Year in Review 2023: Gout Clinical Research
Abstract
:1. Introduction
2. Conference Sections
2.1. Trends in Prevalence of Gout Among US Asian Adults, 2011–2018
2.2. Gout and Excess Risk of Severe SARS-CoV-2 Infection Among Vaccinated Individuals: A General Population Study
2.3. Prediagnostic Glycoprotein Acetyl Levels and Incident and Recurrent Flare Risk Accounting for Serum Urate Levels: A Population-Based, Prospective Study and Mendelian Randomization Analysis
2.4. Risk of Venous Thromboembolism with Gout Flares
2.5. Sodium–Glucose Cotransporter-2 Inhibitors (SGLT2is) in Gout
2.5.1. Comparative Effectiveness of Sodium–Glucose Cotransporter-2 Inhibitors for Recurrent Gout Flares and Gout-Primary Emergency Department Visits and Hospitalization
2.5.2. Gout Flares and Mortality After Sodium–Glucose Cotransporter-2 Inhibitor Treatment for Gout and Type 2 Diabetes
2.6. A Randomized, Placebo-Controlled Study of Methotrexate to Increase Response Rates in Patients with Uncontrolled Gout Receiving Pegloticase: Primary Efficacy and Safety Findings
2.7. Safety of Colchicine and NSAID Prophylaxis When Initiating Urate-Lowering Therapy for Gout: Propensity Score-Matched Cohort Studies in the UK Clinical Practice Research Datalink
2.8. Is Colchicine Prophylaxis Required with Start-Low Go-Slow Allopurinol Dose Escalation in Gout? A Non-Inferiority Randomised Double-Blind Placebo-Controlled Trial
3. Concluding Remarks
Author Contributions
Funding
Conflicts of Interest
References
- Xia, Y.; Wu, Q.; Wang, H.; Zhang, S.; Jiang, Y.; Gong, T.; Xu, X.; Chang, Q.; Niu, K.; Zhao, Y. Global, regional and national burden of gout, 1990–2017: A systematic analysis of the Global Burden of Disease Study. Rheumatology 2020, 59, 1529–1538. [Google Scholar] [CrossRef] [PubMed]
- Safiri, S.; Kolahi, A.; Cross, M.; Carson-Chahhoud, K.; Hoy, D.; Almasi-Hashiani, A.; Sepidarkish, M.; Ashrafi-Asgarabad, A.; Moradi-Lakeh, M.; Mansournia, M.A.; et al. Prevalence, Incidence, and Years Lived with Disability Due to Gout and Its Attributable Risk Factors for 195 Countries and Territories 1990–2017: A Systematic Analysis of the Global Burden of Disease Study 2017. Arthritis Rheumatol. 2020, 72, 1916–1927. [Google Scholar] [CrossRef] [PubMed]
- Budiman, A.; Ruiz, N.G. Asian Americans Are the Fastest-Growing Racial or Ethnic Group in the U.S. 2021. Available online: https://www.pewresearch.org/short-reads/2021/04/09/asian-americans-are-the-fastest-growing-racial-or-ethnic-group-in-the-u-s/ (accessed on 30 January 2024).
- Yokose, C.; McCormick, N.; Lu, N.; Tanikella, S.; Lin, K.; Joshi, A.D.; Raffield, L.M.; Warner, E.; Merriman, T.; Hsu, J.; et al. Trends in Prevalence of Gout Among US Asian Adults, 2011–2018. JAMA Netw. Open 2023, 6, e239501. [Google Scholar] [CrossRef] [PubMed]
- McCormick, N.; Lu, N.; Yokose, C.; Joshi, A.D.; Sheehy, S.; Rosenberg, L.; Warner, E.T.; Dalbeth, N.; Merriman, T.R.; Saag, K.G.; et al. Racial and Sex Disparities in Gout Prevalence Among US Adults. JAMA Netw. Open 2022, 5, e2226804. [Google Scholar] [CrossRef]
- Choi, H.K.; McCormick, N.; Yokose, C. Excess comorbidities in gout: The causal paradigm and pleiotropic approaches to care. Nat. Rev. Rheumatol. 2022, 18, 97–111. [Google Scholar] [CrossRef]
