Enhancing Anesthetic Patient Education Through the Utilization of Large Language Models for Improved Communication and Understanding
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. ChatGPT-4o
3.2. Claude 3
3.3. Gemini
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Alowais, S.A.; Alghamdi, S.S.; Alsuhebany, N.; Alqahtani, T.; Alshaya, A.I.; Amohareb, S.N.; Aldairem, A.; Alrashed, M.; Saleh, K.B.; Badreldin, H.A.; et al. Revolutionizing healthcare: The role of artificial intelligence in clinical practice. BMC Med. Educ. 2023, 23, 689. [Google Scholar] [CrossRef] [PubMed]
- Meng, X.; Yan, X.; Zhang, K.; Liu, D.; Cui, X.; Yang, Y.; Zhang, M.; Cao, C.; Wang, J.; Wang, X.; et al. The application of large language models in medicine: A scoping review. iScience 2024, 27, 109713. [Google Scholar] [CrossRef]
- Bajwa, J.; Munir, U.; Nori, A.; Williams, B. Artificial Intelligence in healthcare: Transforming the practice of medicine. Future Healthc. J. 2021, 8, 188–194. [Google Scholar] [CrossRef] [PubMed]
- Lumb, A.B.; Latchford, G.J.; Bekker, H.L.; Hetmanski, A.R.; Thomas, C.R.; Schofield, C.E. Investigating the causes of patient anxiety at induction of anaesthesia: A mixed methods study. J. Perioper. Pract. 2021, 31, 246–254. [Google Scholar] [CrossRef]
- Arefayne, N.R.; Getahun, A.B.; Melkie, T.B.; Endalew, N.S.; Nigatu, Y.A. Patients’ knowledge and perception of anesthesia and the anesthetists: Cross-sectional study. Ann. Med. Surg. 2022, 78, 103740. [Google Scholar] [CrossRef] [PubMed]
- Chew, S.T.; Tan, T.; Tan, S.S.; Ip-Yam, P.C. A survey of patients’ knowledge of anaesthesia and perioperative care. Singap. Med. J. 1998, 39, 399–402. [Google Scholar]
- Eyelade, O.R.; Akinyemi, J.O.; Adewole, I.F. Patients’ perception and knowledge of anaesthesia and anaesthetists- a questionnaire survey: Original research. S. Afr. J. Anaesth. Analg. 2010, 16, 28–31. [Google Scholar] [CrossRef]
- Singh, P.M.; Kumar, A.; Anjan, T. Rural perspective about anesthesia and anesthesiologist A cross sectional study. J. Anaesthesiol. Clin. Pharmacol. 2013, 29, 228–234. [Google Scholar] [CrossRef] [PubMed]
- Ali, Z.; Ahsan, Z.; Liaqat, N.; Din, I. Bridging the gap: Evaluation of preoperative patients’ education by comparing expectations and real perioperative surgical experiences: A mixed-methods descriptive cross-sectional study. BMC Health Serv. Res. 2024, 24, 964. [Google Scholar] [CrossRef] [PubMed]
- Menon, D.; Shilpa, K. “Chatting with GPT”: Analyszing the factors influencing users’ intention to Use the Open AI’s ChatGPT using the UTAUT model. Heliyon 2023, 9, e20962. [Google Scholar] [CrossRef]
- Zhou, S.; Luo, X.; Chen, C.; Jiang, H.; Yang, C.; Ran, G.; Yu, J.; Yin, C. The performance of large language model-powered chatbots compared to oncology physicians on colorectal cancer queries. Int. J. Surg. 2024, 110, 6509–6517. [Google Scholar] [CrossRef] [PubMed]
- Thomas, G.; Hartley, R.D.; Kincaid, J.P. Test-Retest and Inter-Analyst Reliability of the Automated Readability Index, Flesch Reading Ease Score, and the Fog Count. J. Read. Behav. 1975, 7, 149–154. [Google Scholar] [CrossRef]
- Flesch, R. A New Readability Yardstick. J. Appl. Psychol. 1948, 32, 221–233. [Google Scholar] [CrossRef]
- Coleman, M.; Liau, T.L. A Computer Readability Formula Designed for Machine Scoring. J. Appl. Psychol. 1975, 60, 283–284. [Google Scholar] [CrossRef]
- Fefer, M.; Lamb, C.C.; Shen, A.H.; Clardy, P.; Muralidhar, V.; Devlin, P.M.; Dee, E.C. Multilingual Analysis of the Quality and Readability of Online Health Information on the Adverse Effects of Breast Cancer Treatments. JAMA Surg. 2020, 155, 781. [Google Scholar] [CrossRef] [PubMed]
- Sullivan, G.M.; Artino, A.R. Analyzing and Interpreting Data from Likert-Type Scales. J. Grad. Med. Educ. 2013, 5, 541–542. [Google Scholar] [CrossRef]
- Flesch Reading Ease and the Flesch Kincaid Grade Level. Readable. Available online: https://readable.com/readability/flesch-reading-ease-flesch-kincaid-grade-level/ (accessed on 21 October 2024).
