Spatio-Temporal Evolution of Fogwater Chemistry in Alsace
Abstract
:1. Introduction
2. Materials and Methods
2.1. Studied Region
2.2. Fog Collection and Analysis
2.3. Data Quality
2.4. Statistical Analysis
2.4.1. Data Analysis
2.4.2. Non-Sea Salt Fractions
2.4.3. Neutralization and Acidifying Potentials
2.4.4. pAi
2.4.5. Enrichment Factors
2.4.6. Liquid Water Content
3. Results and Discussion
3.1. Physico-Chemical Characteristics
3.2. Ion Analysis
3.2.1. Quality Control
3.2.2. Ionic Concentration
3.2.3. Annual Element Chart
3.2.4. Neutralization and Acidifying Potentials
3.2.5. pAi and pH
3.3. Heavy Metals
3.3.1. Element Concentration
3.3.2. Sources of Heavy Metals
3.4. Statistical Analyses
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yang, J.; Xie, Y.-J.; Shi, C.-E.; Liu, D.-Y.; Niu, S.-J.; Li, Z.-H. Ion Composition of Fog Water and Its Relation to Air Pollutants during Winter Fog Events in Nanjing, China. Pure Appl. Geophys. 2012, 169, 1037–1052. [Google Scholar] [CrossRef]
- Li, P.; Li, X.; Yang, C.; Wang, X.; Chen, J.; Collett, J.L., Jr. Fog water chemistry in Shanghai. Atmos. Environ. 2011, 45, 4034–4041. [Google Scholar] [CrossRef]
- Mohan, M.; Payra, S. Influence of Aerosol Spectrum and Air Pollutants on Fog Formation in Urban Environment of Megacity Delhi, India. Environ. Monit. Assess. 2009, 151, 265–277. [Google Scholar] [CrossRef] [PubMed]
- Gultepe, I.; Tardif, R.; Michaelides, S.C.; Cermak, J.; Bott, A.; Bendix, J.; Müller, M.D.; Pagowski, M.; Hansen, B.; Ellrod, G.; et al. Research: A Review of Past Achievements and Future Perspectives. Pure Appl. Geophys. 2007, 164, 1121–1159. [Google Scholar] [CrossRef]
- Elbert, W. Control of Solute Concentrations in Cloud and Fog Water by Liquid Water Content. Atmos. Environ. 2000, 34, 1109–1122. [Google Scholar] [CrossRef]
- Herckes, P.; Valsaraj, K.T.; Collett, J.L. A Review of Observations of Organic Matter in Fogs and Clouds: Origin, Processing and Fate. Atmos. Res. 2013, 132–133, 434–449. [Google Scholar] [CrossRef]
- Giulianelli, L.; Gilardoni, S.; Tarozzi, L.; Rinaldi, M.; Decesari, S.; Carbone, C.; Facchini, M.C.; Fuzzi, S. Fog Occurrence and Chemical Composition in the Po Valley over the Last Twenty Years. Atmos. Environ. 2014, 98, 394–401. [Google Scholar] [CrossRef]
- van Pinxteren, D.; Fomba, K.W.; Mertes, S.; Müller, K.; Spindler, G.; Schneider, J.; Lee, T.; Collett, J.L.; Herrmann, H. Cloud Water Composition during HCCT-2010: Scavenging Efficiencies, Solute Concentrations, and Droplet Size Dependence of Inorganic Ions and Dissolved Organic Carbon. Atmos. Chem. Phys. 2016, 16, 3185–3205. [Google Scholar] [CrossRef]
- Seinfeld, J.H.; Pandis, S.N. From air pollution to climate change. In Atmospheric Chemistry and Physics; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 1998; Volume 1326. [Google Scholar]
- Li, H.; Wu, H.; Wang, Q.; Yang, M.; Li, F.; Sun, Y.; Qian, X.; Wang, J.; Wang, C. Chemical Partitioning of Fine Particle-Bound Metals on Haze–Fog and Non-Haze–Fog Days in Nanjing, China and Its Contribution to Human Health Risks. Atmos. Res. 2017, 183, 142–150. [Google Scholar] [CrossRef]
