Revolutionizing Patient Safety: The Economic and Clinical Impact of Artificial Intelligence in Hospitals
Abstract
:1. Introduction
2. Applications of Artificial Intelligence in Patient Safety
2.1. Early Warning Systems
2.2. Predictive Analytics
2.3. Process Automation
2.4. Personalized Treatment
3. Economic Benefits of AI in Patient Safety
3.1. Cost Savings from Reduced Adverse Events
3.2. Improved Operational Efficiency
3.3. Enhanced Resource Utilization
4. Impact on Pharmacological Treatments, Diagnostic Testing, and Nosocomial Infections
4.1. Pharmacological Treatments
4.2. Diagnostic Testing
4.3. Nosocomial Infections
5. Challenges and Limitations
5.1. Data Quality and Availability
5.2. Ethical and Privacy Concerns
5.3. Clinical Integration and Acceptance
5.4. Dependence and Error Risks
6. Conclusions
7. Future Directions
7.1. Enhancing Data Quality and Interoperability
7.2. Addressing Ethical and Privacy Issues
7.3. Facilitating Clinical Adoption
7.4. Longitudinal Impact Studies
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yang, J.; Hao, S.; Huang, J.; Chen, T.; Liu, R.; Zhang, P.; Feng, M.; He, Y.; Xiao, W.; Hong, Y.; et al. The application of artificial intelligence in the management of sepsis. Med. Rev. 2023, 3, 369–380. [Google Scholar] [CrossRef] [PubMed]
- Muralitharan, S.; Nelson, W.; Di, S.; McGillion, M.; Devereaux, P.J.; Barr, N.G.; Petch, J. Machine Learning-Based Early Warning Systems for Clinical Deterioration: Systematic Scoping Review. J. Med. Internet Res. 2021, 23, e25187. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lim, L.; Gim, U.; Cho, K.; Yoo, D.; Ryu, H.G.; Lee, H.C. Real-time machine learning model to predict short-term mortality in critically ill patients: Development and international validation. Crit. Care 2024, 28, 76. [Google Scholar] [CrossRef] [PubMed]
- Meckawy, R.; Stuckler, D.; Mehta, A.; Al-Ahdal, T.; Doebbeling, B.N. Effectiveness of early warning systems in the detection of infectious diseases outbreaks: A systematic review. BMC Public Health 2022, 22, 2216. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Veldhuis, L.I.; Woittiez, N.J.C.; Nanayakkara, P.W.B.; Ludikhuize, J. Artificial Intelligence for the Prediction of In-Hospital Clinical Deterioration: A Systematic Review. Crit. Care Explor. 2022, 4, e0744. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Huang, Y.; Talwar, A.; Chatterjee, S.; Aparasu, R.R. Application of machine learning in predicting hospital readmissions: A scoping review of the literature. BMC Med. Res. Methodol. 2021, 21, 96. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhang, Z. Predictive analytics in the era of big data: Opportunities and challenges. Ann. Transl. Med. 2020, 8, 68. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Davis, S.; Zhang, J.; Lee, I.; Rezaei, M.; Greiner, R.; McAlister, F.A.; Padwal, R. Effective hospital readmission prediction models using machine-learned features. BMC Health Serv Res 2022, 22, 1415. [Google Scholar] [CrossRef]
- Wu, Y.; Li, L.; Xin, B.; Hu, Q.; Dong, X.; Li, Z. Application of machine learning in personalized medicine. Intell. Pharm. 2023, 1, 152–156. [Google Scholar] [CrossRef]
- Johnson, K.B.; Wei, W.Q.; Weeraratne, D.; Frisse, M.E.; Misulis, K.; Rhee, K.; Zhao, J.; Snowdon, J.L. Precision Medicine, AI, and the Future of Personalized Health Care. Clin. Transl. Sci. 2021, 14, 86–93. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Aoun, M.; Sandhu, A.K. Understanding the Impact of AI-Driven Automation on the Workflow of Radiologists in Emergency Care Settings. J. Intell. Connect. Emerg. Technol. 2019, 4, 1–15. Available online: https://questsquare.org/index.php/JOUNALICET/article/view/11 (accessed on 1 December 2024).
