Epigenomic Reprogramming in Gout
Abstract
:1. Introduction
General Introduction About Gout (Incidence, Clinical Manifestation, Associated Comorbidities, Pathophysiology)
2. Local Versus Systemic Inflammation
3. Epigenetics in Gout
3.1. DNA Methylation
3.2. Histone Modifications
3.3. Non-Coding RNAs (MicroRNA and Long Non-Coding RNA)
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ragab, G.; Elshahaly, M.; Bardin, T. Gout: An Old Disease in New Perspective-A Review. J. Adv. Res. 2017, 8, 495–511. [Google Scholar] [CrossRef] [PubMed]
- Tao, H.; Mo, Y.; Liu, W.; Wang, H. A Review on Gout: Looking Back and Looking Ahead. Int. Immunopharmacol. 2023, 117, 109977. [Google Scholar] [CrossRef] [PubMed]
- Nuki, G.; Simkin, P.A. A Concise History of Gout and Hyperuricemia and Their Treatment. Arthritis Res. Ther. 2006, 8 (Suppl. S1), S1. [Google Scholar] [CrossRef] [PubMed]
- Kuo, C.-F.; Grainge, M.J.; Zhang, W.; Doherty, M. Global Epidemiology of Gout: Prevalence, Incidence and Risk Factors. Nat. Rev. Rheumatol. 2015, 11, 649–662. [Google Scholar] [CrossRef] [PubMed]
- Grassi, D.; Ferri, L.; Desideri, G.; Di Giosia, P.; Cheli, P.; Del Pinto, R.; Properzi, G.; Ferri, C. Chronic Hyperuricemia, Uric Acid Deposit and Cardiovascular Risk. Curr. Pharm. Des. 2013, 19, 2432–2438. [Google Scholar] [CrossRef] [PubMed]
- Saeed, S.; Quintin, J.; Kerstens, H.H.D.; Rao, N.A.; Aghajanirefah, A.; Matarese, F.; Cheng, S.-C.; Ratter, J.; Berentsen, K.; van der Ent, M.A.; et al. Epigenetic Programming of Monocyte-to-Macrophage Differentiation and Trained Innate Immunity. Science 2014, 345, 1251086. [Google Scholar] [CrossRef]
- Joosten, L.A.B.; Crişan, T.O.; Bjornstad, P.; Johnson, R.J. Asymptomatic Hyperuricaemia: A Silent Activator of the Innate Immune System. Nat. Rev. Rheumatol. 2020, 16, 75–86. [Google Scholar] [CrossRef]
- Dalbeth, N.; Merriman, T.R.; Stamp, L.K. Gout. Lancet 2016, 388, 2039–2052. [Google Scholar] [CrossRef]
- Hainer, B.L.; Matheson, E.; Wilkes, R.T. Diagnosis, Treatment, and Prevention of Gout. Am. Fam. Physician 2014, 90, 831–836. [Google Scholar]
- Zhang, W.-Z. Why Does Hyperuricemia Not Necessarily Induce Gout? Biomolecules 2021, 11, 280. [Google Scholar] [CrossRef]
- Bardin, T.; Richette, P. Definition of Hyperuricemia and Gouty Conditions. Curr. Opin. Rheumatol. 2014, 26, 186–191. [Google Scholar] [CrossRef] [PubMed]
- Schlesinger, N. Diagnosis of Gout: Clinical, Laboratory, and Radiologic Findings. Am. J. Manag. Care 2005, 11 (Suppl. S15), S443–S450; quiz S465–S468. [Google Scholar] [PubMed]
- Wu, X.W.; Muzny, D.M.; Lee, C.C.; Caskey, C.T. Two Independent Mutational Events in the Loss of Urate Oxidase during Hominoid Evolution. J. Mol. Evol. 1992, 34, 78–84. [Google Scholar] [CrossRef] [PubMed]