- De Lusignan, S.; Dorward, J.; Correa, A.; Jones, N.; Akinyemi, O.; Amirthalingam, G.; Andrews, N.; Byford, R.; Dabrera, G.; Elliot, A.; et al. Risk factors for SARS-CoV-2 among patients in the Oxford Royal College of General Practitioners Research and Surveillance Centre primary care network: A cross-sectional study. Lancet Infect. Dis. 2020, 20, 1034–1042. [Google Scholar] [CrossRef]
- Strangfeld, A.; Schäfer, M.; Gianfrancesco, A.M.; Lawson-Tovey, S.; Liew, J.W.; Ljung, L.; Mateus, E.F.; Richez, C.; Santos, M.J.; Schmajuk, G.; et al. Factors associated with COVID-19-related death in people with rheumatic diseases: Results from the COVID-19 Global Rheumatology Alliance physician-reported registry. Ann. Rheum. Dis. 2021, 80, 930–942. [Google Scholar] [CrossRef]
- Crișan, T.O.; Cleophas, M.C.P.; Oosting, M.; Lemmers, H.; Toenhake-Dijkstra, H.; Netea, M.G.; Jansen, T.L.; Joosten, L.A.B. Soluble uric acid primes TLR-induced proinflammatory cytokine production by human primary cells via inhibition of IL-1Ra. Ann. Rheum. Dis. 2016, 75, 755–762. [Google Scholar] [CrossRef]
- Topless, R.K.; Gaffo, A.; Stamp, L.K.; Robinson, P.C.; Dalbeth, N.; Merriman, T.R. Gout and the risk of COVID-19 diagnosis and death in the UK Biobank: A population-based study. Lancet Rheumatol. 2022, 4, e274–e281. [Google Scholar] [CrossRef]
- Topless, R.K.; Phipps-Green, A.; Leask, M.; Dalbeth, N.; Stamp, L.K.; Robinson, P.C.; Merriman, T.R. Gout, Rheumatoid Arthritis, and the Risk of Death Related to Coronavirus Disease 2019: An Analysis of the UK Biobank. ACR Open Rheumatol. 2021, 3, 333–340. [Google Scholar] [CrossRef]
- Xie, D.; Choi, H.K.; Dalbeth, N.; Wallace, Z.S.; Sparks, J.A.; Lu, N.; Zeng, C.; Li, X.; Wei, J.; Lei, G.; et al. Gout and Excess Risk of Severe SARS–CoV-2 Infection Among Vaccinated Individuals: A General Population Study. Arthritis Rheumatol. 2023, 75, 122–132. [Google Scholar] [CrossRef] [PubMed]
- Conway, R.; Grimshaw, A.A.; Konig, M.F.; Putman, M.; Duarte-García, A.; Tseng, L.Y.; Cabrera, D.M.; Chock, Y.P.E.; Degirmenci, H.B.; Duff, E.; et al. SARS–CoV-2 Infection and COVID-19 Outcomes in Rheumatic Diseases: A Systematic Literature Review and Meta-Analysis. Arthritis Rheumatol. 2022, 74, 766–775. [Google Scholar] [CrossRef] [PubMed]
- Mikuls, T.R.; Johnson, S.R.; Fraenkel, L.; Arasaratnam, R.J.; Baden, L.R.; Bermas, B.L.; Chatham, W.; Cohen, S.; Costenbader, K.; Gravallese, E.M.; et al. American College of Rheumatology Guidance for the Management of Rheumatic Disease in Adult Patients During the COVID-19 Pandemic: Version 2. Arthritis Rheumatol. 2020, 72, e1–e12. [Google Scholar] [PubMed]
- Dalbeth, N.; Phipps-Green, A.; Frampton, C.; Neogi, T.; Taylor, W.J.; Merriman, T.R. Relationship between serum urate concentration and clinically evident incident gout: An individual participant data analysis. Ann. Rheum. Dis. 2018, 77, 1048–1052. [Google Scholar] [CrossRef]
- Mahbub, M.; Yamaguchi, N.; Takahashi, H.; Hase, R.; Amano, H.; Kobayashi-Miura, M.; Kanda, H.; Fujita, Y.; Yamamoto, H.; Yamamoto, M.; et al. Alteration in plasma free amino acid levels and its association with gout. Environ. Health Prev. Med. 2017, 22, 7. [Google Scholar] [CrossRef]