- Kim, H.; Collier, S.; Ge, X.; Xu, J.; Sun, Y.; Jiang, W.; Wang, Y.; Herckes, P.; Zhang, Q. Chemical Processing of Water-Soluble Species and Formation of Secondary Organic Aerosol in Fogs. Atmos. Environ. 2019, 200, 158–166. [Google Scholar] [CrossRef]
- Izhar, S.; Gupta, T.; Panday, A.K. Scavenging Efficiency of Water-Soluble Inorganic and Organic Aerosols by Fog Droplets in the Indo Gangetic Plain. Atmos. Res. 2020, 235, 104767. [Google Scholar] [CrossRef]
- Goodman, J. The Microstructure of California Coastal Fog and Stratus. J. Appl. Meteor. 1977, 16, 1056–1067. [Google Scholar] [CrossRef]
- Zannetti, P.; Melli, P.; Runca, E. Meteorological Factors Affecting SO2 Pollution Levels in Venice. Atmos. Environ. 1977, 11, 605–616. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, K.; Honoki, H.; Iwai, A.; Tomatsu, A.; Noritake, K.; Miyashita, N.; Yamada, K.; Yamada, H.; Kawamura, H.; Aoki, K. Chemical Characteristics of Fog Water at Mt. Tateyama, Near the Coast of the Japan Sea in Central Japan. Water Air Soil. Pollut. 2010, 211, 379–393. [Google Scholar] [CrossRef]
- Yue, Y.; Niu, S.; Zhao, L.; Zhang, Y.; Xu, F. Chemical Composition of Sea Fog Water Along the South China Sea. Pure Appl. Geophys. 2012, 169, 2231–2249. [Google Scholar] [CrossRef]
- Vautard, R.; Yiou, P.; van Oldenborgh, G.J. Decline of Fog, Mist and Haze in Europe over the Past 30 Years. Nat. Geosci. 2009, 2, 115–119. [Google Scholar] [CrossRef]
- Quan, J.; Zhang, Q.; He, H.; Liu, J.; Huang, M.; Jin, H. Analysis of the Formation of Fog and Haze in North China Plain (NCP). Atmos. Chem. Phys. 2011, 11, 8205–8214. [Google Scholar] [CrossRef]
- Fu, G.Q.; Xu, W.Y.; Yang, R.F.; Li, J.B.; Zhao, C.S. The Distribution and Trends of Fog and Haze in the North China Plain over the Past 30 Years. Atmos. Chem. Phys. 2014, 14, 11949–11958. [Google Scholar] [CrossRef]
- Herckes, P.; Marcotte, A.R.; Wang, Y.; Collett, J.L. Fog Composition in the Central Valley of California over Three Decades. Atmos. Res. 2015, 151, 20–30. [Google Scholar] [CrossRef]
- Herckes, P.; Wortham, H.; Mirabel, P.; Millet, M. Evolution of the Fogwater Composition in Strasbourg (France) from 1990 to 1999. Atmos. Res. 2002, 64, 53–62. [Google Scholar] [CrossRef]
- Millet, M.; Wortham, H.; Mirabel, P. Solubility of Polyvalent Cations in Fogwater at an Urban Site in Strasbourg (France). Atmos. Environ. 1995, 29, 2625–2631. [Google Scholar] [CrossRef]
- Millet, M.; Sanusi, A.; Wortham, H. Chemical Composition of Fogwater in an Urban Area: Strasbourg (France). Environ. Pollut. 1996, 94, 345–354. [Google Scholar] [CrossRef]
- Millet, M.; Wortham, H.; Sanusi, A.; Mirabel, P. Low Molecular Weight Organic Acids in Fogwater in an Urban Area: Strasbourg (France). Sci. Total Environ. 1997, 206, 57–65. [Google Scholar] [CrossRef]
- Millet, M. Etude de la Composition Chimique des Brouillards et Analyse des Pesticides dans les Phases Liquide, Gazeuse et particulaire de Atmosphere. Ph.D. Thesis, Université Louis Pasteur, Strasbourg, France, 1994; 204p. [Google Scholar]
- Asif, M.; Yadav, R.; Sugha, A.; Bhatti, M.S. Chemical Composition and Source Apportionment of Winter Fog in Amritsar: An Urban City of North-Western India. Atmosphere 2022, 13, 1376. [Google Scholar] [CrossRef]