- Varela-Echavarría, A.; Montes de Oca-Luna, R.; Barrera-Saldaña, H.A. Uricase Protein Sequences: Conserved during Vertebrate Evolution but Absent in Humans. FASEB J. 1988, 2, 3092–3096. [Google Scholar] [CrossRef] [PubMed]
- Richette, P.; Bardin, T. Gout. Lancet 2010, 375, 318–328. [Google Scholar] [CrossRef]
- George, C.; Leslie, S.W.; Minter, D.A. Hyperuricemia. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar]
- Pineda, C.; Amezcua-Guerra, L.M.; Solano, C.; Rodriguez-Henríquez, P.; Hernández-Díaz, C.; Vargas, A.; Hofmann, F.; Gutiérrez, M. Joint and Tendon Subclinical Involvement Suggestive of Gouty Arthritis in Asymptomatic Hyperuricemia: An Ultrasound Controlled Study. Arthritis Res. Ther. 2011, 13, R4. [Google Scholar] [CrossRef]
- Inaba, S.; Sautin, Y.; Garcia, G.E.; Johnson, R.J. What Can Asymptomatic Hyperuricaemia and Systemic Inflammation in the Absence of Gout Tell Us? Rheumatology 2013, 52, 963–965. [Google Scholar] [CrossRef]
- Bardin, T.; Richette, P. Impact of Comorbidities on Gout and Hyperuricaemia: An Update on Prevalence and Treatment Options. BMC Med. 2017, 15, 123. [Google Scholar] [CrossRef]
- Pillinger, M.H.; Goldfarb, D.S.; Keenan, R.T. Gout and Its Comorbidities. Bull. NYU Hosp. Jt. Dis. 2010, 68, 199–203. [Google Scholar]
- Ichikawa, N.; Taniguchi, A.; Urano, W.; Nakajima, A.; Yamanaka, H. Comorbidities in Patients with Gout. Nucleosides Nucleotides Nucleic Acids 2011, 30, 1045–1050. [Google Scholar] [CrossRef]
- Yu, W.; Cheng, J.-D. Uric Acid and Cardiovascular Disease: An Update From Molecular Mechanism to Clinical Perspective. Front. Pharmacol. 2020, 11, 582680. [Google Scholar] [CrossRef] [PubMed]
- Kimura, Y.; Tsukui, D.; Kono, H. Uric Acid in Inflammation and the Pathogenesis of Atherosclerosis. Int. J. Mol. Sci. 2021, 22, 12394. [Google Scholar] [CrossRef] [PubMed]
- Maiuolo, J.; Oppedisano, F.; Gratteri, S.; Muscoli, C.; Mollace, V. Regulation of Uric Acid Metabolism and Excretion. Int. J. Cardiol. 2016, 213, 8–14. [Google Scholar] [CrossRef] [PubMed]
- Deng, H.; Zhang, X.; Cheng, N.; Zhang, J.; Song, C.; Sun, Y.; Hou, Z.; Li, Y.; Wang, Q.; Yin, J.; et al. Asymptomatic Hyperuricemia Associated with Increased Risk of Nephrolithiasis: A Cross-Sectional Study. BMC Public Health 2023, 23, 1525. [Google Scholar] [CrossRef] [PubMed]
- Badii, M.; Gaal, O.I.; Cleophas, M.C.; Klück, V.; Davar, R.; Habibi, E.; Keating, S.T.; Novakovic, B.; Helsen, M.M.; Dalbeth, N.; et al. Urate-Induced Epigenetic Modifications in Myeloid Cells. Arthritis Res. Ther. 2021, 23, 202. [Google Scholar] [CrossRef]
- Liu, Z.; Crișan, T.O.; Qi, C.; Gupta, M.K.; Liu, X.; Moorlag, S.J.C.F.M.; Koeken, V.A.C.M.; de Bree, L.C.J.; Mourits, V.P.; Gao, X.; et al. Sex-Specific Epigenetic Signatures of Circulating Urate and Its Increase after BCG Vaccination. Res. Sq. 2024, rs.3.rs-4498597. [Google Scholar] [CrossRef]
