Temperature Stress and Responses of Plants. In Environmental Adaptations and Stress Tolerance of Plants in the Era of Climate Change; Ahmad, P., Prasad, M.N.V., Eds.; Springer: New York, NY, USA, 2012; pp. 113–134. [Google Scholar]
- Yu, J.; Cang, J.; Lu, Q.; Fan, B.; Xu, Q.; Li, W.; Wang, X. ABA enhanced cold tolerance of wheat ‘dn1’ via increasing ROS scavenging system. Plant Signal. Behav. 2020, 15, e1780403. [Google Scholar] [CrossRef] [PubMed]
- Bykova, O.; Sage, R.F. Winter cold tolerance and the geographic range separation of Bromus tectorum and Bromus rubens, two severe invasive species in North America. Glob. Change Biol. 2012, 18, 3654–3663. [Google Scholar] [CrossRef]
- Hoffman, L.; DaCosta, M.; Bertrand, A.; Castonguay, Y.; Ebdon, J.S. Comparative assessment of metabolic responses to cold acclimation and deacclimation in annual bluegrass and creeping bentgrass. Environ. Exp. Bot. 2014, 106, 197–206. [Google Scholar] [CrossRef]
- Daubenmire, R. Soil Moisture in Relation to Vegetation Distribution in the Mountains of Northern Idaho. Ecology 1968, 49, 431–438. [Google Scholar] [CrossRef]
- Goodwin, J.R.; Doescher, P.S.; Eddleman, L.E. Germination of Idaho fescue and cheatgrass seeds from coexisting populations. Northwest Sci. 1996, 70, 230–241. [Google Scholar]
- Weaver, T. Distribution of Root Biomass in Well-drained Surface Soils. Am. Midl. Nat. 1982, 107, 393–395. [Google Scholar] [CrossRef]
- Spence, L.E. Root Studies of Important Range Plants of the Boise River Watershed. J. For. 1937, 35, 747–754. [Google Scholar]
- Smith, G.D.; Newhall, F.; Robinson, L.H. Soil-Temperature Regimes—Their Characteristics and Predictability; USDA-SCS, US Government Publishing Office: Washington, DC, USA, 1964; Volume SCS-TP-144.
Idaho Fescue | Bluebunch Wheatgrass | SEM 1 | p-Values 2 | |||||
---|---|---|---|---|---|---|---|---|
Year 1 | Year 2 | Year 1 | Year 2 | Y | S | Y × S | ||
CP, % | 2.83 | 3.45 | 2.36 | 2.46 | 0.19 | 0.04 | <0.01 | 0.13 |
ADF, % | 40.7 a | 39.9 b | 38.9 b | 41.7 a | 0.66 | 0.10 | 0.98 | <0.01 |
NDF, % | 62.2 | 68.7 | 62.8 | 69.7 | 1.31 | <0.01 | 0.50 | 0.87 |
Idaho Fescue | Bluebunch Wheatgrass | p-Value | |
---|---|---|---|
Coefficient of Variation | |||
CP, % | 52.7 | 35.7 | <0.01 |
ADF, % | 10.0 | 12.8 | 0.02 |
NDF, % | 15.0 | 12.8 | 0.15 |
Orthogonal Contrast p-Values | |||
---|---|---|---|
Linear | Quadratic | Cubic | |
CP | |||
Year 1 | 0.11 | 0.87 | 0.99 |
Year 2 | 0.05 | 0.07 | 0.07 |
ADF | |||
Year 1 | 0.23 | 0.22 | 0.05 |
Year 2 | 0.69 | 0.06 | 0.70 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Davis, N.G.; Wyffels, S.A.; DelCurto, T. Influence of Temperature and Precipitation on the Forage Quality of Bluebunch Wheatgrass and Idaho Fescue During the Dormant Season. Grasses 2025, 4, 5. https://doi.org/10.3390/grasses4010005
Davis NG, Wyffels SA, DelCurto T. Influence of Temperature and Precipitation on the Forage Quality of Bluebunch Wheatgrass and Idaho Fescue During the Dormant Season. Grasses. 2025; 4(1):5. https://doi.org/10.3390/grasses4010005
Chicago/Turabian StyleDavis, Noah G., Sam A. Wyffels, and Timothy DelCurto. 2025. "Influence of Temperature and Precipitation on the Forage Quality of Bluebunch Wheatgrass and Idaho Fescue During the Dormant Season" Grasses 4, no. 1: 5. https://doi.org/10.3390/grasses4010005
APA StyleDavis, N. G., Wyffels, S. A., & DelCurto, T. (2025). Influence of Temperature and Precipitation on the Forage Quality of Bluebunch Wheatgrass and Idaho Fescue During the Dormant Season. Grasses, 4(1), 5. https://doi.org/10.3390/grasses4010005