- Khoury, D.; Millet, M.; Jabali, Y.; Delhomme, O. Occurrence of Polycyclic Aromatic Hydrocarbons and Polychlorinated Biphenyls in Fogwater at Urban, Suburban, and Rural Sites in Northeast France between 2015 and 2021. Atmosphere 2024, 15, 291. [Google Scholar] [CrossRef]
- Demoz, B.B.; Collett, J.L.; Daube, B.C. On the Caltech Active Strand Cloudwater Collectors. Atmos. Res. 1996, 41, 47–62. [Google Scholar] [CrossRef]
- Daube, B.C., Jr.; Flagan, R.C.; Hoffmann, M.R. California Institute of Technology CalTech. Active Cloudwater Collector. U.S. Patent 4,697,462, 6 October 1987. [Google Scholar]
- Khoury, D.; Millet, M.; Weissenberger, T.; Delhomme, O.; Jabali, Y. Chemical Composition of Fogwater Collected at Four Sites in North- and Mount-Lebanon during 2021. Atmos. Pollut. Res. 2024, 15, 101958. [Google Scholar] [CrossRef]
- Danielsson, L.G. On the Use of Filters for Distinguishing between Dissolved and Particulate Fractions in Natural Waters. Water Res. 1982, 16, 179–182. [Google Scholar] [CrossRef]
- Herckes, P.; Lee, T.; Trenary, L.; Kang, G.; Chang, H.; Collett, J.L. Organic Matter in Central California Radiation Fogs. Environ. Sci. Technol. 2002, 36, 4777–4782. [Google Scholar] [CrossRef]
- Morales, J.A.; Pirela, D.; De Nava, M.G.; De Borrego, B.S.; Velásquez, H.; Durán, J. Inorganic Water Soluble Ions in Atmospheric Particles over Maracaibo Lake Basin in the Western Region of Venezuela. Atmos. Res. 1998, 46, 307–320. [Google Scholar] [CrossRef]
- Lu, C.; Niu, S.; Tang, L.; Lv, J.; Zhao, L.; Zhu, B. Chemical Composition of Fog Water in Nanjing Area of China and Its Related Fog Microphysics. Atmos. Res. 2010, 97, 47–69. [Google Scholar] [CrossRef]
- Watanabe, K.; Takebe, Y.; Sode, N.; Igarashi, Y.; Takahashi, H.; Dokiya, Y. Fog and Rain Water Chemistry at Mt. Fuji: A Case Study during the September 2002 Campaign. Atmos. Res. 2006, 82, 652–662. [Google Scholar] [CrossRef]
- Warneck, P.; Williams, J. The Atmospheric Aerosol. In The Atmospheric Chemist’s Companion; Springer: Dordrecht, The Netherlands, 2012; pp. 127–187. [Google Scholar] [CrossRef]
- Possanzini, M.; Buttini, P.; Di Palo, V. Characterization of a Rural Area in Terms of Dry and Wet Deposition. Sci. Total Environ. 1988, 74, 111–120. [Google Scholar] [CrossRef]
- Di Girolamo, L.; Bond, T.C.; Bramer, D.; Diner, D.J.; Fettinger, F.; Kahn, R.A.; Martonchik, J.V.; Ramana, M.V.; Ramanathan, V.; Rasch, P.J. Analysis of Multi-angle Imaging SpectroRadiometer (MISR) Aerosol Optical Depths over Greater India during Winter 2001–2004. Geophys. Res. Lett. 2004, 31, 23115. [Google Scholar] [CrossRef]
- Yadav, S.; Kumar, P. Pollutant Scavenging in Dew Water Collected from an Urban Environment and Related Implications. Air Qual. Atmos. Health 2014, 7, 559–566. [Google Scholar] [CrossRef]
- Tsurut, H. Acid precipitation in Eastern Asia. Kagaku 1989, 59, 305–315. [Google Scholar]
- Błaś, M.; Polkowska, Ż.; Sobik, M.; Klimaszewska, K.; Nowiński, K.; Namieśnik, J. Fog Water Chemical Composition in Different Geographic Regions of Poland. Atmos. Res. 2010, 95, 455–469. [Google Scholar] [CrossRef]
- Hara, H.; Kitamura, M.; Mori, A.; Noguchi, I.; Ohizumi, T.; Seto, S.; Takeuchi, T.; Deguchi, T. Precipitation Chemistry in Japan 1989–1993. Water Air Soil Pollut. 1995, 85, 2307–2312. [Google Scholar] [CrossRef]