- Netea, M.G.; Quintin, J.; van der Meer, J.W.M. Trained Immunity: A Memory for Innate Host Defense. Cell Host Microbe 2011, 9, 355–361. [Google Scholar] [CrossRef]
- Netea, M.G.; Joosten, L.A.B.; Latz, E.; Mills, K.H.G.; Natoli, G.; Stunnenberg, H.G.; O’Neill, L.A.J.; Xavier, R.J. Trained Immunity: A Program of Innate Immune Memory in Health and Disease. Science 2016, 352, aaf1098. [Google Scholar] [CrossRef]
- Bekkering, S.; Domínguez-Andrés, J.; Joosten, L.A.B.; Riksen, N.P.; Netea, M.G. Trained Immunity: Reprogramming Innate Immunity in Health and Disease. Annu. Rev. Immunol. 2021, 39, 667–693. [Google Scholar] [CrossRef]
- Mitroulis, I.; Ruppova, K.; Wang, B.; Chen, L.-S.; Grzybek, M.; Grinenko, T.; Eugster, A.; Troullinaki, M.; Palladini, A.; Kourtzelis, I.; et al. Modulation of Myelopoiesis Progenitors Is an Integral Component of Trained Immunity. Cell 2018, 172, 147–161. [Google Scholar] [CrossRef]
- Cheng, S.-C.; Quintin, J.; Cramer, R.A.; Shepardson, K.M.; Saeed, S.; Kumar, V.; Giamarellos-Bourboulis, E.J.; Martens, J.H.A.; Rao, N.A.; Aghajanirefah, A.; et al. mTOR- and HIF-1α-Mediated Aerobic Glycolysis as Metabolic Basis for Trained Immunity. Science 2014, 345, 1250684. [Google Scholar] [CrossRef] [PubMed]
- Al Aboud, N.M.; Tupper, C.; Jialal, I. Genetics, Epigenetic Mechanism. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar]
- Zhang, B.; Moorlag, S.J.; Dominguez-Andres, J.; Bulut, Ö.; Kilic, G.; Liu, Z.; van Crevel, R.; Xu, C.-J.; Joosten, L.A.; Netea, M.G.; et al. Single-Cell RNA Sequencing Reveals Induction of Distinct Trained-Immunity Programs in Human Monocytes. J. Clin. Investig. 2022, 132, e147719. [Google Scholar] [CrossRef] [PubMed]
- Crișan, T.O.; Cleophas, M.C.P.; Oosting, M.; Lemmers, H.; Toenhake-Dijkstra, H.; Netea, M.G.; Jansen, T.L.; Joosten, L.A.B. Soluble Uric Acid Primes TLR-Induced Proinflammatory Cytokine Production by Human Primary Cells via Inhibition of IL-1Ra. Ann. Rheum. Dis. 2016, 75, 755–762. [Google Scholar] [CrossRef] [PubMed]
- Galozzi, P.; Bindoli, S.; Doria, A.; Oliviero, F.; Sfriso, P. Autoinflammatory Features in Gouty Arthritis. J. Clin. Med. 2021, 10, 1880. [Google Scholar] [CrossRef]
- Martin, W.J.; Walton, M.; Harper, J. Resident Macrophages Initiating and Driving Inflammation in a Monosodium Urate Monohydrate Crystal-Induced Murine Peritoneal Model of Acute Gout. Arthritis Rheum. 2009, 60, 281–289. [Google Scholar] [CrossRef]
- Yagnik, D.R.; Evans, B.J.; Florey, O.; Mason, J.C.; Landis, R.C.; Haskard, D.O. Macrophage Release of Transforming Growth Factor Beta1 during Resolution of Monosodium Urate Monohydrate Crystal-Induced Inflammation. Arthritis Rheum. 2004, 50, 2273–2280. [Google Scholar] [CrossRef]
