Imaging and Image Fusion Using GPR and Ultrasonic Array Data to Support Structural Evaluations: A Case Study of a Prestressed Concrete Bridge
Abstract
:1. Introduction
2. Measurements and Methodology
2.1. Physical Basis of Methods
2.2. Instruments
2.2.1. GPR Instrument
2.2.2. UEA Instrument
2.2.3. Data Format
2.3. Calibration and Confirmation
- GPR: Velocity of the electromagnetic wave, v = c = 114 m/μs (4.49 in/ns) and time off-set, ∆t = 1.11 ns. The former corresponds to a dielectric constant of 6.9, which indicates a relatively low moisture content.
- UEA: Shear wave velocity, v = Cs = 2.12 m/ms (83.5 in/ms) and time off-set, ∆t = 36 μs. The former is a typical value for medium-strength concrete.
2.4. Imaging and Image Fusion
2.4.1. Image Reconstruction
- GPR: Velocity of the electromagnetic wave, v = c = 88.5 m/μs (3.48 in/ns) and time off-set, ∆t = 1.11 ns. The former corresponds to a dielectric constant of 11.5, which indicates a relatively high moisture content.
- UEA: Shear wave velocity, v = Cs = 2.62 m/ms (103 in/ms) and time off-set, ∆t = 36 μs. The former indicates a relatively high stiffness, which in turn can be associated with a relatively high compression strength. This was in line with the rebound hammer measurements, which will be discussed in a forthcoming article.
2.4.2. Image Fusion
3. Results
4. Discussion and Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Instrument | GPR | UEA |
---|---|---|
Wave type | Electromagnetic | Elastic stress |
Peak frequency of transmitted pulse | 2.7 GHz | 40 kHz |
Sampling frequency (temporal) | 44.5 GHz 1 | 1 MHz |
Sampling frequency (spatial) | 2.5 mm | 10 mm 2 |
Number of channels, n; transducers per channel | 2; 1 | 8; 3 3 |
Transducer/channel spacing, s | 60 mm | 30 mm |
Number of waveform samples, ns | 511 | 1000 |
References
- Taylor, T.; Lasley, V.; Waddle, S.; Li, Y.; Sturgill, R. NCHRP Synthesis 548: Development and Use of As-Built Plans by State Departments of Transportation; The National Academy Press: Washington, DC, USA, 2020. [Google Scholar]
- Kuettenbaum, S.; Braml, T.; Taffe, A.; Kessler, S.; Maack, S. Reliability Assessment of Existing Structures Using Results of Nondestructive Testing. Struct. Concr. 2021, 22, 2895–2915. [Google Scholar] [CrossRef]
- Niederleithinger, E. NDE 4.0 in Civil Engineering. In Handbook of Nondestructive Evaluation 4.0; Meyendorf, N., Ida, N., Singh, R., Vrana, J., Eds.; Springer Nature Switzerland AG: Cham, Switzerland, 2022. [Google Scholar]
- Hermessi, H.; Mourali, O.; Zagrouba, E. Multimodal medical image fusion review: Theoretical background and recent advances. Signal Process. 2021, 183, 108036. [Google Scholar] [CrossRef]
- Ghassemian, H. A review of remote sensing image fusion methods. Inf. Fusion 2016, 32 Pt A, 75–89. [Google Scholar] [CrossRef]
- Krause, M.; Mielentz, F.; Milmann, B.; Mueller, W.; Schmitz, V.; Wiggenhauser, H. Ultrasonic imaging of concrete members using an array system. NDT E Int. 2001, 34, 403–408. [Google Scholar] [CrossRef]
- Schickert, M.; Krause, M.; Mueller, W. Ultrasonic imaging of concrete elements using reconstruction by synthetic aperture focusing technique. ASCE J. Mater. Civ. Eng. 2003, 15, 235–246. [Google Scholar] [CrossRef]
- Choi, H.; Popovics, J. NDE Application of Ultrasonic Tomography to a Full-Scale Concrete Structure. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2015, 62, 1076–1085. [Google Scholar] [CrossRef] [PubMed]
- Bittner, J.A.; Spalvier, A.; Popovics, J.S. Internal Imaging of Concrete Elements. Concr. Int. 2018, 40, 57–63. [Google Scholar]
- Kuchipudi, S.T.; Pudovikov, S.; Wiggenhauser, H.; Ghosh, D.; Rabe, U. Imaging of Vertical Surface-breaking Cracks in Concrete Members Using Ultrasonic Shear Wave Tomography. Sci. Rep. 2023, 13, 21744. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.; Tran, K.T.; Manh La, H.; Rawlinson, T.; Dinh, K. Detection of Delamination and Rebar Debonding in Concrete Structures with Ultrasonic SH-waveform Tomography. Constr. Build. Mater. 2022, 133, 104004. [Google Scholar] [CrossRef]
- Shokouhi, P.; Wolf, J.; Wiggenhauser, H. Detection of Delamination in Concrete Bridge Decks by Joint Amplitude and Phase Analysis of Ultrasonic Array Measurements. ASCE J. Bridge Eng. 2014, 19, 04013005. [Google Scholar] [CrossRef]
- Ghosh, D.; Kumar, R.; Ganguli, A.; Mukherjee, A. Nondestructive Evaluation of Rebar Corrosion–Induced Damage in Concrete through Ultrasonic Imaging. ASCE J. Mater. Civ. Eng. 2020, 32, 04020294. [Google Scholar] [CrossRef]
- Kohl, C.; Krause, M.; Maierhofer, C.; Woestmann, J. 2D- and 3D-visualization of NDT-data using data fusion technique. Mater. Struct. 2005, 38, 817–826. [Google Scholar] [CrossRef]
- Mehdinia, S.; Murtuz, A.K.M.G.; Schumacher, T.; Dusicka, P. Damage tracking in laboratory reinforced concrete bridge columns under reverse-cyclic loading using fusion-based imaging. Nondestruct. Test. Eval. 2024, 39, 536–556. [Google Scholar] [CrossRef]
- Cotic, P.; Jaglicic, Z.; Niederleithinger, E.; Stoppel, M.; Bsilijkov, V. Image Fusion for Improved Detection of Near-Surface Defects in NDT-CE Using Unsupervised Clustering Methods. J. Nondestruct. Eval. 2014, 33, 384–397. [Google Scholar] [CrossRef]
- Mehdinia, S.; Schumacher, T.; Song, X.; Wan, E. A Pipeline for Enhanced Multimodal 2D Imaging of Concrete Structures. Mater. Struct. 2021, 54, 228. [Google Scholar] [CrossRef]
- AASHTO. Manual for Bridge Evaluation; American Association of State Highway and Transportation Officials: Washington, DC, USA, 2018. [Google Scholar]
- ODOT. ODOT LRFR Manual; Oregon Department of Transportation: Salem, OR, USA, 2018.