- Luo, Y.; Wang, L.; Liu, X.-Y.; Chen, X.; Song, Y.-X.; Li, X.-H.; Jiang, C.; Peng, A.; Liu, J.-Y. Plasma profiling of amino acids distinguishes acute gout from asymptomatic hyperuricemia. Amino Acids 2018, 50, 1539–1548. [Google Scholar] [CrossRef]
- Joshi, A.D.; McCormick, N.; Yokose, C.; Yu, B.; Tin, A.; Terkeltaub, R.; Terkeltaub, R.; Merriman, T.R.; Eliassen, A.H.; Curhan, G.C.; et al. Prediagnostic Glycoprotein Acetyl Levels and Incident and Recurrent Flare Risk Accounting for Serum Urate Levels: A Population-Based, Prospective Study and Mendelian Randomization Analysis. Arthritis Rheumatol. 2023, 75, 1648–1657. [Google Scholar] [CrossRef]
- Otvos, J.D.; Shalaurova, I.; Wolak-Dinsmore, J.; Connelly, M.A.; Mackey, R.H.; Stein, J.H.; Tracy, R.P. GlycA: A Composite Nuclear Magnetic Resonance Biomarker of Systemic Inflammation. Clin. Chem. 2015, 61, 714–723. [Google Scholar] [CrossRef]
- Ritchie, S.; Würtz, P.; Nath, A.P.; Abraham, G.; Havulinna, A.S.; Fearnley, L.G.; Sarin, A.-P.; Kangas, A.J.; Soininen, P.; Aalto, K.; et al. The Biomarker GlycA Is Associated with Chronic Inflammation and Predicts Long-Term Risk of Severe Infection. Cell Syst. 2015, 1, 293–301. [Google Scholar] [CrossRef]
- Chiu, C.-C.; Chen, Y.T.; Hsu, C.Y.; Chang, C.C.; Huang, C.C.; Leu, H.B.; Li, Y.; Kuo, S.-C.; Huang, P.-S.; Chen, J.-W.; et al. Association between previous history of gout attack and risk of deep vein thrombosis—A nationwide population-based cohort study. Sci. Rep. 2016, 6, 26541. [Google Scholar] [CrossRef]
- Huang, C.-C.; Huang, P.-H.; Chen, J.-H.; Lan, J.-L.; Tsay, G.J.; Lin, H.-Y.; Tseng, C.-H.; Lin, C.-L.; Hsu, C.-Y. An Independent Risk of Gout on the Development of Deep Vein Thrombosis and Pulmonary Embolism. Medicine 2015, 94, e2140. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; McCormick, N.; Sayre, E.C.; Esdaile, J.M.; Lacaille, D.; Xie, H.; Choi, H.K.; Aviña-Zubieta, J.A. Trends of venous thromboembolism risk before and after diagnosis of gout: A general population-based study. Rheumatology 2020, 59, 1099–1107. [Google Scholar] [CrossRef] [PubMed]
- Sultan, A.A.; Muller, S.; Whittle, R.; Roddy, E.; Mallen, C.; Clarson, L. Venous thromboembolism in patients with gout and the impact of hospital admission, disease duration and urate-lowering therapy. Can. Med. Assoc. J. 2019, 191, E597–E603. [Google Scholar] [CrossRef] [PubMed]
- Cipolletta, E.; Tata, L.J.; Nakafero, G.; Avery, A.J.; Mamas, M.A.; Abhishek, A. Association Between Gout Flare and Subsequent Cardiovascular Events Among Patients with Gout. JAMA 2022, 328, 440. [Google Scholar] [CrossRef] [PubMed]
- Cipolletta, E.; Tata, L.J.; Nakafero, G.; Avery, A.J.; Mamas, M.A.; Abhishek, A. Risk of Venous Thromboembolism with Gout Flares. Arthritis Rheumatol. 2023, 75, 1638–1647. [Google Scholar] [CrossRef]
- Vargas-Santos, A.B.; Neogi, T.; da Rocha Castelar-Pinheiro, G.; Kapetanovic, M.C.; Turkiewicz, A. Cause-Specific Mortality in Gout: Novel Findings of Elevated Risk of Non–Cardiovascular-Related Deaths. Arthritis Rheumatol. 2019, 71, 1935–1942. [Google Scholar] [CrossRef]
