Bioerosion Structures on Dinosaur Bones Probably Made by Multituberculate Mammals and Dermestid Beetles (Guichón Formation, Late Cretaceous of Uruguay)
Abstract
:1. Introduction
2. Materials and Methods
3. Geological Setting and Age
4. Results
5. Discussion
5.1. Tracemakers and Biology
5.2. Taxonomy of Bones
5.3. Taphonomy, Ecology of the Tracemakers, and Environment
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rogers, R.R. Non-marine borings in dinosaur bones from the Upper Cretaceous Two Medicine Formation, northwestern Montana. J. Vertebr. Paleontol. 1992, 12, 528–531. [Google Scholar] [CrossRef]
- Britt, B.B.; Scheetz, R.D.; Dangerfield, A. A suite of dermestid beetle traces on dinosaur bone from the Upper Jurassic Morrison Formation, Wyoming, USA. Ichnos 2008, 2, 59–71. [Google Scholar] [CrossRef]
- Bader, K.S.; Hasiotis, S.T.; Martin, L.D. Application of forensic science techniques to trace fossils on dinosaur bones from a Quarry in the Upper Jurassic Morrison Formation, Northeastern Wyoming. Palaios 2009, 24, 140–158. [Google Scholar] [CrossRef]
- Xing, L.; Roberts, E.M.; Harris, J.D.; Gringras, M.K.; Ran, H.; Zhang, J.; Xu, X.; Burns, M.E.; Dong, Z. Novel insect traces on a dinosaur skeleton from the Lower Jurassic Lufeng Formation of China. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2013, 388, 58–68. [Google Scholar] [CrossRef]
- Xing, L.; Parkinson, A.H.; Ran, H.; Pirrone, C.A.; Roberts, E.M.; Zhang, J.; Burns, M.E.; Wang, T.; Choiniere, J. The earliest fossil evidence of bone boring by terrestrial invertebrates, examples from China and South Africa. Hist. Biol. 2015, 28, 1108–1117. [Google Scholar] [CrossRef]
- Pirrone, C.A.; Buatois, L.A.; González-Riga, B. A New Ichnospecies of Cubiculum from Upper Cretaceous Dinosaur Bones in Western Argentina. Ichnos 2014, 21, 251–260. [Google Scholar] [CrossRef]
- Gianechini, F.A.; de Valais, S. Bioerosion trace fossils on bones of the Cretaceous South American theropod Buitreraptor gonzalezorum Makovicky, Apesteguía and Agnolín, 2005 (Deinonychosauria). Hist. Biol. 2015, 28, 533–549. [Google Scholar] [CrossRef]
- Paes-Neto, V.D.; Parkinson, A.H.; Pretto, F.A.; Soares, M.B.; Schwanke, C.; Schultz, C.L.; Kellner, A.W. Oldest evidence of osteophagic behavior by insects from the Triassic of Brazil. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2016, 453, 30–41. [Google Scholar] [CrossRef]
- Dyer, A.D.; LeBlanc, A.R.H.; Currie, P.J. Variation in lesion origins, histologic support for intra vitam bone resorption and invertebrate bone boring in pachycephalosaur cranial domes. In Optimization of Bayesian Inference Framework for the Analysis of Morphological Data by Using Empirical Character State Frequencies, Proceedings of the Paleontological Society, 7th Biennial Symposium, Vertebrate Anatomy Morphology Palaeontology, Edmonton, Alberta, 10–11 March 2018; University of Alberta: Edmonton, Alberta, 2018; ISSN 2292-1389. [Google Scholar]
- Ozeki, C.S.; Martill, D.M.; Smith, R.E.; Ibrahim, N. Biological modification of bones in the Cretaceous of North Africa. Cretac. Res. 2020, 114, 104529. [Google Scholar] [CrossRef]
- Benyoucef, M.; Bouchemla, I. First study of continental bioerosion traces on vertebrate remains from the Cretaceous of Algeria. Cretac. Res. 2024, 152, 105678. [Google Scholar] [CrossRef]
- Martin, L.D.; West, D.L. The recognition and use of dermestid (Insecta, Coleoptera) pupation chambers in paleoecology. Palaeogeogr. Palaeoclimatol. Palaeoecol. 1995, 113, 303–310. [Google Scholar] [CrossRef]
- Laudet, F.; Antoine, P.O. Des chambres de pupation de Dermestidae (Insecta: Coleoptera) sur un os de mammifère tertiaire (phosphorites du Quercy): Implications taphonomiques et paléoenvironnementales. Geobios 2004, 37, 376–381. [Google Scholar] [CrossRef]