- Dubey, K.; Bhowmik, M.; Pawar, A.; Patil, M.K.; Deshpande, P.A.; Khartad, S.S. Enhancing Operational Efficiency in Healthcare with AI-Powered Management. In Proceedings of the 2023 International Conference on Artificial Intelligence for Innovations in Healthcare Industries (ICAIIHI), Raipur, India, 29–30 December 2023; pp. 1–7. [Google Scholar] [CrossRef]
- Johnson, A.; Pollard, T.; Shen, L.; Lehman, L.-W.H.; Feng, M.; Ghassemi, M.; Moody, B.; Szolovits, P.; Celi, L.A.; Mark, R.G. MIMIC-III, a freely accessible critical care database. Sci. Data 2016, 3, 160035. [Google Scholar] [CrossRef] [PubMed]
- Alowais, S.A.; Alghamdi, S.S.; Alsuhebany, N.; Alqahtani, T.; Alshaya, A.I.; Almohareb, S.N.; Aldairem, A.; Alrashed, M.; Bin Saleh, K.; Badreldin, H.A.; et al. Revolutionizing healthcare: The role of artificial intelligence in clinical practice. BMC Med. Educ. 2023, 23, 689. [Google Scholar] [CrossRef] [PubMed]
- Naik, K.; Goyal, R.K.; Foschini, L.; Chak, C.W.; Thielscher, C.; Zhu, H.; Lu, J.; Lehár, J.; Pacanoswki, M.A.; Terranova, N.; et al. Current Status and Future Directions: The Application of Artificial Intelligence/Machine Learning for Precision Medicine. Clin. Pharmacol. Ther. 2024, 115, 673–686. [Google Scholar] [CrossRef]
- MacEachern, S.J.; Forkert, N.D. Machine learning for precision medicine. Genome 2021, 64, 416–425. [Google Scholar] [CrossRef] [PubMed]
- Singareddy, S.; Sn, V.P.; Jaramillo, A.P.; Yasir, M.; Iyer, N.; Hussein, S.; Nath, T.S. Artificial Intelligence and Its Role in the Management of Chronic Medical Conditions: A Systematic Review. Cureus 2023, 15, e46066. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Byrne, D.W.; Domenico, H.J.; Moore, R.P. Artificial Intelligence for Improved Patient Outcomes-The Pragmatic Randomized Controlled Trial Is the Secret Sauce. Korean J. Radiol. 2024, 25, 123–125. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Crisafulli, S.; Ciccimarra, F.; Bellitto, C.; Carollo, M.; Carrara, E.; Stagi, L.; Triola, R.; Capuano, A.; Chiamulera, C.; Moretti, U.; et al. Artificial intelligence for optimizing benefits and minimizing risks of pharmacological therapies: Challenges and opportunities. Front. Drug Saf. Regul. 2024, 4, 1356405. [Google Scholar] [CrossRef]
- Najjar, R. Redefining Radiology: A Review of Artificial Intelligence Integration in Medical Imaging. Diagnostics 2023, 13, 2760. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Radaelli, D.; Di Maria, S.; Jakovski, Z.; Alempijevic, D.; Al-Habash, I.; Concato, M.; Bolcato, M.; D’Errico, S. Advancing Patient Safety: The Future of Artificial Intelligence in Mitigating Healthcare-Associated Infections: A Systematic Review. Healthcare 2024, 12, 1996. [Google Scholar] [CrossRef]
- Arzilli, G.; De Vita, E.; Pasquale, M.; Carloni, L.M.; Pellegrini, M.; Di Giacomo, M.; Esposito, E.; Porretta, A.D.; Rizzo, C. Innovative Techniques for Infection Control and Surveillance in Hospital Settings and Long-Term Care Facilities: A Scoping Review. Antibiotics 2024, 13, 77. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yang, L.; Lu, S.; Zhou, L. The Implications of Artificial Intelligence on Infection Prevention and Control: Current Progress and Future Perspectives. China CDC Wkly. 2024, 6, 901–904. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Nguemeleu, E.T.; Beogo, I.; Sia, D.; Kilpatrick, K.; Séguin, C.; Baillot, A.; Jabbour, M.; Parisien, N.; Robins, S.; Boivin, S. Economic analysis of healthcare-associated infection prevention and control interventions in medical and surgical units: Systematic review using a discounting approach. J. Hosp. Infect. 2020, 106, 134–154. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bates, D.W.; Levine, D.; Syrowatka, A.; Kuznetsova, M.; Craig, K.J.T.; Rui, A.; Jackson, G.P.; Rhee, K. The potential of artificial intelligence to improve patient safety: A scoping review. NPJ Digit. Med. 2021, 4, 54. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zwerwer, L.R.; van der Pol, S.; Zacharowski, K.; Postma, M.J.; Kloka, J.; Friedrichson, B.; van Asselt, A.D.I. The value of artificial intelligence for the treatment of mechanically ventilated intensive care unit patients: An early health technology assessment. J. Crit. Care 2024, 82, 154802. [Google Scholar] [CrossRef] [PubMed]