- Fisher, M.C.; Rai, S.K.; Lu, N.; Zhang, Y.; Choi, H.K. The unclosing premature mortality gap in gout: A general population-based study. Ann. Rheum. Dis. 2017, 76, 1289–1294. [Google Scholar] [CrossRef]
- Cowie, M.R.; Fisher, M. SGLT2 inhibitors: Mechanisms of cardiovascular benefit beyond glycaemic control. Nat. Rev. Cardiol. 2020, 17, 761–772. [Google Scholar] [CrossRef]
- Zheng, S.L.; Roddick, A.J.; Aghar-Jaffar, R.; Shun-Shin, M.J.; Francis, D.; Oliver, N.; Meeran, K. Association Between Use of Sodium-Glucose Cotransporter 2 Inhibitors, Glucagon-like Peptide 1 Agonists, and Dipeptidyl Peptidase 4 Inhibitors with All-Cause Mortality in Patients with Type 2 Diabetes. JAMA 2018, 319, 1580. [Google Scholar] [CrossRef]
- Davies, M.J.; Trujillo, A.; Vijapurkar, U.; Damaraju, C.V.; Meininger, G. Effect of canagliflozin on serum uric acid in patients with type 2 diabetes mellitus. Diabetes Obes. Metab. 2015, 17, 426–429. [Google Scholar] [CrossRef]
- Zhou, J.; Liu, X.; Chou, O.H.-I.; Li, L.; Lee, S.; Wong, W.T.; Zhang, Q.; Chang, C.; Liu, T.; Tse, G.; et al. Lower risk of gout in sodium glucose cotransporter 2 (SGLT2) inhibitors versus dipeptidyl peptidase-4 (DPP4) inhibitors in type-2 diabetes. Rheumatology 2023, 62, 1501–1510. [Google Scholar] [CrossRef] [PubMed]
- Lund, L.C.; Højlund, M.; Henriksen, D.P.; Hallas, J.; Kristensen, K.B. Sodium-glucose cotransporter-2 inhibitors and the risk of gout: A Danish population based cohort study and symmetry analysis. Pharmacoepidemiol. Drug Saf. 2021, 30, 1391–1395. [Google Scholar] [CrossRef] [PubMed]
- Chung, M.-C.; Hung, P.-H.; Hsiao, P.-J.; Wu, L.-Y.; Chang, C.-H.; Wu, M.-J.; Shieh, J.-J.; Chung, C.-J. Association of Sodium-Glucose Transport Protein 2 Inhibitor Use for Type 2 Diabetes and Incidence of Gout in Taiwan. JAMA Netw. Open 2021, 4, e2135353. [Google Scholar] [CrossRef] [PubMed]
- Fralick, M.; Chen, S.K.; Patorno, E.; Kim, S.C. Assessing the Risk for Gout with Sodium–Glucose Cotransporter-2 Inhibitors in Patients With Type 2 Diabetes. Ann. Intern. Med. 2020, 172, 186. [Google Scholar] [CrossRef]
- McCormick, N.; Yokose, C.; Wei, J.; Lu, N.; Wexler, D.J.; Aviña-Zubieta, J.A.; De Vera, M.A.; Zhang, Y.; Choi, H.K. Comparative Effectiveness of Sodium-Glucose Cotransporter-2 Inhibitors for Recurrent Gout Flares and Gout-Primary Emergency Department Visits and Hospitalizations: A General Population Cohort Study. Ann. Intern. Med. 2023, 176, 1067–1080. [Google Scholar] [CrossRef]
- Wei, J.; Choi, H.K.; Dalbeth, N.; Li, X.; Li, C.; Zeng, C.; Lei, G.; Zhang, Y. Gout Flares and Mortality After Sodium-Glucose Cotransporter-2 Inhibitor Treatment for Gout and Type 2 Diabetes. JAMA Netw. Open 2023, 6, e2330885. [Google Scholar] [CrossRef]
- Baraf, H.S.B.; Yood, R.A.; Ottery, F.D.; Sundy, J.S.; Becker, M.A. Infusion-Related Reactions with Pegloticase, a Recombinant Uricase for the Treatment of Chronic Gout Refractory to Conventional Therapy. J. Clin. Rheumatol. 2014, 20, 427–432. [Google Scholar] [CrossRef]
- Hershfield, M.S.; Ganson, N.J.; Kelly, S.J.; Scarlett, E.L.; Jaggers, D.A.; Sundy, J.S. Induced and pre-existing anti-polyethylene glycol antibody in a trial of every 3-week dosing of pegloticase for refractory gout, including in organ transplant recipients. Arthritis Res. Ther. 2014, 16, R63. [Google Scholar] [CrossRef]