- Cleophas, M.C.P.; Crişan, T.O.; Klück, V.; Hoogerbrugge, N.; Netea-Maier, R.T.; Dinarello, C.A.; Netea, M.G.; Joosten, L. Romidepsin Suppresses Monosodium Urate Crystal-Induced Cytokine Production through Upregulation of Suppressor of Cytokine Signaling 1 Expression. Arthritis Res. Ther. 2019, 21, 50. [Google Scholar] [CrossRef]
- Cabău, G.; Gaal, O.; Badii, M.; Nica, V.; Mirea, A.-M.; Hotea, I.; Pamfil, C.; Popp, R.A.; Netea, M.G.; HINT-consortium; et al. Hyperuricemia Remodels the Serum Proteome toward a Higher Inflammatory State. iScience 2023, 26, 107909. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhao, M.; Pu, Z.; Xu, G.; Li, X. Relationship between Oxidative Stress and Inflammation in Hyperuricemia: Analysis Based on Asymptomatic Young Patients with Primary Hyperuricemia. Medicine 2018, 97, e13108. [Google Scholar] [CrossRef]
- Liang, W.Y.; Zhu, X.Y.; Zhang, J.W.; Feng, X.R.; Wang, Y.C.; Liu, M.L. Uric Acid Promotes Chemokine and Adhesion Molecule Production in Vascular Endothelium via Nuclear Factor-Kappa B Signaling. Nutr. Metab. Cardiovasc. Dis. 2015, 25, 187–194. [Google Scholar] [CrossRef]
- Ea, H.-K.; Kischkel, B.; Chirayath, T.W.; Klück, V.; Aparicio, C.; Loeung, H.-U.; Manivet, P.; Jansen, T.; Zarka, M.; Lioté, F.; et al. Systemic Inflammatory Cytokine Profiles in Patients with Gout during Flare, Intercritical and Treat-to-Target Phases: TNFSF14 as New Biomarker. Ann. Rheum. Dis. 2024, 83, 945–956. [Google Scholar] [CrossRef] [PubMed]
- Lopez, D.; Dwivedi, G.; Nossent, J.; Preen, D.B.; Murray, K.; Raymond, W.; Inderjeeth, C.; Keen, H.I. Risk of Major Adverse Cardiovascular Event Following Incident Hospitalization for Acute Gout: A Western Australian Population-Level Linked Data Study. ACR Open Rheumatol. 2023, 5, 298–304. [Google Scholar] [CrossRef] [PubMed]
- Dahl, C.P.; Gullestad, L.; Fevang, B.; Holm, A.M.; Landrø, L.; Vinge, L.E.; Fiane, A.E.; Sandberg, W.J.; Otterdal, K.; Frøland, S.S.; et al. Increased Expression of LIGHT/TNFSF14 and Its Receptors in Experimental and Clinical Heart Failure. Eur. J. Heart Fail 2008, 10, 352–359. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.-Z.; Fang, L.-B.; Hjelmstrom, P.; Gao, X.-G. Enhanced Plasma Levels of LIGHT in Patients with Acute Atherothrombotic Stroke. Acta Neurol. Scand 2008, 118, 256–259. [Google Scholar] [CrossRef] [PubMed]
- Lind, L.; Ärnlöv, J.; Lindahl, B.; Siegbahn, A.; Sundström, J.; Ingelsson, E. Use of a Proximity Extension Assay Proteomics Chip to Discover New Biomarkers for Human Atherosclerosis. Atherosclerosis 2015, 242, 205–210. [Google Scholar] [CrossRef]
- Georgel, P.T.; Georgel, P. Where Epigenetics Meets Food Intake: Their Interaction in the Development/Severity of Gout and Therapeutic Perspectives. Front. Immunol. 2021, 12, 752359. [Google Scholar] [CrossRef]
