Reviewing Material-Sensitive Computed Tomography: From Handcrafted Algorithms to Modern Deep Learning
Abstract
:1. Introduction
- RQ1:
- Are there common datasets or simulation techniques used for deep learning in material-resolving CT?
- RQ2:
- Which deep learning models are used, and are they specifically engineered for material-sensitive CT applications?
- RQ3:
- Does employing deep learning eliminate the necessity for expert domain knowledge in material-sensitive CT?
- RQ4:
- What are the hardware requirements for training and executing the models?
2. Physics Background and History
2.1. Motivation and Strategies for Multi-Energy CT
- Energy-integrating detectors can be used in multiple setups to measure two distinct energy channels. The easiest setup is called a dual scan, where the source’s photon spectrum is alternated by different pre-filtration and changing the acceleration voltage of the electrons in the X-ray tube. Due to the two subsequent, individual scans, a dual scan is technically possible on almost every CT scanner on the market. Since the subsequent scans are time-consuming and may reveal critical motion artefacts (e.g., patient motion in clinical CT), other scan setups may be preferred. Fast kV switching rapidly alternates the acceleration voltage of the X-ray tube in order to collect two distinct energy projections subsequently for a given position during a scan. Dual-source setups include two X-ray tubes and two detectors to acquire the projections from two energy channels simultaneously. Sandwich detectors consist of two (or more) stacked layers, where the different layers measure the projections at different energy channels.
- Energy-discriminating photon-counting detectors (PCD) originate from clinical CT, where ideally, every single photon is detected not only spatially on the detector but also with energy information. The counting event is then sorted into predefined energy channels, which are defined by thresholds. For an energy channel with a threshold of , a photon detected with will be counted in this energy channel.
2.2. History
3. Methodology
- 1.
- TITLE-ABS-KEY(computed tomography OR ct);
- 2.
- TITLE-ABS-KEY(material);
- 3.
- TITLE-ABS-KEY(dual-energy OR multi-energy OR photon counting).
- 1.
- It must be accessible through one of the major publishers;
- 2.
- It must propose a new (original) approach or a substantial improvement in terms of the following:
- 2.1.
- X-ray physics modelling (for classical approaches);
- 2.2.
- Data-driven architecture/model or training strategies.
- 3.
- It must outline a reproducible setup for CT scanning;
- 4.
- 1.
- The model’s architecture;
- 2.
- The training data’s origin (simulation, labelled).
4. Analysis of Selected Publications
4.1. Photon Energies and Detectors
4.2. Materials
4.3. Classical Algorithmic Approaches
4.4. Data-Driven Approaches
4.4.1. Datasets
4.4.2. Models
4.4.3. Computational Considerations
5. Summary and Future Trends
5.1. RQ1: Are There Common Datasets or Simulation Techniques Used for Deep Learning in Material-Resolving CT?
5.2. RQ2: Which Deep Learning Models Are Used and Are They Specifically Engineered for Material-Sensitive CT Applications?
5.3. RQ3: Does Employing Deep Learning Eliminate the Necessity for Expert Domain Knowledge in Material-Sensitive CT?
5.4. RQ4: What Are the Hardware Requirements for Training and Executing Models?
5.5. Future Trends
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Richmond, C. Sir Godfrey Hounsfield. BMJ 2004, 329, 687. [Google Scholar] [CrossRef]
- Nobel Prize Outreach. The Nobel Prize in Physiology or Medicine 1979. Available online: https://www.nobelprize.org/prizes/medicine/1979/press-release/ (accessed on 21 May 2024).
- Feldkamp, L.A.; Davis, L.C.; Kress, J.W. Practical Cone-Beam Algorithm. J. Opt. Soc. Am. A 1984, 1, 612. [Google Scholar] [CrossRef]
- Dong, S.; Wang, P.; Abbas, K. A Survey on Deep Learning and Its Applications. Comput. Sci. Rev. 2021, 40, 100379. [Google Scholar] [CrossRef]
- Ofir, N.; Nebel, J.C. Classic versus Deep Learning Approaches to Address Computer Vision Challenges. arXiv 2021, arXiv:2101.09744. [Google Scholar]
- Perry Sprawls. Physical Principle of Medical Imaging (Web Version), 2nd ed., 1993. Available online: http://www.sprawls.org/ppmi2/RADPEN/ (accessed on 21 May 2024).