- Lipsky, E.; Calabrese, L.H.; Kavanaugh, A.; Sundy, J.S.; Wright, D.; Wolfson, M.; Becker, M.A. Pegloticase immunogenicity: The relationship between efficacy and antibody development in patients treated for refractory chronic gout. Arthritis Res. Ther. 2014, 16, R60. [Google Scholar] [CrossRef]
- Botson, J.K.; Tesser, J.R.; Bennett, R.; Kenney, H.M.; Peloso, P.M.; Obermeyer, K.; LaMoreaux, B.; Weinblatt, M.E.; Peterson, J. Pegloticase in Combination with Methotrexate in Patients with Uncontrolled Gout: A Multicenter, Open-label Study (MIRROR). J. Rheumatol. 2021, 48, 767–774. [Google Scholar] [CrossRef]
- Keenan, R.T.; Botson, J.K.; Masri, K.R.; Padnick-Silver, L.; LaMoreaux, B.; Albert, J.A.; Pillinger, M.H. The effect of immunomodulators on the efficacy and tolerability of pegloticase: A systematic review. Semin. Arthritis Rheum. 2021, 51, 347–352. [Google Scholar] [CrossRef] [PubMed]
- Khanna, P.P.; Khanna, D.; Cutter, G.; Foster, J.; Melnick, J.; Jaafar, S.; Biggers, S.; Fazlur Rahman, A.K.M.; Kuo, H.-C.; Feese, M. Reducing Immunogenicity of Pegloticase with Concomitant Use of Mycophenolate Mofetil in Patients with Refractory Gout: A Phase II, Randomized, Double-Blind, Placebo-Controlled Trial. Arthritis Rheumatol. 2021, 73, 1523–1532. [Google Scholar] [CrossRef] [PubMed]
- Botson, J.K.; Saag, K.; Peterson, J.; Parikh, N.; Ong, S.; La, D.; LoCicero, K.; Obermeyer, K.; Xin, Y.; Chamberlain, J.; et al. A Randomized, Placebo-Controlled Study of Methotrexate to Increase Response Rates in Patients with Uncontrolled Gout Receiving Pegloticase: Primary Efficacy and Safety Findings. Arthritis Rheumatol. 2023, 75, 293–304. [Google Scholar] [CrossRef] [PubMed]
- Fitzgerald, J.D.; Dalbeth, N.; Mikuls, T.; Brignardello-Petersen, R.; Guyatt, G.; Abeles, A.M.; Gelber, A.C.; Harrold, L.R.; Khanna, D.; King, C.; et al. 2020 American College of Rheumatology Guideline for the Management of Gout. Arthritis Care Res. 2020, 72, 744–760. [Google Scholar] [CrossRef] [PubMed]
- Hui, M.; Carr, A.; Cameron, S.; Davenport, G.; Doherty, M.; Forrester, H.; Jenkins, W.; Jordan, K.M.; Mallen, C.D.; McDonald, T.M.; et al. The British Society for Rheumatology Guideline for the Management of Gout. Rheumatology 2017, 56, 1056–1059. [Google Scholar] [CrossRef]
- Neilson, J.; Bonnon, A.; Dickson, A.; Roddy, E. Gout: Diagnosis and management—Summary of NICE guidance. BMJ 2022, 378, o1754. [Google Scholar] [CrossRef]
- Richette, P.; Doherty, M.; Pascual, E.; Barskova, V.; Becce, F.; Castañeda-Sanabria, J.; Coyfish, M.; Guillo, S.; Jansen, T.L.; Janssens, H.; et al. 2016 updated EULAR evidence-based recommendations for the management of gout. Ann. Rheum. Dis. 2017, 76, 29–42. [Google Scholar] [CrossRef]
- Roddy, E.; Bajpai, R.; Forrester, H.; Partington, R.J.; Mallen, C.D.; Clarson, L.E.; Padmanabhan, N.; Whittle, R.; Muller, S. Safety of colchicine and NSAID prophylaxis when initiating urate-lowering therapy for gout: Propensity score-matched cohort studies in the UK Clinical Practice Research Datalink. Ann. Rheum. Dis. 2023, 82, 1618–1625. [Google Scholar] [CrossRef]