- Backwell, L.R.; Parkinson, A.H.; Roberts, E.M.; d’Errico, F.; Huchet, J.B. Criteria for identifying bone modification by termites in the fossil record. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2012, 337–338, 72–87. [Google Scholar] [CrossRef]
- Holden, A.R.; Harris, J.M.; Timm, R.M. Paleoecological and taphonomic implications of insect-damaged Pleistocene vertebrate remains from Rancho La Brea, Southern California. PLoS ONE 2013, 8, e67119. [Google Scholar] [CrossRef]
- Parkinson, A.H. Traces of Insect Activity at Cooper’s D Fossil Site (Cradle of Humankind, South Africa). Ichnos 2016, 23, 322–339. [Google Scholar] [CrossRef]
- Perea, D.; Verde, M.; Montenegro, F.; Toriño, P.; Manzuetti, A.; Roland, G. Insect trace fossils in glyptodonts from Uruguay. Ichnos 2020, 27, 70–79. [Google Scholar] [CrossRef]
- Acosta-Hospitaleche, C.; Jones, W.; Rinderknecht, A. Bioerosive traces in a Pleistocene Anatid bone from Uruguay. J. S. Am. Earth Sci. 2020, 107, 103–120. [Google Scholar] [CrossRef]
- Irazoqui, F.; Acosta-Hospitaleche, C. Bioerosive traces in fossil penguin bones (Aves, Sphenisciformes) from the Eocene of Marambio/Seymour Island (West Antarctica). Hist. Biol. 2021, 34, 2341–2349. [Google Scholar] [CrossRef]
- Mikulás, R.; Kadlecová, E.; Fejfar, O.; Dvorák, Z. Three New Ichnogenera of Biting and Gnawing Traces on Reptilian and Mammalian Bones: A Case Study from the Miocene of the Czech Republic. Ichnos 2006, 13, 113–127. [Google Scholar] [CrossRef]
- Neumann, A.C. Observations on coastal erosion in Bermuda and measurements of the sponge Cliona Lampa. Limnol. Oceanogr. 1966, 11, 92–108. [Google Scholar] [CrossRef]
- Höpner, S.; Bertling, M. Holes in bones: Ichnotaxonomy of bone borings. Ichnos 2017, 24, 259–282. [Google Scholar] [CrossRef]
- Pirrone, C.A.; Buatois, L.A.; Bromley, R.G. Ichnotaxobases for Bioerosion Trace Fossils in Bones. J. Paleontol. 2014, 88, 195–203. [Google Scholar] [CrossRef] [PubMed]
- Lucas, S.G. Two new, substrate-controlled nonmarine ichnofacies. Ichnos 2016, 23, 248–261. [Google Scholar] [CrossRef]
- Roberts, E.; Rogers, R.; Foreman, B. Continental insect borings in dinosaur bone: Examples from the Late Cretaceous of Madagascar and Utah. J. Paleontol. 2007, 81, 201–208. [Google Scholar] [CrossRef]
- McHugh, J.B.; Drumheller, S.K.; Riedel, A.; Kane, M. Decomposition of dinosaurian remains inferred by invertebrate traces on vertebrate bone reveal new insights into Late Jurassic ecology, decay, and climate in western Colorado. PeerJ 2020, 8, e9510. [Google Scholar] [CrossRef]
- Murphy, M.A.; Salvador, A. International Stratigraphic Guide -An abridged version. Episodes 1999, 22, 255271. [Google Scholar] [CrossRef]
- Cohen, K.M.; Finney, S.C.; Gibbard, P.L.; Fan, J.X. The ICS International Chronostratigraphic Chart. Episodes 2023, 36, 199–204. [Google Scholar] [CrossRef]
- Bossi, L. Geología del Uruguay; Departamento de Publicaciones de la Universidad de la República: Montevideo, Uruguay, 1966; p. 466. [Google Scholar]
- Lambert, R. Memoria explicativa de un mapa geológico de reconocimiento del Depto. de Paysandú y los alrededores de Salto. Bol. Inst. Geol. Uruguay. 1940, 27, 1–41. [Google Scholar]
- Goso, C.; Perea, D. El Cretácico post-basáltico de la cuenca litoral oeste del río Uruguay: Geología y paleontología. In Cuencas Sedimentarias de Uruguay, Mesozoico; Veroslavsky, G., Ubilla, M., Martínez, S., Eds.; DIRAC: Montevideo, Uruguay, 2003; pp. 141–169. [Google Scholar]
- Soto, M.; Perea, D.; Versolavsky, G.; Rinderknecht, A.; Ubilla, M.; Lecuona, G. Nuevos hallazgos de restos de dinosaurios y consideraciones sobre la edad de la Formación Guichón (Cretácico, Uruguay). Rev. Soc. Urug. Geol. 2008, 15, 11–23. [Google Scholar]