- Faby, S.; Kuchenbecker, S.; Sawall, S.; Simons, D.; Schlemmer, H.P.; Lell, M.; Kachelrieß, M. Performance of Today’s Dual Energy CT and Future Multi Energy CT in Virtual Non-Contrast Imaging and in Iodine Quantification: A Simulation Study. Med. Phys. 2015, 42, 4349–4366. [Google Scholar] [CrossRef]
- Schlomka, J.P.; Roessl, E.; Dorscheid, R.; Dill, S.; Martens, G.; Istel, T.; Bäumer, C.; Herrmann, C.; Steadman, R.; Zeitler, G.; et al. Experimental Feasibility of Multi-Energy Photon-Counting K-edge Imaging in Pre-Clinical Computed Tomography. Phys. Med. Biol. 2008, 53, 4031–4047. [Google Scholar] [CrossRef]
- Bellon, C. aRTist—Analytical RT Inspection Simulation Tool; BAM Federal Institute for Materials Research and Testing: Berlin, Germany, 2007. [Google Scholar]
- Jost, G.; McDermott, M.; Gutjahr, R.; Nowak, T.; Schmidt, B.; Pietsch, H. New Contrast Media for K-Edge Imaging With Photon-Counting Detector CT. Investig. Radiol. 2023, 58, 515–522. [Google Scholar] [CrossRef]
- Alvarez, R.E.; Macovski, A. Energy-Selective Reconstructions in X-ray Computerised Tomography. Phys. Med. Biol. 1976, 21, 733–744. [Google Scholar] [CrossRef]
- Heismann, B.J.; Leppert, J.; Stierstorfer, K. Density and Atomic Number Measurements with Spectral X-Ray Attenuation Method. J. Appl. Phys. 2003, 94, 2073–2079. [Google Scholar] [CrossRef]
- Vom Brocke, J.; Simons, A.; Riemer, K.; Niehaves, B.; Plattfaut, R.; Cleven, A. Standing on the Shoulders of Giants: Challenges and Recommendations of Literature Search in Information Systems Research. Commun. Assoc. Inf. Syst. 2015, 37, 9. [Google Scholar] [CrossRef]
- Page, M.J.; Moher, D.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. PRISMA 2020 Explanation and Elaboration: Updated Guidance and Exemplars for Reporting Systematic Reviews. BMJ 2021, 372, n160. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- University College London. Scopus: Techniques for Searching. Available online: https://library-guides.ucl.ac.uk/scopus/search-techniques (accessed on 24 April 2024).
- Su, T.; Sun, X.; Yang, J.; Mi, D.; Zhang, Y.; Wu, H.; Fang, S.; Chen, Y.; Zheng, H.; Liang, D.; et al. DIRECT-Net: A Unified Mutual-domain Material Decomposition Network for Quantitative Dual-energy CT Imaging. Med. Phys. 2022, 49, 917–934. [Google Scholar] [CrossRef]
- Abascal, J.F.P.J.; Ducros, N.; Pronina, V.; Rit, S.; Rodesch, P.A.; Broussaud, T.; Bussod, S.; Douek, P.; Hauptmann, A.; Arridge, S.; et al. Material Decomposition in Spectral CT Using Deep Learning: A Sim2Real Transfer Approach. IEEE Access 2021, 9, 25632–25647. [Google Scholar] [CrossRef]
- Bussod, S.; Abascal, J.F.; Arridge, S.; Hauptmann, A.; Chappard, C.; Ducros, N.; Peyrin, F. Convolutional Neural Network for Material Decomposition in Spectral CT Scans. In Proceedings of the 2020 28th European Signal Processing Conference (EUSIPCO), Amsterdam, The Netherlands, 24–28 August 2021; pp. 1259–1263. [Google Scholar] [CrossRef]
- Cao, W.; Shapira, N.; Maidment, A.; Daerr, H.; Noël, P.B. Hepatic Dual-Contrast CT Imaging: Slow Triple kVp Switching CT with CNN-based Sinogram Completion and Material Decomposition. J. Med. Imaging 2022, 9, 014003. [Google Scholar] [CrossRef]
- Fang, W.; Li, L. Attenuation Image Referenced (AIR) Effective Atom Number Image Calculation for MeV Dual-Energy Container CT Using Image-Domain Deep Learning Framework. Results Phys. 2022, 35, 105406. [Google Scholar] [CrossRef]