- Bouabdallaoui, N.; Tardif, J.-C.; Waters, D.D.; Pinto, F.J.; Maggioni, A.P.; Diaz, R.; Berry, C.; Koenig, W.; Lopez-Sendon, J.; Gamra, H.; et al. Time-to-treatment initiation of colchicine and cardiovascular outcomes after myocardial infarction in the Colchicine Cardiovascular Outcomes Trial (COLCOT). Eur. Heart J. 2020, 41, 4092–4099. [Google Scholar] [CrossRef]
- Nidorf, S.M.; Fiolet, A.T.L.; Mosterd, A.; Eikelboom, J.W.; Schut, A.; Opstal, T.S.J.; The, S.H.K.; Xu, X.-F.; Ireland, M.A.; Lenderink, T.; et al. Colchicine in Patients with Chronic Coronary Disease. N. Engl. J. Med. 2020, 383, 1838–1847. [Google Scholar] [CrossRef]
- Samuel, M.; Tardif, J.-C.; Bouabdallaoui, N.; Khairy, P.; Dubé, M.-P.; Blondeau, L.; Guertin, M.-C. Colchicine for Secondary Prevention of Cardiovascular Disease: A Systematic Review and Meta-analysis of Randomized Controlled Trials. Can. J. Cardiol. 2021, 37, 776–785. [Google Scholar] [CrossRef] [PubMed]
- Tardif, J.-C.; Kouz, S.; Waters, D.D.; Bertrand, O.F.; Diaz, R.; Maggioni, A.P.; Pinto, F.J.; Ibrahim, R.; Gamra, H.; Kiwan, G.S.; et al. Efficacy and Safety of Low-Dose Colchicine after Myocardial Infarction. N. Engl. J. Med. 2019, 381, 2497–2505. [Google Scholar] [CrossRef] [PubMed]
- Becker, M.A.; Schumacher, H.R.; Espinoza, L.R.; Wells, A.F.; MacDonald, P.; Lloyd, E.; Lademacher, C. The urate-lowering efficacy and safety of febuxostat in the treatment of the hyperuricemia of gout: The CONFIRMS trial. Arthritis Res. Ther. 2010, 12, R63. [Google Scholar] [CrossRef] [PubMed]
- Sundy, J.S.; Baraf, H.S.; Yood, R.A.; Edwards, N.L.; Gutierrez-Urena, S.R.; Treadwell, E.L.; Vázquez-Mellado, J.; White, W.; Lipsky, P.; Horowitz, Z.; et al. Efficacy and Tolerability of Pegloticase for the Treatment of Chronic Gout in Patients Refractory to Conventional Treatment. JAMA 2011, 306, 711. [Google Scholar]
- Stamp, L.K.; Taylor, W.J.; Jones, P.B.; Dockerty, J.L.; Drake, J.; Frampton, C.; Dalbeth, N. Starting dose is a risk factor for allopurinol hypersensitivity syndrome: A proposed safe starting dose of allopurinol. Arthritis Rheum. 2012, 64, 2529–2536. [Google Scholar] [CrossRef]
- Khanna, D. 2012 American College of Rheumatology guidelines for management of gout. Part 1: Systematic nonpharmacologic and pharmacologic therapeutic approaches to hyperuricemia. Arthritis Care Res. 2012, 64, 1431–1446. [Google Scholar] [CrossRef]
- Stamp, L.; Horne, A.; Mihov, B.; Drake, J.; Haslett, J.; Chapman, P.T.; Frampton, C.; Dalbeth, N. Is colchicine prophylaxis required with start-low go-slow allopurinol dose escalation in gout? A non-inferiority randomised double-blind placebo-controlled trial. Ann. Rheum. Dis. 2023, 82, 1626–1634. [Google Scholar] [CrossRef]
- Neogi, T.; Jansen, A.T.L.T.; Dalbeth, N.; Fransen, J.; Schumacher, H.R.; Berendsen, D.; Brown, M.; Choi, H.; Edwards, N.L.; Janssens, H.J.E.M.; et al. 2015 Gout classification criteria: An American College of Rheumatology/European League Against Rheumatism collaborative initiative. Ann. Rheum. Dis. 2015, 74, 1789–1798. [Google Scholar] [CrossRef]
Gout (n = 54,576) | Non-Gout (n = 1,336,377) | |
---|---|---|