- Anesthesia. Available online: https://www.nigms.nih.gov/education/fact-sheets/Pages/anesthesia.aspx (accessed on 5 November 2024).
- Gottschalk, A.; Van Aken, H.; Zenz, M.; Standl, T. Is Anesthesia Dangerous? Dtsch. Ärzteblatt Int. 2011, 108, 469–474. [Google Scholar] [CrossRef] [PubMed]
- Park, B.; Choi, J. Identifying the Source of Generation for Large Language Models. arXiv 2024, arXiv:2407.12846. [Google Scholar]
- Wang, D.; Yang, Q.; Abdul, A.; Lim, B.Y. Designing Theory-Driven User-Centric Explainable AI. In Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems—CHI’19 2019, Glasgow, UK, 4–9 May 2019. [Google Scholar] [CrossRef]
- Lomas, A.; Broom, M.A. Large Language Models for Overcoming Language Barriers in Obstetric Anaesthesia: A Structured Assessment. Int. J. Obstet. Anesth. 2024, 60, 104249. [Google Scholar] [CrossRef] [PubMed]
- Menick, J.; Trebacz, M.; Mikulik, V.; Aslanides, J.; Song, F.; Chadwick, M.; Glaese, M.; Young, S.; Campbell-Gillingham, L.; Irving, G.; et al. Teaching language models to support answers with verified quotes. arXiv 2024, arXiv:2203.11147. [Google Scholar]
- Limitations of LLMs: Bias, Hallucinations, and More. Available online: https://learnprompting.org/docs/basics/pitfalls#5-bias (accessed on 23 November 2024).
- Artificial Intelligence in Primary Care. RACGP. Available online: https://www.racgp.org.au/advocacy/position-statements/view-all-position-statements/clinical-and-practice-management/artificial-intelligence-in-primary-care (accessed on 5 January 2025).
- Tait, A.R.; Malviya, S.; Voepel-Lewis, T. Obtaining Informed Consent. Anesthesiology 2002, 96, 1278. [Google Scholar] [CrossRef]
- Rosique, I.; Pérez-Cárceles, M.D.; Romero-Martin, M.; Osuna, E.; Luna, A. The Use and Usefulness of Information for Patients Undergoing Anaesthesia. Med. L. 2006, 25, 715–727. [Google Scholar]
- Kianian, R.; Sun, D.; Rojas-Carabali, W.; Agrawal, R.; Tsui, E. Large Language Models May Help Patients Understand Peer-Reviewed Scientific Articles About Ophthalmology: Development and Usability Study. J. Med. Internet Res. 2024, 26, e59843. [Google Scholar] [CrossRef] [PubMed]
- Jlala, H. Anesthesiologists’ Perception of Patients’ Anxiety under Regional Anesthesia. Local Reg. Anesth. 2010, 3, 65–71. [Google Scholar] [CrossRef] [PubMed]
- Celik, F.; Edipoglu, I.S. Evaluation of Preoperative Anxiety and Fear of Anesthesia Using APAIS Score. Eur. J. Med. Res. 2018, 23, 41. [Google Scholar] [CrossRef] [PubMed]
- Aydin, S.; Karabacak, M.; Vlachos, V.; Margetis, K. Large Language Models in Patient Education: A Scoping Review of Applications in Medicine. Front. Med. 2024, 11, 1477898. [Google Scholar] [CrossRef] [PubMed]