- Geng, M.; Tian, Z.; Jiang, Z.; You, Y.; Feng, X.; Xia, Y.; Yang, K.; Ren, Q.; Meng, X.; Maier, A.; et al. PMS-GAN: Parallel Multi-Stream Generative Adversarial Network for Multi-Material Decomposition in Spectral Computed Tomography. IEEE Trans. Med. Imaging 2021, 40, 571–584. [Google Scholar] [CrossRef]
- Gong, H.; Tao, S.; Rajendran, K.; Zhou, W.; McCollough, C.H.; Leng, S. Deep-learning-based Direct Inversion for Material Decomposition. Med. Phys. 2020, 47, 6294–6309. [Google Scholar] [CrossRef]
- Guo, X.; He, P.; Lv, X.; Ren, X.; Li, Y.; Liu, Y.; Lei, X.; Feng, P.; Shan, H. Material Decomposition of Spectral CT Images via Attention-Based Global Convolutional Generative Adversarial Network. Nucl. Sci. Tech. 2023, 34, 45. [Google Scholar] [CrossRef]
- Krebbers, L.T.; Grozmani, N.; Lottermoser, B.G.; Schmitt, R.H. Application of Multispectral Computed Tomography for the Characterisation of Natural Graphite. J. Nondestruct. Test. 2023, 28, 3. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Tie, X.; Li, K.; Zhang, R.; Qi, Z.; Budde, A.; Grist, T.M.; Chen, G.H. A Quality-checked and Physics-constrained Deep Learning Method to Estimate Material Basis Images from single-kV Contrast-enhanced Chest CT Scans. Med. Phys. 2023, 50, 3368–3388. [Google Scholar] [CrossRef]
- Long, Z.; Feng, P.; He, P.; Wu, X.; Guo, X.; Ren, X.; Chen, M.; Gao, J.; Wei, B.; Cong, W. Fully Convolutional Pyramidal Residual Network for Material Discrimination of Spectral CT. IEEE Access 2019, 7, 167187–167194. [Google Scholar] [CrossRef]
- Nadkarni, R.; Allphin, A.; Clark, D.; Badea, C. Material Decomposition from Photon-Counting CT Using a Convolutional Neural Network and Energy-Integrating CT Training Labels. In Proceedings of the 7th International Conference on Image Formation in X-ray Computed Tomography, Baltimore, MD, USA, 12–16 June 2022; Stayman, J.W., Ed.; SPIE: Baltimore, MD, USA, 2022; p. 14. [Google Scholar] [CrossRef]
- Shi, Z.; Li, H.; Li, J.; Wang, Z.; Cao, Q. Raw-Data-Based Material Decomposition Using Modified U-Net for Low-Dose Spectral CT. In Proceedings of the 2019 12th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI), Suzhou, China, 19–21 October 2019; pp. 1–5. [Google Scholar] [CrossRef]
- Shi, Z.; Kong, F.; Cheng, M.; Cao, H.; Ouyang, S.; Cao, Q. Multi-Energy CT Material Decomposition Using Graph Model Improved CNN. Med. Biol. Eng. Comput. 2024, 62, 1213–1228. [Google Scholar] [CrossRef]
- Wang, G.; Liu, Z.; Huang, Z.; Zhang, N.; Luo, H.; Liu, L.; Shen, H.; Che, C.; Niu, T.; Liang, D.; et al. Improved GAN: Using a Transformer Module Generator Approach for Material Decomposition. Comput. Biol. Med. 2022, 149, 105952. [Google Scholar] [CrossRef] [PubMed]
- Weiss, M.; Brierley, N.; Von Schmid, M.; Meisen, T. End-To-End Deep Learning Material Discrimination Using Dual-Energy LINAC-CT. J. Nondestruct. Testing 2024, 29. [Google Scholar] [CrossRef]
- Azevedo, S.G.; Martz, H.E.; Aufderheide, M.B.; Brown, W.D.; Champley, K.M.; Kallman, J.S.; Roberson, G.P.; Schneberk, D.; Seetho, I.M.; Smith, J.A. System-Independent Characterization of Materials Using Dual-Energy Computed Tomography. IEEE Trans. Nucl. Sci. 2016, 63, 341–350. [Google Scholar] [CrossRef]
- Busi, M.; Mohan, K.A.; Dooraghi, A.A.; Champley, K.M.; Martz, H.E.; Olsen, U.L. Method for System-Independent Material Characterization from Spectral X-ray CT. NDT E Int. 2019, 107, 102136. [Google Scholar] [CrossRef]
- Firsching, M. Material Reconstruction in X-ray Imaging. Ph.D. Thesis, University of Erlangen-Nürnberg, Erlangen, Germany, 2009; pp. 1–104. Available online: https://ecap.nat.fau.de/wp-content/uploads/2017/05/2009_Firsching_Dissertation.pdf (accessed on 21 May 2024).