- Khanna, N.N.; Maindarkar, M.A.; Viswanathan, V.; Fernandes, J.F.E.; Paul, S.; Bhagawati, M.; Ahluwalia, P.; Ruzsa, Z.; Sharma, A.; Kolluri, R.; et al. Economics of Artificial Intelligence in Healthcare: Diagnosis vs. Treatment. Healthcare 2022, 10, 2493. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Khosravi, M.; Zare, Z.; Mojtabaeian, S.M.; Izadi, R. Artificial Intelligence and Decision-Making in Healthcare: A Thematic Analysis of a Systematic Review of Reviews. Health Serv. Res. Manag. Epidemiol. 2024, 11, 23333928241234863. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ramezani, M.; Takian, A.; Bakhtiari, A.; Rabiee, H.R.; Fazaeli, A.A.; Sazgarnejad, S. The application of artificial intelligence in health financing: A scoping review. Cost Eff. Resour. Alloc. 2023, 21, 83. [Google Scholar] [CrossRef]
- Davenport, T.; Kalakota, R. The potential for artificial intelligence in healthcare. Future Healthc. J. 2019, 6, 94–98. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Rahimi, A.K.; Pienaar, O.; Ghadimi, M.; Canfell, O.J.; Pole, J.D.; Shrapnel, S.; van der Vegt, A.H.; Sullivan, C. Implementing AI in Hospitals to Achieve a Learning Health System: Systematic Review of Current Enablers and Barriers. J. Med. Internet Res. 2024, 26, e49655. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bhagat, S.V.; Kanyal, D. Navigating the Future: The Transformative Impact of Artificial Intelligence on Hospital Management—A Comprehensive Review. Cureus 2024, 16, e54518. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ebugosi, Q.-M.; Olaboye, J. Optimizing healthcare resource allocation through data-driven demographic and psychographic analysis. Comput. Sci. IT Res. J. 2024, 5, 1488–1504. [Google Scholar] [CrossRef]
- Sheng, J.Q.; Hu, P.J.; Liu, X.; Huang, T.S.; Chen, Y.H. Predictive Analytics for Care and Management of Patients with Acute Diseases: Deep Learning-Based Method to Predict Crucial Complication Phenotypes. J. Med. Internet Res. 2021, 23, e18372. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lindroth, H.; Nalaie, K.; Raghu, R.; Ayala, I.N.; Busch, C.; Bhattacharyya, A.; Franco, P.M.; Diedrich, D.A.; Pickering, B.W.; Herasevich, V. Applied Artificial Intelligence in Healthcare: A Review of Computer Vision Technology Application in Hospital Settings. J. Imaging 2024, 10, 81. [Google Scholar] [CrossRef]
- Francis, J.; Varghese, J.; Thomas, A. Impact of artificial intelligence on healthcare. Int. J. Adv. Med. 2023, 10, 10. [Google Scholar] [CrossRef]
- Vora, L.K.; Gholap, A.D.; Jetha, K.; Thakur, R.R.S.; Solanki, H.K.; Chavda, V.P. Artificial Intelligence in Pharmaceutical Technology and Drug Delivery Design. Pharmaceutics 2023, 15, 1916. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ali, K.A.; Mohin, S.; Mondal, P.; Goswami, S.; Ghosh, S.; Choudhuri, S. Influence of artificial intelligence in modern pharmaceutical formulation and drug development. Future J. Pharm. Sci. 2024, 10, 53. [Google Scholar] [CrossRef]
- Danysz, K.; Cicirello, S.; Mingle, E.; Assuncao, B.; Tetarenko, N.; Mockute, R.; Abatemarco, D.; Widdowson, M.; Desai, S. Artificial Intelligence and the Future of the Drug Safety Professional. Drug Saf. 2019, 42, 491–497. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Carini, C.; Seyhan, A.A. Tribulations and future opportunities for artificial intelligence in precision medicine. J. Transl. Med. 2024, 22, 411. [Google Scholar] [CrossRef]