- Cabău, G.; Crișan, T.O.; Klück, V.; Popp, R.A.; Joosten, L.A.B. Urate-Induced Immune Programming: Consequences for Gouty Arthritis and Hyperuricemia. Immunol. Rev. 2020, 294, 92–105. [Google Scholar] [CrossRef]
- Reginato, A.M.; Mount, D.B.; Yang, I.; Choi, H.K. The Genetics of Hyperuricaemia and Gout. Nat. Rev. Rheumatol. 2012, 8, 610–621. [Google Scholar] [CrossRef]
- Major, T.J.; Takei, R.; Matsuo, H.; Leask, M.P.; Topless, R.K.; Shirai, Y.; Li, Z.; Ji, A.; Cadzow, M.J.; Sumpter, N.A.; et al. A Genome-Wide Association Analysis of 2,622,830 Individuals Reveals New Pathogenic Pathways in Gout. Nat Genet. 2024. Epub ahead of print. [Google Scholar] [CrossRef]
- Netea, M.G.; Domínguez-Andrés, J.; Barreiro, L.B.; Chavakis, T.; Divangahi, M.; Fuchs, E.; Joosten, L.A.B.; van der Meer, J.W.M.; Mhlanga, M.M.; Mulder, W.J.M.; et al. Defining Trained Immunity and Its Role in Health and Disease. Nat. Rev. Immunol. 2020, 20, 375–388. [Google Scholar] [CrossRef]
- Kurtz, J. Specific Memory within Innate Immune Systems. Trends Immunol. 2005, 26, 186–192. [Google Scholar] [CrossRef] [PubMed]
- Netea, M.G.; Schlitzer, A.; Placek, K.; Joosten, L.A.B.; Schultze, J.L. Innate and Adaptive Immune Memory: An Evolutionary Continuum in the Host’s Response to Pathogens. Cell Host Microbe 2019, 25, 13–26. [Google Scholar] [CrossRef] [PubMed]
- Kleinnijenhuis, J.; Quintin, J.; Preijers, F.; Joosten, L.A.B.; Ifrim, D.C.; Saeed, S.; Jacobs, C.; van Loenhout, J.; de Jong, D.; Stunnenberg, H.G.; et al. Bacille Calmette-Guerin Induces NOD2-Dependent Nonspecific Protection from Reinfection via Epigenetic Reprogramming of Monocytes. Proc. Natl. Acad. Sci. USA 2012, 109, 17537–17542. [Google Scholar] [CrossRef] [PubMed]
- Moore, L.D.; Le, T.; Fan, G. DNA Methylation and Its Basic Function. Neuropsychopharmacology 2013, 38, 23–38. [Google Scholar] [CrossRef]
- Zhong, X.; Peng, Y.; Yao, C.; Qing, Y.; Yang, Q.; Guo, X.; Xie, W.; Zhao, M.; Cai, X.; Zhou, J.-G. Association of DNA Methyltransferase Polymorphisms with Susceptibility to Primary Gouty Arthritis. Biomed. Rep. 2016, 5, 467–472. [Google Scholar] [CrossRef]
- Li, B.; Chen, X.; Jiang, Y.; Yang, Y.; Zhong, J.; Zhou, C.; Hu, H.; Duan, S. CCL2 Promoter Hypomethylation Is Associated with Gout Risk in Chinese Han Male Population. Immunol. Lett. 2017, 190, 15–19. [Google Scholar] [CrossRef]
- Zhu, Z.; Meng, W.; Liu, P.; Zhu, X.; Liu, Y.; Zou, H. DNA Hypomethylation of a Transcription Factor Binding Site within the Promoter of a Gout Risk Gene NRBP1 Upregulates Its Expression by Inhibition of TFAP2A Binding. Clin. Epigenetics 2017, 9, 99. [Google Scholar] [CrossRef]
- Yang, Y.; Chen, X.; Hu, H.; Jiang, Y.; Yu, H.; Dai, J.; Mao, Y.; Duan, S. Elevated UMOD Methylation Level in Peripheral Blood Is Associated with Gout Risk. Sci. Rep. 2017, 7, 11196. [Google Scholar] [CrossRef]