- Jumanazarov, D.; Alimova, A.; Abdikarimov, A.; Koo, J.; Poulsen, H.F.; Olsen, U.L.; Iovea, M. Material Classification Using Basis Material Decomposition from Spectral X-ray CT. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2023, 1056, 168637. [Google Scholar] [CrossRef]
- Roessl, E.; Proksa, R. K-Edge Imaging in x-Ray Computed Tomography Using Multi-Bin Photon Counting Detectors. Phys. Med. Biol. 2007, 52, 4679–4696. [Google Scholar] [CrossRef] [PubMed]
- Son, K.; Kim, D.; Lee, S. Improving the Accuracy of the Effective Atomic Number (EAN) and Relative Electron Density (RED) with Stoichiometric Calibration on PCD-CT Images. Sensors 2022, 22, 9220. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Cai, A.; Wu, W.; Zhang, T.; Liu, F.; Yu, H. IMD-MTFC: Image-Domain Material Decomposition via Material-Image Tensor Factorization and Clustering for Spectral CT. IEEE Trans. Radiat. Plasma Med. Sci. 2023, 7, 382–393. [Google Scholar] [CrossRef]
- Xing, Y.; Zhang, L.; Duan, X.; Cheng, J.; Chen, Z. A Reconstruction Method for Dual High-Energy CT With MeV X-rays. IEEE Trans. Nucl. Sci. 2011, 58, 537–546. [Google Scholar] [CrossRef]
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. arXiv 2015, arXiv:1505.04597. [Google Scholar]
- Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn, D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.; Heigold, G.; Gelly, S.; et al. An Image Is Worth 16x16 Words: Transformers for Image Recognition at Scale. arXiv 2021, arXiv:2010.11929. [Google Scholar]
- Segars, W.P.; Sturgeon, G.; Mendonca, S.; Grimes, J.; Tsui, B.M.W. 4D XCAT Phantom for Multimodality Imaging Research. Med. Phys. 2010, 37, 4902–4915. [Google Scholar] [CrossRef]
- Segars, W.P.; Mahesh, M.; Beck, T.J.; Frey, E.C.; Tsui, B.M.W. Realistic CT Simulation Using the 4D XCAT Phantom: Realistic CT Simulation Using the 4D XCAT Phantom. Med. Phys. 2008, 35, 3800–3808. [Google Scholar] [CrossRef]
- Yu, Z.; Noo, F.; Dennerlein, F.; Wunderlich, A.; Lauritsch, G.; Hornegger, J. Simulation Tools for Two-Dimensional Experiments in x-Ray Computed Tomography Using the FORBILD Head Phantom. Phys. Med. Biol. 2012, 57, N237–N252. [Google Scholar] [CrossRef]
- Sidky, E.Y.; Pan, X. Report on the AAPM Deep-Learning Spectral CT Grand Challenge. Med. Phys. 2024, 51, 772–785. [Google Scholar] [CrossRef]
- Maier, A.; Schebesch, F.; Syben, C.; Würfl, T.; Steidl, S.; Choi, J.H.; Fahrig, R. Precision Learning: Towards Use of Known Operators in Neural Networks. arXiv 2018, arXiv:1712.00374. [Google Scholar]
- Li, B.; François-Lavet, V.; Doan, T.; Pineau, J. Domain Adversarial Reinforcement Learning. arXiv 2021, arXiv:2102.07097. [Google Scholar]
- Johnson, J.; Alahi, A.; Fei-Fei, L. Perceptual Losses for Real-Time Style Transfer and Super-Resolution. arXiv 2016, arXiv:1603.08155. [Google Scholar]
- Chen, H.; Zhang, Y.; Kalra, M.K.; Lin, F.; Chen, Y.; Liao, P.; Zhou, J.; Wang, G. Low-Dose CT With a Residual Encoder-Decoder Convolutional Neural Network. IEEE Trans. Med. Imaging 2017, 36, 2524–2535. [Google Scholar] [CrossRef] [PubMed]
- Trends in GPU Price-Performance. 2022. Available online: https://epochai.org/blog/trends-in-gpu-price-performance (accessed on 17 May 2024).