- Islam, M.F.; Majumder, S.S.; Mamun, A.A.; Khan, M.B.; Rahman, M.A.; Salam, A. Trace Metals Concentrations at the Atmosphere Particulate Matters in the Southeast Asian Mega City (Dhaka, Bangladesh). OJAP 2015, 04, 86–98. [Google Scholar] [CrossRef]
- Yaroshevsky, A.A. Abundances of Chemical Elements in the Earth’s Crust. Geochem. Int. 2006, 44, 48–55. [Google Scholar] [CrossRef]
- Waldman, J.M.; Munger, J.W.; Jacob, D.J.; Hoffmann, M.R. Chemical Characterization of Stratus Cloudwater and Its Role as a Vector for Pollutant Deposition in a Los Angeles Pine Forest. Tellus B Chem. Phys. Meteorol. 1985, 37, 91. [Google Scholar] [CrossRef]
- Watanabe, K.; Ji, J.; Harada, H.; Sunada, Y.; Honoki, H. Recent Characteristics of Fog Water Chemistry at Mt. Tateyama, Central Japan: Recovery from High Sulfate and Acidity. Water Air Soil. Pollut. 2022, 233, 300. [Google Scholar] [CrossRef]
- Nahar, K.; Nahian, S.; Jeba, F.; Islam, M.S.; Rahman, M.S.; Choudhury, T.R.; Fatema, K.J.; Salam, A. Characterization and Source Discovery of Wintertime Fog on Coastal Island, Bangladesh. Atmosphere 2022, 13, 497. [Google Scholar] [CrossRef]
- Ambade, B. Characterization and Source of Fog Water Contaminants in Central India. Nat. Hazards 2014, 70, 1535–1552. [Google Scholar] [CrossRef]
- Michna, P.; Werner, R.A.; Eugster, W. Does Fog Chemistry in Switzerland Change with Altitude? Atmos. Res. 2015, 151, 31–44. [Google Scholar] [CrossRef]
- Raja, S.; Ravikrishna, R.; Kommalapati, R.R.; Valsaraj, K.T. Monitoring of Fogwater Chemistry in the Gulf Coast Urban Industrial Corridor: Baton Rouge (Louisiana). Env. Monit. Assess. 2005, 110, 99–120. [Google Scholar] [CrossRef] [PubMed]
- Fisak, J.; Tesar, M.; Rezacova, D.; Elias, V.; Weignerova, V.; Fottova, D. Pollutant Concentrations in Fog and Low Cloud Water at Selected Sites of the Czech Republic. Atmos. Res. 2002, 64, 75–87. [Google Scholar] [CrossRef]
- Raja, S.; Raghunathan, R.; Yu, X.-Y.; Lee, T.; Chen, J.; Kommalapati, R.R.; Murugesan, K.; Shen, X.; Qingzhong, Y.; Valsaraj, K.T.; et al. Fog Chemistry in the Texas–Louisiana Gulf Coast Corridor. Atmos. Environ. 2008, 42, 2048–2061. [Google Scholar] [CrossRef]
- Cardito, A.; Carotenuto, M.; Amoruso, A.; Libralato, G.; Lofrano, G. Air quality trends and implications pre and post COVID-19 restrictions. Sci. Total Environ. 2023, 879, 162833. [Google Scholar] [CrossRef]
- Khan, S.; Dahu, B.M.; Scott, G.J. A Spatio-temporal Study of Changes in Air Quality from Pre-COVID Era to Post-COVID Era in Chicago, USA. Aerosol Air Qual. Res. 2022, 22, 220053. [Google Scholar] [CrossRef]
- Straub, D.J.; Hutchings, J.W.; Herckes, P. Measurements of Fog Composition at a Rural Site. Atmos. Environ. 2012, 47, 195–205. [Google Scholar] [CrossRef]
- Salem, T.A.; Omar, M.E.D.M.; El Gammal, H.A.A. Evaluation of Fog and Rain Water Collected at Delta Barrage, Egypt as a New Resource for Irrigated Agriculture. J. Afr. Earth Sci. 2017, 135, 34–40. [Google Scholar] [CrossRef]
- Ehrenhauser, F.S.; Khadapkar, K.; Wang, Y.; Hutchings, J.W.; Delhomme, O.; Kommalapati, R.R.; Herckes, P.; Wornat, M.J.; Valsaraj, K.T. Processing of Atmospheric Polycyclic Aromatic Hydrocarbons by Fog in an Urban Environment. J. Environ. Monit. 2012, 14, 2566. [Google Scholar] [CrossRef]