- Ying, X.; Chen, Y.; Zheng, Z.; Duan, S. Gout in Males: A Possible Role for COMT Hypomethylation. Clin. Rheumatol. 2019, 38, 2865–2871. [Google Scholar] [CrossRef]
- Eklöf, A.C.; Holtbäck, U.; Sundelöf, M.; Chen, S.; Aperia, A. Inhibition of COMT Induces Dopamine-Dependent Natriuresis and Inhibition of Proximal Tubular Na+,K+-ATPase. Kidney Int. 1997, 52, 742–747. [Google Scholar] [CrossRef]
- Tseng, C.-C.; Liao, W.-T.; Wong, M.-C.; Chen, C.-J.; Lee, S.-C.; Yen, J.-H.; Chang, S.-J. Cell Lineage-Specific Methylome and Genome Alterations in Gout. Aging 2021, 13, 3843–3865. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Zhao, Y.; Phipps-Green, A.; Liu-Bryan, R.; Ceponis, A.; Boyle, D.L.; Wang, J.; Merriman, T.R.; Wang, W.; Terkeltaub, R. Differential DNA Methylation of Networked Signaling, Transcriptional, Innate and Adaptive Immunity, and Osteoclastogenesis Genes and Pathways in Gout. Arthritis Rheumatol. 2020, 72, 802–814. [Google Scholar] [CrossRef] [PubMed]
- Tin, A.; Schlosser, P.; Matias-Garcia, P.R.; Thio, C.H.L.; Joehanes, R.; Liu, H.; Yu, Z.; Weihs, A.; Hoppmann, A.; Grundner-Culemann, F.; et al. Epigenome-Wide Association Study of Serum Urate Reveals Insights into Urate Co-Regulation and the SLC2A9 Locus. Nat. Commun. 2021, 12, 7173. [Google Scholar] [CrossRef] [PubMed]
- Handy, D.E.; Castro, R.; Loscalzo, J. Epigenetic Modifications: Basic Mechanisms and Role in Cardiovascular Disease. Circulation 2011, 123, 2145–2156. [Google Scholar] [CrossRef] [PubMed]
- Alaskhar Alhamwe, B.; Khalaila, R.; Wolf, J.; von Bülow, V.; Harb, H.; Alhamdan, F.; Hii, C.S.; Prescott, S.L.; Ferrante, A.; Renz, H.; et al. Histone Modifications and Their Role in Epigenetics of Atopy and Allergic Diseases. Allergy Asthma Clin. Immunol. 2018, 14, 39. [Google Scholar] [CrossRef]
- Cobo, I.; Cheng, A.; Murillo-Saich, J.; Coras, R.; Torres, A.; Abe, Y.; Lana, A.J.; Schlachetzki, J.; Liu-Bryan, R.; Terkeltaub, R.; et al. Monosodium Urate Crystals Regulate a Unique JNK-Dependent Macrophage Metabolic and Inflammatory Response. Cell Rep. 2022, 38, 110489. [Google Scholar] [CrossRef]
- Terkeltaub, R.A.; Dyer, C.A.; Martin, J.; Curtiss, L.K. Apolipoprotein (Apo) E Inhibits the Capacity of Monosodium Urate Crystals to Stimulate Neutrophils. Characterization of Intraarticular Apo E and Demonstration of Apo E Binding to Urate Crystals in Vivo. J. Clin. Investig. 1991, 87, 20–26. [Google Scholar] [CrossRef]
- Cleophas, M.C.P.; Crişan, T.O.; Lemmers, H.; Toenhake-Dijkstra, H.; Fossati, G.; Jansen, T.L.; Dinarello, C.A.; Netea, M.G.; Joosten, L.A.B. Suppression of Monosodium Urate Crystal-Induced Cytokine Production by Butyrate Is Mediated by the Inhibition of Class I Histone Deacetylases. Ann. Rheum. Dis. 2016, 75, 593–600. [Google Scholar] [CrossRef]