Breakthrough SARS-CoV-2 infection | ||
No. of infections | 1955 | 52,468 |
Mean follow-up, months | 7.87 | 6.98 |
Weighted IR, per 1000 person-months ꝉ | 4.68 | 3.76 |
Weighted RD, per 1000 person-months (95% CI) ꝉ | 0.91 (0.62, 1.20) | 0.00 (referent) |
Weighted HR (95% CI) ꝉ | 1.24 (1.19, 1.30) | 1.00 (referent) |
Weighted RD, per 1000 person-months (95% CI) ⱡ | 0.71 (0.41, 1.09) | 0.00 (referent) |
Weighted HR (95% CI) ⱡ | 1.18 (1.12, 1.24) | 1.00 (referent) |
30-day hospitalization | ||
No. of hospitalizations | 184 | 1,956 |
Mean follow-up, months | 7.85 | 6.98 |
Weighted IR, per 1000 person-months ꝉ | 0.42 | 0.28 |
Weighted RD, per 1000 person-months (95% CI) ꝉ | 0.15 (0.07, 0.24) | 0.00 (referent) |
Weighted HR (95% CI) ꝉ | 1.54 (1.31, 1.81) | 1.00 (referent) |
Weighted RD, per 1000 person-months (95% CI) ⱡ | 0.10 (0.01, 0.18) | 0.00 (referent) |
Weighted HR (95% CI) ⱡ | 1.30 (1.10, 1.53) | 1.00 (referent) |
30-day death | ||
No. of deaths | 28 | 141 |
Mean follow-up, months | 7.86 | 6.99 |
Weighted IR, per 1000 person-months ꝉ | 0.06 | 0.04 |
Weighted RD, per 1000 person-months (95% CI) ꝉ | 0.03 (−0.01, 0.06) | 0.00 (referent) |
Weighted HR (95% CI) ꝉ | 1.74 (1.14, 2.67) | 1.00 (referent) |
Weighted RD, per 1000 person-months (95% CI) ⱡ | 0.02 (−0.02, 0.05) | 0.00 (referent) |
Weighted HR (95% CI) ⱡ | 1.36 (0.87, 2.13) | 1.00 (referent) |
Colchicine | No Prophylaxis | ||||||
---|---|---|---|---|---|---|---|
Event | Person-Years | Incidence Rate per 10,000 Person-Years (95% CI) | Event | Person-Years | Incidence Rate per 10,000 Person-Years (95% CI) | HR (95% CI) | |
Diarrhea | |||||||
GOLD | 75 | 0.0470 | 1604.9 (1280.5–2038.9) | 69 | 0.1184 | 581.4 (459.3–746.9) | 2.50 (1.72–3.61) |
Aurum | 191 | 0.3197 | 596.1 (517.6–690.3) | 151 | 0.5600 | 270.4 (230.8–318.9) | 2.12 (1.69–2.66) |
Combined | 784.4 (694.0–886.5) | 341.9 (298.9–391.2) | 2.22 (1.83–2.69) | ||||
Nausea and vomiting | |||||||
GOLD | 9 | 0.0464 | 195.5 (103.9–414.8) | 9 | 0.1169 | 77.3 (41.1–164.0) | 2.50 (0.90–6.99) |
Aurum | 67 | 0.3189 | 209.7 (165.7–269.4) | 80 | 0.5572 | 143.7 (115.8–180.6) | 1.25 (0.89–1.76) |
Combined | 208.1 (165.4–261.7) | 135.7 (109.8–167.6) | 1.34 (0.97–1.85) | ||||
Bone marrow suppression | |||||||
GOLD | * | 0.0463 | 64.9 (20.3–318.9) | * | 0.1173 | 8.5 (0.2–47.5) | 2.75 (0.28–26.55) |
Aurum | 16 | 0.3176 | 50.4 (31.4–86.4) | 8 | 0.5567 | 14.4 (7.4–2.3) | 3.38 (1.38–8.30) |
Combined | 51.9 (32.3-83.5) | 13.9 (6.8–28.3) | 3.29 (1.43–7.58) | ||||
Neuropathy | |||||||
GOLD | 7 | 0.0464 | 151.4 (73.7–364.1) | * | 0.1172 | 17.2 (3.7–172.2) | 9.36 (1.85–47.45) |
Aurum | * | 0.3179 | 3.2 (0.1–17.5) | * | 0.5565 | 3.6 (0.8–36.1) | 0.86 (0.07–11.32) |
Combined | 110.8 (5.15–238.3) | 7.9 (2.0–30.6) | 4.75 (1.20–18.76) | ||||
Myalgia | |||||||
GOLD | 13 | 0.0464 | 281.7 (166.8–515.8) | 10 | 0.1175 | 85.7 (47.1–173.6) | 4.80 (1.96–11.78) |
Aurum | 13 | 0.3182 | 40.9 (24.2–75.0) | 13 | 0.5568 | 23.4 (13.8–42.9) | 1.64 (0.74–3.66) |
Combined | 107.6 (72.1–160.4) | 40.8 (26.6–62.6) | 2.64 (1.45–4.81) | ||||
Myocardial infarction | |||||||
GOLD | 12 | 0.0464 | 260.8 (151.0–492.0) | 9 | 0.1171 | 77.4 (41.1–164.4) | 2.15 (0.87–5.33) |