- Raja, S.; Raghunathan, R.; Kommalapati, R.R.; Shen, X.; Collett, J.L.; Valsaraj, K.T. Organic Composition of Fogwater in the Texas–Louisiana Gulf Coast Corridor. Atmos. Environ. 2009, 43, 4214–4222. [Google Scholar] [CrossRef]
- Collett, J.L.; Herckes, P.; Youngster, S.; Lee, T. Processing of Atmospheric Organic Matter by California Radiation Fogs. Atmos. Res. 2008, 87, 232–241. [Google Scholar] [CrossRef]
- Fuzzi, S.; Facchini, M.C.; Decesari, S.; Matta, E.; Mircea, M. Soluble Organic Compounds in Fog and Cloud Droplets: What Have We Learned over the Past Few Years? Atmos. Res. 2002, 64, 89–98. [Google Scholar] [CrossRef]
- Decesari, S.; Facchini, M.C.; Fuzzi, S.; Tagliavini, E. Characterization of Water-soluble Organic Compounds in Atmospheric Aerosol: A New Approach. J. Geophys. Res. 2000, 105, 1481–1489. [Google Scholar] [CrossRef]
- Facchini, M.C.; Fuzzi, S.; Zappoli, S.; Andracchio, A.; Gelencsér, A.; Kiss, G.; Krivácsy, Z.; Mészáros, E.; Hansson, H.; Alsberg, T.; et al. Partitioning of the Organic Aerosol Component between Fog Droplets and Interstitial Air. J. Geophys. Res. 1999, 104, 26821–26832. [Google Scholar] [CrossRef]
- Collett, J. Internal Acid Buffering in San Joaquin Valley Fog Drops and Its Influence on Aerosol Processing. Atmos. Environ. 1999, 33, 4833–4847. [Google Scholar] [CrossRef]
- Aleksic, N.; Dukett, J.E. Probabilistic Relationship between Liquid Water Content and Ion Concentrations in Cloud Water. Atmos. Res. 2010, 98, 400–405. [Google Scholar] [CrossRef]
- Elbert, W.; Krämer, M.; Andreae, M.O. Reply to Discussion on Control of Solute Concentrations in Cloud and Fog Water by Liquid Water Content. Atmos. Environ. 2002, 36, 1909–1910. [Google Scholar] [CrossRef]
- Cuhadaroglu, B.; Demirci, E. Influence of Some Meteorological Factors on Air Pollution in Trabzon City. Energy Build. 1997, 25, 179–184. [Google Scholar] [CrossRef]
- Klimont, Z.; Cofala, J.; Schöpp, W.; Amann, M.; Streets, D.G.; Ichikawa, Y.; Fujita, S. Projections of SO2, NOx, NH3 and VOC emissions in East Asia up to 2030. Water Air Soil Pollut. 2001, 130, 193–198. [Google Scholar] [CrossRef]
- Chatain, M.; Chretien, E.; Crunaire, S.; Jantzem, E. Road Traffic and Its Influence on Urban Ammonia Concentrations (France). Atmosphere 2022, 13, 1032. [Google Scholar] [CrossRef]
- Ohara, T.; Akimoto, H.; Kurokawa, J.; Horii, N.; Yamaji, K.; Yan, X.; Hayasaka, T. An Asian Emission Inventory of Anthropogenic Emission Sources for the Period 1980–2020. Atmos. Chem. Phys. 2007, 7, 4419–4444. [Google Scholar] [CrossRef]
- Collett, J.L.; Bator, A.; Sherman, D.E.; Moore, K.F.; Hoag, K.J.; Demoz, B.B.; Rao, X.; Reilly, J.E. The Chemical Composition of Fogs and Intercepted Clouds in the United States. Atmos. Res. 2002, 64, 29–40. [Google Scholar] [CrossRef]
- Shen, Z.; Arimoto, R.; Cao, J.; Zhang, R.; Li, X.; Du, N.; Okuda, T.; Nakao, S.; Tanaka, S. Seasonal Variations and Evidence for the Effectiveness of Pollution Controls on Water-Soluble Inorganic Species in Total Suspended Particulates and Fine Particulate Matter from Xi’an, China. J. Air Waste Manag. Assoc. 2008, 58, 1560–1570. [Google Scholar] [CrossRef]