- Meşe, İ.; Taşlıçay, C.A.; Kuzan, B.N.; Kuzan, T.Y.; Sivrioğlu, A.K. Educating the next generation of radiologists: A comparative report of ChatGPT and e-learning resources. Diagn. Interv. Radiol. 2024, 30, 163–174. [Google Scholar] [CrossRef]
- Brady, A.P.; Allen, B.; Chong, J.; Kotter, E.; Kottler, N.; Mongan, J.; Oakden-Rayner, L.; dos Santos, D.P.; Tang, A.; Wald, C.; et al. Developing, purchasing, implementing and monitoring AI tools in radiology: Practical considerations. A multi-society statement from the ACR, CAR, ESR, RANZCR & RSNA. Insights Imaging 2024, 15, 16. [Google Scholar] [CrossRef] [PubMed]
- Ouanes, K.; Farhah, N. Effectiveness of Artificial Intelligence (AI) in Clinical Decision Support Systems and Care Delivery. J. Med. Syst. 2024, 48, 74. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Jia, S.; Li, Z.; Duan, Y.; Tao, G.; Zhao, Z. A Comprehensive Review of Artificial Intelligence in Prevention and Treatment of COVID-19 Pandemic. Front. Genet. 2022, 13, 845305. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Baddal, B.; Taner, F.; Ozsahin, D.U. Harnessing of Artificial Intelligence for the Diagnosis and Prevention of Hospital-Acquired Infections: A Systematic Review. Diagnostics 2024, 14, 484. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhang, X.; Zhang, D.; Zhang, X.; Zhang, X. Artificial intelligence applications in the diagnosis and treatment of bacterial infections. Front. Microbiol. 2024, 15, 1449844. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Blatnik, P.; Bojnec, Š. Analysis of impact of nosocomial infections on cost of patient hospitalisation. Cent. Eur. J. Public Health 2023, 31, 90–96. [Google Scholar] [CrossRef] [PubMed]
- Ranjbar, A.; Ravn, J. Data Quality in Healthcare for the Purpose of Artificial Intelligence: A Case Study on ECG Digitalization. Stud. Health Technol. Inform. 2023, 305, 471–474. [Google Scholar] [CrossRef] [PubMed]
- Klooster, I.T.; Kip, H.; van Gemert-Pijnen, L.; Crutzen, R.; Kelders, S. A systematic review on eHealth technology personalization approaches. iScience 2024, 27, 110771. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Karalis, V.D. The Integration of Artificial Intelligence into Clinical Practice. Appl. Biosci. 2024, 3, 14–44. [Google Scholar] [CrossRef]
- Petersson, L.; Larsson, I.; Nygren, J.M.; Nilsen, P.; Neher, M.; Reed, J.E.; Tyskbo, D.; Svedberg, P. Challenges to implementing artificial intelligence in healthcare: A qualitative interview study with healthcare leaders in Sweden. BMC Health Serv. Res. 2022, 22, 850. [Google Scholar] [CrossRef]
- Kolluri, V. Ethical Considerations in the Use of AI in Healthcare: Discussing the Ethical Dilemmas and Considerations of Implementing AI in Patient Care and Decision-Making Venkateswaranaidu Kolluri. J. Emerg. Technol. Innov. Res. 2024, 11, i330–i335. [Google Scholar]
- Murdoch, B. Privacy and artificial intelligence: Challenges for protecting health information in a new era. BMC Med. Ethics 2021, 22, 122. [Google Scholar] [CrossRef] [PubMed]
- MacIntyre, M.R.; Cockerill, R.G.; Mirza, O.F.; Appel, J.M. Ethical considerations for the use of artificial intelligence in medical decision-making capacity assessments. Psychiatry Res. 2023, 328, 115466. [Google Scholar] [CrossRef] [PubMed]