- Tsukada, Y.; Fang, J.; Erdjument-Bromage, H.; Warren, M.E.; Borchers, C.H.; Tempst, P.; Zhang, Y. Histone Demethylation by a Family of JmjC Domain-Containing Proteins. Nature 2006, 439, 811–816. [Google Scholar] [CrossRef]
- Cobo, I.; Murillo-Saich, J.; Alishala, M.; Guma, M. Epigenetic and Metabolic Regulation of Macrophages during Gout. Gout Urate Cryst. Depos. Dis. 2023, 1, 137–151. [Google Scholar] [CrossRef]
- Renaudin, F.; Orliaguet, L.; Castelli, F.; Fenaille, F.; Prignon, A.; Alzaid, F.; Combes, C.; Delvaux, A.; Adimy, Y.; Cohen-Solal, M.; et al. Gout and Pseudo-Gout-Related Crystals Promote GLUT1-Mediated Glycolysis That Governs NLRP3 and Interleukin-1β Activation on Macrophages. Ann. Rheum. Dis. 2020, 79, 1506–1514. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Li, B.; Rezaeian, A.H.; Xu, X.; Chou, P.-C.; Jin, G.; Han, F.; Pan, B.-S.; Wang, C.-Y.; Long, J.; et al. H3 Ubiquitination by NEDD4 Regulates H3 Acetylation and Tumorigenesis. Nat. Commun. 2017, 8, 14799. [Google Scholar] [CrossRef] [PubMed]
- Lo, W.S.; Trievel, R.C.; Rojas, J.R.; Duggan, L.; Hsu, J.Y.; Allis, C.D.; Marmorstein, R.; Berger, S.L. Phosphorylation of Serine 10 in Histone H3 Is Functionally Linked in Vitro and in Vivo to Gcn5-Mediated Acetylation at Lysine 14. Mol. Cell. 2000, 5, 917–926. [Google Scholar] [CrossRef] [PubMed]
- Statello, L.; Guo, C.-J.; Chen, L.-L.; Huarte, M. Gene Regulation by Long Non-Coding RNAs and Its Biological Functions. Nat. Rev. Mol. Cell Biol. 2021, 22, 96–118. [Google Scholar] [CrossRef]
- Fanucchi, S.; Fok, E.T.; Dalla, E.; Shibayama, Y.; Börner, K.; Chang, E.Y.; Stoychev, S.; Imakaev, M.; Grimm, D.; Wang, K.C.; et al. Immune Genes Are Primed for Robust Transcription by Proximal Long Noncoding RNAs Located in Nuclear Compartments. Nat. Genet. 2019, 51, 138–150. [Google Scholar] [CrossRef]
- Klück, V.; van Deuren, R.C.; Cavalli, G.; Shaukat, A.; Arts, P.; Cleophas, M.C.; Crișan, T.O.; Tausche, A.-K.; Riches, P.; Dalbeth, N.; et al. Rare Genetic Variants in Interleukin-37 Link This Anti-Inflammatory Cytokine to the Pathogenesis and Treatment of Gout. Ann. Rheum. Dis. 2020, 79, 536–544. [Google Scholar] [CrossRef]
- Fok, E.T.; Moorlag, S.J.C.F.M.; Negishi, Y.; Groh, L.A.; Dos Santos, J.C.; Gräwe, C.; Monge, V.V.; Craenmehr, D.D.D.; van Roosmalen, M.; da Cunha Jolvino, D.P.; et al. A Chromatin-Regulated Biphasic Circuit Coordinates IL-1β-Mediated Inflammation. Nat. Genet. 2024, 56, 85–99. [Google Scholar] [CrossRef]
- Qing, Y.-F.; Zheng, J.-X.; Tang, Y.-P.; Dai, F.; Dong, Z.-R.; Zhang, Q.-B. LncRNAs Landscape in the Patients of Primary Gout by Microarray Analysis. PLoS ONE 2021, 16, e0232918. [Google Scholar] [CrossRef]
- Zhang, X.; Zou, Y.; Zheng, J.; Ji, S.; Wen, X.; Ye, F.; Liu, J.; Li, X.; Lei, J.; Qiu, M. lncRNA-MM2P Downregulates the Production of Pro-inflammatory Cytokines in Acute Gouty Arthritis. Mol. Med. Rep. 2020, 22, 2227–2234. [Google Scholar] [CrossRef]