- Modha, D.S.; Akopyan, F.; Andreopoulos, A.; Appuswamy, R.; Arthur, J.V.; Cassidy, A.S.; Datta, P.; DeBole, M.V.; Esser, S.K.; Otero, C.O.; et al. Neural Inference at the Frontier of Energy, Space, and Time. Science 2023, 382, 329–335. [Google Scholar] [CrossRef] [PubMed]
- Sevilla, J.; Heim, L.; Ho, A.; Besiroglu, T.; Hobbhahn, M.; Villalobos, P. Compute Trends Across Three Eras of Machine Learning. In Proceedings of the 2022 International Joint Conference on Neural Networks (IJCNN), Padua, Italy, 18–23 July 2022; pp. 1–8. [Google Scholar] [CrossRef]
- Qarout, Y.; Begg, M.; Fearon, L.; Russell, D. Trustworthy AI Framework; Manufacturing Technology Centre: Coventry, UK, 2024. [Google Scholar]
- Zengin, A.; Pye, S.; Cook, M.; Adams, J.; Wu, F.; O’Neill, T.; Ward, K. Ethnic Differences in Bone Geometry between White, Black and South Asian Men in the UK. Bone 2016, 91, 180–185. [Google Scholar] [CrossRef]
- European Commission. AI Act. 2024. Available online: https://digital-strategy.ec.europa.eu/en/policies/regulatory-framework-ai (accessed on 27 June 2024).
- German Institute for Standardisation. Second Edition of the German Standardization Roadmap AI. 2022. Available online: https://www.din.de/de/forschung-und-innovation/themen/kuenstliche-intelligenz/fahrplan-festlegen (accessed on 27 June 2024).
Tissue | in | in |
---|---|---|
brain | 4792 | 0.1694 |
fat | 2868 | 0.1784 |
Authors | Year |
---|---|
[18] | 2021 |
[19] | 2021 |
[20] | 2022 |
[21] | 2022 |
[22] | 2021 |
[23] | 2020 |
[24] | 2023 |
[25] | 2023 |
[26] | 2023 |
[27] | 2019 |
[28] | 2022 |
[29] | 2019 |
[30] | 2024 |
[17] | 2022 |
[31] | 2022 |
[32] | 2024 |
Author | Model Family | Dataset Origin | Dataset Size | Data Domain |
---|---|---|---|---|
Long 2019 [27] | FC-PRNet | scan | ≈200 | image |
Shi 2019 [29] | U-Net | simulation | 140 | projections |
Bussod 2021 [19] | U-Net | scan (synchrotron) | 450 K | projections |
Gong 2020 [23] | U-Net + InceptNet | scan | 110 K | image |
Geng 2021 [22] | PMS-GAN | sim + scan | 124 + 124 | projections |
Abascal 2021 [18] | U-Net | sim on real data | 5400 | image + projection |
Su 2022 [17] | U-Net | sim | 10 K | projection + image |
Fang 2022 [21] | U-Net | sim | 300 | image |
Nadkarni 2022 [28] | U-Net | scan | - | image |
Wang 2022 [31] | GAN | scan | 8159 | image |
Li 2023 [26] | U-Net + MLP | scans | 7218 | image |
Cao 2022 [20] | CNN | sim | ≈12 K | image |
Guo 2023 [24] | GAN + U-Net | scan | 1 K | image |
Shi 2024 [30] | U-Net | simulation | 35 K | image |
Krebbers 2023 [25] | sensor3D | scan + XRD | - | image |
Weiss 2024 [32] | U-Net | simulation | 64 K | image |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Weiss, M.; Meisen, T. Reviewing Material-Sensitive Computed Tomography: From Handcrafted Algorithms to Modern Deep Learning. NDT 2024, 2, 286-310. https://doi.org/10.3390/ndt2030018
Weiss M, Meisen T. Reviewing Material-Sensitive Computed Tomography: From Handcrafted Algorithms to Modern Deep Learning. NDT. 2024; 2(3):286-310. https://doi.org/10.3390/ndt2030018
Chicago/Turabian StyleWeiss, Moritz, and Tobias Meisen. 2024. "Reviewing Material-Sensitive Computed Tomography: From Handcrafted Algorithms to Modern Deep Learning" NDT 2, no. 3: 286-310. https://doi.org/10.3390/ndt2030018
APA StyleWeiss, M., & Meisen, T. (2024). Reviewing Material-Sensitive Computed Tomography: From Handcrafted Algorithms to Modern Deep Learning. NDT, 2(3), 286-310. https://doi.org/10.3390/ndt2030018