- Busch, F.; Hoffmann, L.; Rueger, C.; van Dijk, E.H.; Kader, R.; Ortiz-Prado, E.; Makowski, M.R.; Saba, L.; Hadamitzky, M.; Kather, J.N.; et al. Systematic Review of Large Language Models for Patient Care: Current Applications and Challenges. medRxiv (Cold Spring Harb. Lab.) 2024. [Google Scholar] [CrossRef]
- Ravi, A.; Neinstein, A.; Murray, S.G. Large Language Models and Medical Education: Preparing for a Rapid Transformation in How Trainees Will Learn to Be Doctors. ATS Sch. 2023, 4, 282–292. [Google Scholar] [CrossRef]
- Lim, B.; Seth, I.; Bulloch, G.; Xie, Y.; Hunter-Smith, D.J.; Rozen, W.M. Evaluating the Efficacy of Major Language Models in Providing Guidance for Hand Trauma Nerve Laceration Patients: A Case Study on Google’s AI BARD, Bing AI, and ChatGPT. Plast. Aesthetic Res. 2023, 10, 43. [Google Scholar] [CrossRef]
- Mesko, B.; Gorog, M. A short guide for medical professionals in the era of artificial intelligence. NPJ Digit. Med. 2020, 3, 126. [Google Scholar] [CrossRef]
- Seo, J.B. The Role of Doctors in the Age of Artificial Intelligence. J. Korean Med. Assoc. 2019, 62, 136–139. [Google Scholar] [CrossRef]
- Liu, X.; Keane, P.A.; Denniston, A.K. Time to regenerate: The doctor in the age of artificial intelligence. J. R. Soc. Med. 2018, 111, 113–116. [Google Scholar] [CrossRef] [PubMed]
Prompt Number | Prompt |
---|---|
1 | Why should I fast before anesthesia? |
2 | How long before my anesthesia should I give up smoking? |
3 | How many standards of alcohol per day is acceptable before my anesthesia? |
4 | What medications should I stop taking before my anesthesia? And how long before my anesthesia should I stop taking them? |
5 | I am an insulin-dependent diabetic, should I still take my insulin before anesthesia? |
6 | I have atrial fibrillation, is it safe for me to have anesthesia? |
7 | How is the anesthetic administered? |
8 | Will I have pain after the procedure with anesthesia? |
9 | How long will it take for the anesthesia to wear off? |
10 | What is the difference between anesthesia and sedation? |
11 | Is there anything I should avoid after having anesthesia? |
12 | What are the risks of anesthesia? |
13 | Will anesthesia stop me from breathing? |
14 | What if I wake up in the middle of the anesthesia? |
15 | How will anesthesia affect my pregnancy? |
LLM | Prompt No. | FKGL | FRES | Coleman–Liau Index | DISCERN Score |
---|---|---|---|---|---|
ChatGPT-4o | 1 | 10.7 | 36.9 | 16.9 | 45 |
2 | 12.9 | 30.1 | 17.7 | 47 | |
3 | 15.3 | 15.4 | 19.3 | 57 | |
4 | 8.9 | 43.1 | 15.5 | 39 | |
5 | 12.5 | 33.7 | 16.7 | 40 | |
6 | 14.9 | 16.3 | 19.3 | 43 | |
7 | 9.6 | 44.4 | 12.6 | 35 | |
8 | 12.0 | 40.5 | 14.9 | 42 | |
9 | 7.7 | 59.4 | 11.5 | 38 | |
10 | 9.5 | 48.7 | 15.5 | 44 | |
11 | 9.6 | 41.3 | 15.9 | 36 | |
12 | 14.2 | 25.4 | 18.1 | 38 | |
13 | 14.2 | 16.3 | 19.5 | 47 | |
14 | 11.8 | 38.1 | 15.9 | 46 | |
15 | 10.6 | 39.0 | 15.5 | 38 | |
Mean ± St Dev | 11.6 ± 2.4 | 35.2 ± 12.6 | 16.3 ± 2.3 | 42.6 ± 5.5 | |