- Clem, D.J.; Schumacher, T.; Deshon, J.P. A Consistent Approach for Processing and Interpretation of Data from Concrete Bridge Members Collected with a Hand-held GPR Device. Constr. Build. Mater. 2015, 86, 140–148. [Google Scholar] [CrossRef]
- Mayer, K.; Langenberg, K.J.; Krause, M.; Milmann, B.; Mielentz, F. Characterization of Reflector Types by Phase-Sensitive Ultrasonic Data Processing and Imaging. J. Nondestruct. Eval. 2008, 27, 35–45. [Google Scholar] [CrossRef]
- Kohl, C.; Krause, M.; Maierhofer, C.; Woestmann, J.; Wiggenhauser, H. 3D-Visualisation of NDT-Data using Data Fusion Technique. In Non-Destructive Testing in Civil Engineering (NDT-CE); NDT.net: Berlin, Germany, 2003. [Google Scholar]
- ACI. ACI 228.2R-13: Nondestructive Test Methods for Evaluation of Concrete in Structures; American Concrete Institute: Farmington Hills, MI, USA, 2013. [Google Scholar]
- Mathworks. MATLAB; Mathworks: Natick, MA, USA, 2022. [Google Scholar]
- Brewster, R. paint.net. 2024. Available online: https://www.getpaint.net/ (accessed on 4 June 2024).
- Langenberg, K.J.; Berger, M.; Kreutter, T.; Mayer, K.; Schmitz, V. Synthetic Aperture Focusing Technique Signal Processing. NDT Int. 1986, 19, 177–189. [Google Scholar] [CrossRef]
- James, P.A.; Dasarathy, B.V. Medical Image Fusion: A Survey of the State of the Art. Inf. Fusion 2014, 19, 4–19. [Google Scholar] [CrossRef]
- Elkarmoty, M.; Rupfle, J.; Helal, K.; Sholqamy, M.; Fath-Elbab, M.; Kollofrath, J.; Maier, B.; Hamza, A.G.; Ramirez-Pinero, A.; Schumacher, T.; et al. Localization and Shape Determination of a Hidden Corridor in the Great Pyramid of Giza Using Non-destructive Testing. NDT E Int. 2023, 139, 102809. [Google Scholar] [CrossRef]
- Mehdinia, S. Multimodal Imaging of Structural Concrete Using Image Fusion and Deep Learning. Ph.D. Dissertation, Portland State University, Portland, OR, USA, 2022. [Google Scholar]
- Gros, X.E. Applications of NDT Data Fusion; Springer Science + Business Media, LLC.: New York, NY, USA, 2001. [Google Scholar]
- Zeeuw, P.M. Wavelet and Image Fusion; CWI: Amsterdam, The Netherlands, 1998. [Google Scholar]
- Mitchell, H.B. Image Fusion—Theories, Techniques and Applications; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schumacher, T. Imaging and Image Fusion Using GPR and Ultrasonic Array Data to Support Structural Evaluations: A Case Study of a Prestressed Concrete Bridge. NDT 2024, 2, 363-377. https://doi.org/10.3390/ndt2030022
Schumacher T. Imaging and Image Fusion Using GPR and Ultrasonic Array Data to Support Structural Evaluations: A Case Study of a Prestressed Concrete Bridge. NDT. 2024; 2(3):363-377. https://doi.org/10.3390/ndt2030022
Chicago/Turabian StyleSchumacher, Thomas. 2024. "Imaging and Image Fusion Using GPR and Ultrasonic Array Data to Support Structural Evaluations: A Case Study of a Prestressed Concrete Bridge" NDT 2, no. 3: 363-377. https://doi.org/10.3390/ndt2030022
APA StyleSchumacher, T. (2024). Imaging and Image Fusion Using GPR and Ultrasonic Array Data to Support Structural Evaluations: A Case Study of a Prestressed Concrete Bridge. NDT, 2(3), 363-377. https://doi.org/10.3390/ndt2030022