- Huang, C.-M.; Chen, Y.-C.; Lai, I.-L.; Chen, H.-D.; Huang, P.-H.; Tu, S.-J.; Lee, Y.-T.; Yen, J.-C.; Lin, C.-L.; Liu, T.-Y.; et al. Exploring RNA Modifications, Editing, and Splicing Changes in Hyperuricemia and Gout. Front. Med. 2022, 9, 889464. [Google Scholar] [CrossRef]
- Xie, J.; He, C.; Su, Y.; Ding, Y.; Zhu, X.; Xu, Y.; Ding, J.; Zhou, H.; Wang, H. Research Progress on microRNA in Gout. Front. Pharmacol. 2022, 13, 981799. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.-T.; Leng, Y.-R.; Liu, M.-M.; Dong, R.-F.; Bian, J.; Yuan, L.-L.; Zhang, J.-G.; Xia, Y.-Z.; Kong, L.-Y. MicroRNA and Long Noncoding RNA Involvement in Gout and Prospects for Treatment. Int. Immunopharmacol. 2020, 87, 106842. [Google Scholar] [CrossRef] [PubMed]
- Ma, T.; Liu, X.; Cen, Z.; Xin, C.; Guo, M.; Zou, C.; Song, W.; Xie, R.; Wang, K.; Zhou, H.; et al. MicroRNA-302b Negatively Regulates IL-1β Production in Response to MSU Crystals by Targeting IRAK4 and EphA2. Arthritis Res. Ther. 2018, 20, 34. [Google Scholar] [CrossRef] [PubMed]
- Zhou, W.; Wang, Y.; Wu, R.; He, Y.; Su, Q.; Shi, G. MicroRNA-488 and -920 Regulate the Production of Proinflammatory Cytokines in Acute Gouty Arthritis. Arthritis Res. Ther. 2017, 19, 203. [Google Scholar] [CrossRef] [PubMed]
- Kawamura, Y.; Nakaoka, H.; Nakayama, A.; Okada, Y.; Yamamoto, K.; Higashino, T.; Sakiyama, M.; Shimizu, T.; Ooyama, H.; Ooyama, K.; et al. Genome-Wide Association Study Revealed Novel Loci Which Aggravate Asymptomatic Hyperuricaemia into Gout. Ann. Rheum. Dis. 2019, 78, 1430–1437. [Google Scholar] [CrossRef]
- Liu, Y.-F.; Xing, G.-L.; Chen, Z.; Tu, S.-H. Long Non-Coding RNA HOTAIR Knockdown Alleviates Gouty Arthritis through miR-20b Upregulation and NLRP3 Downregulation. Cell Cycle 2021, 20, 332–344. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Published by MDPI on behalf of the Gout, Hyperuricemia and Crystal Associated Disease Network. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Straton, A.R.; Kischkel, B.; Crișan, T.O.; Joosten, L.A.B. Epigenomic Reprogramming in Gout. Gout Urate Cryst. Depos. Dis. 2024, 2, 325-338. https://doi.org/10.3390/gucdd2040023
Straton AR, Kischkel B, Crișan TO, Joosten LAB. Epigenomic Reprogramming in Gout. Gout, Urate, and Crystal Deposition Disease. 2024; 2(4):325-338. https://doi.org/10.3390/gucdd2040023
Chicago/Turabian StyleStraton, Ancuta R., Brenda Kischkel, Tania O. Crișan, and Leo A. B. Joosten. 2024. "Epigenomic Reprogramming in Gout" Gout, Urate, and Crystal Deposition Disease 2, no. 4: 325-338. https://doi.org/10.3390/gucdd2040023
APA StyleStraton, A. R., Kischkel, B., Crișan, T. O., & Joosten, L. A. B. (2024). Epigenomic Reprogramming in Gout. Gout, Urate, and Crystal Deposition Disease, 2(4), 325-338. https://doi.org/10.3390/gucdd2040023