- Soto, M.; Perea, D.; Cambiaso, A. First sauropod (Dinosauria: Saurischia) remains from the Guichón Formation, Late Cretaceous of Uruguay. J. S. Am. Earth Sci. 2011, 33, 68–79. [Google Scholar] [CrossRef]
- Soto, M.; Carballido, J.; Langer, M.; Silva, J.; Montenegro, F.; Perea, D. Phylogenetic relationships of a new titanosaur (Dinosauria, Sauropoda) from the Upper Cretaceous of Uruguay. Cretac. Res. 2024, 160, 105894. [Google Scholar] [CrossRef]
- Veroslavsky, G.; Aubet NMartínez, S.A.; Heman, L.M.; Cabrera FMesa, V. Late Cretaceous stratigraphy of the southeastern Chaco- Paraná Basin (“Norte Basin”-Uruguay): The Maastrichtian Age of the calcretization process. UNESP Geociências 2019, 38, 427–449. [Google Scholar] [CrossRef]
- Rusconi, C. Sobre reptiles cretáceos del Uruguay (Uruguaysuchus aznarezi, n.g. n.sp.) y sus relaciones con los notosúquidos de Patagonia. Bol. Inst. Geol. Perf. Urug. 1933, 19, 3–64. [Google Scholar]
- Soto, M.; Pol, D.; Perea, D. A new specimen of Uruguaysuchus aznarezi (Crocodyliformes: Notosuchia) from the middle Cretaceous of Uruguay and its phylogenetic relationships. Zool. J. Linn. Soc. 2012, 163, 5158–5193. [Google Scholar]
- Longrich, N.R.; Ryan, M.J. Mammalian tooth marks on the bones of dinosaurs and other late cretaceous vertebrates. Palaeontology 2010, 53, 703–709. [Google Scholar] [CrossRef]
- Cunha, L.S.; Dentzien-Dias, P.; Francischini, H. New bioerosion traces in rhynchosaur bones from the Upper Triassic of Brazil and the oldest occurrence of the ichnogenera Osteocallis and Amphifaoichnus. Acta Palaeontol. Pol. 2024, 69, 1–21. [Google Scholar] [CrossRef]
- Paik, I.S. Bone chip-filled burrows associated with bored dinosaur bone in floodplain paleosols of the Cretaceous Hasandong Formation, Korea. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2000, 157, 213–225. [Google Scholar] [CrossRef]
- Martín-Vega, D.; Díaz-Aranda, L.M.; Baz, A.; Cifrián, B. Effect of Temperature on the Survival and Development of Three Forensically Relevant Dermestes Species (Coleoptera: Dermestidae). J. Med. Entomol. 2017, 54, 1140–1150. [Google Scholar] [CrossRef] [PubMed]
- Howe, R.W. The effect of temperature and humidity on the length of the life cycle of Dermestes frischii Kug. Entomologist 1953, 86, 109–113. [Google Scholar]
- Coombs, C.W. The effect of temperature and relative humidity upon the development and fecundity of Dermestes lardarius L. (Coleoptera, Dermestidae). J. Stored Prod. Res. 1978, 4, 111–119. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Perea, D.; Verde, M.; Mesa, V.; Soto, M.; Montenegro, F. Bioerosion Structures on Dinosaur Bones Probably Made by Multituberculate Mammals and Dermestid Beetles (Guichón Formation, Late Cretaceous of Uruguay). Foss. Stud. 2025, 3, 2. https://doi.org/10.3390/fossils3010002
Perea D, Verde M, Mesa V, Soto M, Montenegro F. Bioerosion Structures on Dinosaur Bones Probably Made by Multituberculate Mammals and Dermestid Beetles (Guichón Formation, Late Cretaceous of Uruguay). Fossil Studies. 2025; 3(1):2. https://doi.org/10.3390/fossils3010002
Chicago/Turabian StylePerea, Daniel, Mariano Verde, Valeria Mesa, Matías Soto, and Felipe Montenegro. 2025. "Bioerosion Structures on Dinosaur Bones Probably Made by Multituberculate Mammals and Dermestid Beetles (Guichón Formation, Late Cretaceous of Uruguay)" Fossil Studies 3, no. 1: 2. https://doi.org/10.3390/fossils3010002
APA StylePerea, D., Verde, M., Mesa, V., Soto, M., & Montenegro, F. (2025). Bioerosion Structures on Dinosaur Bones Probably Made by Multituberculate Mammals and Dermestid Beetles (Guichón Formation, Late Cretaceous of Uruguay). Fossil Studies, 3(1), 2. https://doi.org/10.3390/fossils3010002