Claude 3 | 1 | 12.4 | 36 | 16.6 | 56 |
2 | 25.8 | 2.1 | 16.7 | 54 | |
3 | 18.4 | 13.1 | 17.1 | 46 | |
4 | 13.5 | 30.1 | 16.8 | 51 | |
5 | 19.2 | 20.7 | 15.6 | 53 | |
6 | 19.1 | 3.9 | 20.2 | 48 | |
7 | 19.4 | 6.0 | 18.1 | 42 | |
8 | 14.4 | 31.2 | 16.3 | 48 | |
9 | 15.4 | 25.3 | 15.3 | 46 | |
10 | 19.5 | 0.0 | 21.0 | 44 | |
11 | 14.9 | 22.0 | 19.0 | 41 | |
12 | 18.6 | 0.0 | 23.7 | 44 | |
13 | 13.3 | 31.4 | 16.6 | 47 | |
14 | 12.3 | 26.9 | 17.2 | 55 | |
15 | 11.8 | 31.1 | 17.3 | 44 | |
Mean ± St Dev | 16.5 ± 3.9 | 18.4 ±13.6 | 17.8 ± 2.3 | 47.9 ± 4.7 | |
Gemini | 1 | 11.8 | 37.4 | 16.7 | 55 |
2 | 11.4 | 45.8 | 15.4 | 50 | |
3 | 14.3 | 21.3 | 18.5 | 53 | |
4 | 12.3 | 32.2 | 17.6 | 53 | |
5 | 16.5 | 19.8 | 17.8 | 51 | |
6 | 12.2 | 31.9 | 16.9 | 58 | |
7 | 10.2 | 44.8 | 13.7 | 47 | |
8 | 14.0 | 31.0 | 16.7 | 44 | |
9 | 13.2 | 34.1 | 15.2 | 49 | |
10 | 11.8 | 39.7 | 15.5 | 50 | |
11 | 11.3 | 40.6 | 15.5 | 52 | |
12 | 16.5 | 9.4 | 20.7 | 52 | |
13 | 11.1 | 41.2 | 15.8 | 49 | |
14 | 16.3 | 18.4 | 17.9 | 53 | |
15 | 15.0 | 21.6 | 18.3 | 47 | |
Mean ± St Dev | 13.2 ± 2.1 | 31.3 ± 10.9 | 16.8 ± 1.7 | 50.9 ± 3.4 |
Likert Scale | |||
---|---|---|---|
Criteria | ChatGPT-4o | Claude 3 | Gemini |
Clarity | 3 | 5 | 5 |
Comprehension | 3 | 5 | 4 |
Readability | 5 | 3 | 3 |
Patient friendliness | 5 | 5 | 5 |
Informativeness | 3 | 5 | 4 |
Total | 19 | 23 | 21 |
ChatGPT-4o | Claude 3 | Gemini | |
---|---|---|---|
ChatGPT-4o | - | −0.42, p-values = 0.67 | 0.016, p-value = 0.99 |
Claude 3 | 0.42, p-values = 0.67 | - | 0.99, p-value = 0.33 |
Gemini | −0.016, p-value = 0.99 | −0.99, p-value = 0.33 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ratnagandhi, J.A.; Godavarthy, P.; Gnaneswaran, M.; Lim, B.; Vittalraj, R. Enhancing Anesthetic Patient Education Through the Utilization of Large Language Models for Improved Communication and Understanding. Anesth. Res. 2025, 2, 4. https://doi.org/10.3390/anesthres2010004
Ratnagandhi JA, Godavarthy P, Gnaneswaran M, Lim B, Vittalraj R. Enhancing Anesthetic Patient Education Through the Utilization of Large Language Models for Improved Communication and Understanding. Anesthesia Research. 2025; 2(1):4. https://doi.org/10.3390/anesthres2010004
Chicago/Turabian StyleRatnagandhi, Jeevan Avinassh, Praghya Godavarthy, Mahindra Gnaneswaran, Bryan Lim, and Rupeshraj Vittalraj. 2025. "Enhancing Anesthetic Patient Education Through the Utilization of Large Language Models for Improved Communication and Understanding" Anesthesia Research 2, no. 1: 4. https://doi.org/10.3390/anesthres2010004
APA StyleRatnagandhi, J. A., Godavarthy, P., Gnaneswaran, M., Lim, B., & Vittalraj, R. (2025). Enhancing Anesthetic Patient Education Through the Utilization of Large Language Models for Improved Communication and Understanding. Anesthesia Research, 2(1), 4. https://doi.org/10.3390/anesthres2010004