Aurum | 60 | 0.3179 | 189.0 (147.4–246.6) | 69 | 0.5554 | 124.1 (98.4-158.9) | 1.47 (1.02–2.11) |
Combined | 199.0 (157.2–251.9) | 118.1 (94.1–148.0) | 1.55 (1.10–2.17) | ||||
Any adverse event | |||||||
GOLD | 123 | 0.0474 | 2584.2 (2158.7–3119.4) | 106 | 0.1189 | 889.0 (732.7–1089.3) | 2.62 (1.96–3.50) |
Aurum | 320 | 0.3209 | 997.6 (892.9–1118.2) | 302 | 0.5594 | 540.4 (482.1–607.8) | 1.72 (1.45–2.03) |
Combined | 1292.3 (1174.0–1422.4) | 613.3 (555.0–677.8) | 1.91 (1.65–2.20) |
NSAID | No Prophylaxis | ||||||
---|---|---|---|---|---|---|---|
Event | Person-Years | Incidence Rate per 10,000 Person-Years (95% CI) | Event | Person-Years | Incidence Rate per 10,000 Person-Years (95% CI) | HR (95% CI) | |
Acute kidney injury | |||||||
GOLD | 26 | 0.1053 | 242.9 (166.1–370.0) | 29 | 0.2576 | 110.9 (77.5–164.4) | 2.11 (1.17–3.81) |
Aurum | 86 | 0.6021 | 142.5 (115.4–178.0) | 122 | 1.0130 | 120.1 (100.5–144.7) | 1.45 (1.08–1.94) |
Combined | 160.7 (132.9–194.5) | 118.3 (100.4–139.4) | 1.56 (1.20–2.03) | ||||
Angina | |||||||
GOLD | 63 | 0.1046 | 604.4 (472.3–786.7) | 93 | 0.2553 | 362.7 (295.6–450.1) | 1.92 (1.35–2.74) |
Aurum | 261 | 0.5959 | 438.7 (388.2–497.8) | 343 | 1.0008 | 342.3 (307.4–382.3) | 1.53 (1.30–1.82) |
Combined | 466.6 (417.2–521.8) | 346.5 (314.6–381.7) | 1.60 (1.37–1.86) | ||||
Myocardial infarction | |||||||
GOLD | 20 | 0.1056 | 190.7 (124.8–306.5) | 31 | 0.2581 | 121.7 (86.5–177.0) | 1.68 (0.91–3.10) |
Aurum | 90 | 0.6021 | 150.3 (122.6–186.2) | 94 | 1.0130 | 92.3 (75.6–114.0) | 1.95 (1.44–2.64) |
Combined | 98.9 (82.7–118.2) | 1.89 (1.44–2.48) | |||||
Peptic ulcer disease | |||||||
GOLD | 15 | 0.1054 | 143.1 (87.8–249.9) | 8 | 0.2580 | 31.2 (15.9–70.0) | 8.52 (3.38–21.50) |
Aurum | 40 | 0.6024 | 66.7 (49.4–92.5) | 61 | 1.0130 | 60.6 (47.4–78.6) | 1.20 (0.80–1.82) |
Combined | 81.7 (62.4–106.9) | 56.5 (44.5–71.8) | 1.67 (1.14–2.44) | ||||
Any adverse event | |||||||
GOLD | 103 | 0.1043 | 984.3 (809.3–1209.6) | 137 | 0.2546 | 536.6 (452.3–641.6) | 2.18 (1.63–2.90) |
Aurum | 408 | 0.5930 | 688.7 (623.4–763.0) | 529 | 0.9953 | 531.7 (486.7–581.9) | 1.53 (1.33–1.75) |
Combined | 740.2 (676.3–810.2) | 532.7 (492.0–576.8) | 1.63 (1.44–1.85) | ||||
CPRD, Clinical Practice Research Datalink; NSAID, non-steroidal anti-inflammatory drug |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Published by MDPI on behalf of the Gout, Hyperuricemia and Crystal Associated Disease Network. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Challener, G.; Yokose, C. Year in Review 2023: Gout Clinical Research. Gout Urate Cryst. Depos. Dis. 2024, 2, 354-369. https://doi.org/10.3390/gucdd2040025
Challener G, Yokose C. Year in Review 2023: Gout Clinical Research. Gout, Urate, and Crystal Deposition Disease. 2024; 2(4):354-369. https://doi.org/10.3390/gucdd2040025
Chicago/Turabian StyleChallener, Greg, and Chio Yokose. 2024. "Year in Review 2023: Gout Clinical Research" Gout, Urate, and Crystal Deposition Disease 2, no. 4: 354-369. https://doi.org/10.3390/gucdd2040025
APA StyleChallener, G., & Yokose, C. (2024). Year in Review 2023: Gout Clinical Research. Gout, Urate, and Crystal Deposition Disease, 2(4), 354-369. https://doi.org/10.3390/gucdd2040025