- Zhang, Q.; Shen, Z.; Cao, J.; Zhang, R.; Zhang, L.; Huang, R.-J.; Zheng, C.; Wang, L.; Liu, S.; Xu, H.; et al. Variations in PM2.5, TSP, BC, and Trace Gases (NO2, SO2, and O3) between Haze and Non-Haze Episodes in Winter over Xi’an, China. Atmos. Environ. 2015, 112, 64–71. [Google Scholar] [CrossRef]
- Nieberding, F.; Breuer, B.; Braeckevelt, E.; Klemm, O.; Song, Q.; Zhang, Y. Fog Water Chemical Composition on Ailaoshan Mountain, Yunnan Province, SW China. Aerosol Air Qual. Res. 2018, 18, 37–48. [Google Scholar] [CrossRef]
- Wang, Y.; Guo, J.; Wang, T.; Ding, A.; Gao, J.; Zhou, Y.; Collett, J.L.; Wang, W. Influence of Regional Pollution and Sandstorms on the Chemical Composition of Cloud/Fog at the Summit of Mt. Taishan in Northern China. Atmos. Res. 2011, 99, 434–442. [Google Scholar] [CrossRef]
- Munger, J.W.; Jacob, D.J.; Waldman, J.M.; Hoffmann, M.R. Fogwater Chemistry in an Urban Atmosphere. J. Geophys. Res. 1983, 88, 5109–5121. [Google Scholar] [CrossRef]
- Ali, K.; Momin, G.A.; Tiwari, S.; Safai, P.D.; Chate, D.M.; Rao, P.S.P. Fog and Precipitation Chemistry at Delhi, North India. Atmos. Environ. 2004, 38, 4215–4222. [Google Scholar] [CrossRef]
- Gelencsér, A.; Sallai, M.; Krivácsy, Z.; Kiss, G.; Mészáros, E. Voltammetric Evidence for the Presence of Humic-like Substances in Fog Water. Atmos. Res. 2000, 54, 157–165. [Google Scholar] [CrossRef]
- Fisak, J.; Stoyanova, V.; Tesar, M.; Petrova, P.; Daskalova, N.; Tsacheva, T.; Marinov, M. The Pollutants in Rime and Fog Water and in Air at Milesovka Observatory (Czech Republic). Biologia 2009, 64, 492–495. [Google Scholar] [CrossRef]
Characteristic/Site | Geispolsheim | Erstein | Strasbourg | Cronenbourg |
---|---|---|---|---|
Coordinates | 48.51469° 7.64373° | 48.42273° 7.66326° | 48.58461° 7.75071° | 48.59449° 7.71621° |
Population | 7000 | 11,000 | 284,677 | 21,000 |
City area (Km2) | 21.9 | 36.2 | 78.26 | 7.03 |
Landscape topology | Suburban | Rural | Urban | Suburban |
Sampler position | 4 m AGL | 4 m AGL | 20 m AGL | 4 m AGL |
Cr | Mn | Fe | Ni | Cu | Zn | Cd | Hg | As | Pb | |
---|---|---|---|---|---|---|---|---|---|---|
Geispolsheim | 0.047 | 0.096 | 0.002 | 9.7 | 9.5 | 31.2 | 30.2 | 86.2 | 0.7 | 0.3 |
Erstein | 0.043 | 0.071 | 0.001 | 4.6 | 5.8 | 18.9 | 12.0 | 48.4 | 0.5 | 0.2 |
Strasbourg | 0.118 | 0.753 | 0.002 | 53.7 | 30.9 | 62.1 | 67.4 | 269.5 | 2.3 | 0.3 |
Cronenbourg | 0.071 | 0.215 | 0.002 | 11.9 | 12.3 | 27.1 | 24.3 | 54.1 | 0.7 | 0.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khoury, D.; Millet, M.; Jabali, Y.; Weissenberger, T.; Delhomme, O. Spatio-Temporal Evolution of Fogwater Chemistry in Alsace. Air 2024, 2, 229-246. https://doi.org/10.3390/air2030014
Khoury D, Millet M, Jabali Y, Weissenberger T, Delhomme O. Spatio-Temporal Evolution of Fogwater Chemistry in Alsace. Air. 2024; 2(3):229-246. https://doi.org/10.3390/air2030014
Chicago/Turabian StyleKhoury, Dani, Maurice Millet, Yasmine Jabali, Thomas Weissenberger, and Olivier Delhomme. 2024. "Spatio-Temporal Evolution of Fogwater Chemistry in Alsace" Air 2, no. 3: 229-246. https://doi.org/10.3390/air2030014
APA StyleKhoury, D., Millet, M., Jabali, Y., Weissenberger, T., & Delhomme, O. (2024). Spatio-Temporal Evolution of Fogwater Chemistry in Alsace. Air, 2(3), 229-246. https://doi.org/10.3390/air2030014