- Abujaber, A.A.; Nashwan, A.J. Ethical framework for artificial intelligence in healthcare research: A path to integrity. World J. Methodol. 2024, 14, 94071. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Macri, R.; Roberts, S.L. The Use of Artificial Intelligence in Clinical Care: A Values-Based Guide for Shared Decision Making. Curr. Oncol. 2023, 30, 2178–2186. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ranjbar, A.; Mork, E.W.; Ravn, J.; Brøgger, H.; Myrseth, P.; Østrem, H.P.; Hallock, H. Managing Risk and Quality of AI in Healthcare: Are Hospitals Ready for Implementation? Risk Manag. Healthc. Policy 2024, 17, 877–882. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Choudhury, A.; Asan, O. Role of Artificial Intelligence in Patient Safety Outcomes: Systematic Literature Review. JMIR Med. Inform. 2020, 8, e18599. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bajwa, J.; Munir, U.; Nori, A.; Williams, B. Artificial intelligence in healthcare: Transforming the practice of medicine. Future Healthc. J. 2021, 8, e188–e194. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Aldoseri, A.; Al-Khalifa, K.N.; Hamouda, A.M. Re-Thinking Data Strategy and Integration for Artificial Intelligence: Concepts, Opportunities, and Challenges. Appl. Sci. 2023, 13, 7082. [Google Scholar] [CrossRef]
- Gerke, S.; Minssen, T.; Cohen, G. Ethical and legal challenges of artificial intelligence-driven healthcare. In Artificial Intelligence in Healthcare; Elsevier: Amsterdam, The Netherlands, 2020; pp. 295–336. [Google Scholar] [CrossRef] [PubMed Central]
- Yim, D.; Khuntia, J.; Parameswaran, V.; Meyers, A. Preliminary Evidence of the Use of Generative AI in Health Care Clinical Services: Systematic Narrative Review. JMIR Med. Inform. 2024, 12, e52073. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Charow, R.; Jeyakumar, T.; Younus, S.; Dolatabadi, E.; Salhia, M.; Al-Mouaswas, D.; Anderson, M.; Balakumar, S.; Clare, M.; Dhalla, A.; et al. Artificial Intelligence Education Programs for Health Care Professionals: Scoping Review. JMIR Med. Educ. 2021, 7, e31043. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mukherjee, J.; Sharma, R.; Dutta, P.; Bhunia, B. Artificial intelligence in healthcare: A mastery. Biotechnol Genet Eng Rev. 2024, 40, 1659–1708. [Google Scholar] [CrossRef] [PubMed]
- Al Meslamani, A.Z. Beyond implementation: The long-term economic impact of AI in healthcare. J. Med. Econ. 2023, 26, 1566–1569. [Google Scholar] [CrossRef] [PubMed]
- Epelde, F. Optimizing Cardiac Rehabilitation in Heart Failure: Comprehensive Insights, Barriers, and Future Strategies. Medicina 2024, 60, 1583. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Caldwell, H.A.T.; Yusuf, J.; Carrea, C.; Conrad, P.; Embrett, M.; Fierlbeck, K.; Hajizadeh, M.; Kirk, S.F.L.; Rothfus, M.; Sampalli, T.; et al. Strategies and indicators to integrate health equity in health service and delivery systems in high-income countries: A scoping review. JBI Evid. Synth. 2024, 22, 949–1070. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Nadarzynski, T.; Knights, N.; Husbands, D.; Graham, C.A.; Llewellyn, C.D.; Buchanan, T.; Montgomery, I.; Ridge, D. Achieving health equity through conversational AI: A roadmap for design and implementation of inclusive chatbots in healthcare. PLoS Digit. Health 2024, 3, e0000492. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Epelde, F. Revolutionizing Patient Safety: The Economic and Clinical Impact of Artificial Intelligence in Hospitals. Hospitals 2024, 1, 185-194. https://doi.org/10.3390/hospitals1020015
Epelde F. Revolutionizing Patient Safety: The Economic and Clinical Impact of Artificial Intelligence in Hospitals. Hospitals. 2024; 1(2):185-194. https://doi.org/10.3390/hospitals1020015
Chicago/Turabian StyleEpelde, Francisco. 2024. "Revolutionizing Patient Safety: The Economic and Clinical Impact of Artificial Intelligence in Hospitals" Hospitals 1, no. 2: 185-194. https://doi.org/10.3390/hospitals1020015
APA StyleEpelde, F. (2024). Revolutionizing Patient Safety: The Economic and Clinical Impact of Artificial Intelligence in Hospitals. Hospitals, 1(2), 185-194. https://doi.org/10.3390/hospitals1020015