Two-Step Glaciation of Antarctica: Its Tectonic Origin in Seaway Opening and West Antarctica Uplift
Abstract
:1. Introduction
2. Methodology
2.1. Box Model
2.2. Antarctic Temperature
2.3. Glacial Regimes
3. Results
3.1. Miocene Climate
3.2. Model Sensitivity
4. Discussion
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Symbols
Planetary albedo of box-i | |
Atmospheric absorption (=) | |
Ice cover (fraction of cold-box area) | |
Area of Antarctic plateau (=) | |
Area of West Antarctica (=) | |
Area of Antarctica (=) | |
Incoming SW flux of box-i | |
Absorbed SW flux of box-i | |
Global absorbed SW flux | |
Convective flux | |
Excess reflectance of ice over land | |
Global sensitivity [=] | |
Local sensitivity [=] | |
Effective sensitivity [≡] | |
Maximum for partial-to-full icing [=] | |
Minimum for partial-to-full icing [=] | |
Glacial marking temperature (=) | |
SST (same as summer SAT) of box-i | |
Initial Antarctic SST at EOB (=) | |
SAT of box-i | |
Latitudinal distance | |
Air-sea exchange coefficient (=) | |
Lapse rate (=) | |
Atmospheric entropy production | |
Oceanic entropy production |
References
- Cramer, B.S.; Miller, K.G.; Barrett, P.J.; Wright, J.D. Late Cretaceous–Neogene trends in deep ocean temperature and continental ice volume: Reconciling records of benthic foraminiferal geochemistry (δ18O and Mg/Ca) with sea level history. J. Geophys. Res. Oceans 2011, 116, C12023. [Google Scholar] [CrossRef]
- Kennett, J.P. Cenozoic evolution of Antarctic glaciation, the circum-Antarctic oceans and their impact on global paleoceanography. J. Geophys. Res. 1977, 82, 3843–3859. [Google Scholar] [CrossRef]
- Toggweiler, J.R.; Bjornsson, H. Drake Passage and palaeoclimate. J. Quat. Sci. 2000, 15, 319–328. [Google Scholar] [CrossRef]
- Zachos, J.; Pagani, M.; Sloan, L.; Thomas, E.; Billups, K. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 2001, 292, 686–693. [Google Scholar] [CrossRef]
- Ou, H.W. Northern Hemisphere Glaciation: Its Tectonic Origin in the Neogene Uplift. Glacies 2024, 1, 19–34. [Google Scholar] [CrossRef]
- Ohmura, A. New temperature distribution maps for Greenland. Z. Für. Gletscherkunde Und Glazialgeol. 1987, 23, 1–45. [Google Scholar]
- Miller, K.G.; Fairbanks, R.G.; Mountain, G.S. Tertiary oxygen isotope synthesis, sea level history, and continental margin erosion. Paleoceanography 1987, 2, 1–19. [Google Scholar] [CrossRef]
- Scher, H.D.; Martin, E.E. Timing and climatic consequences of the opening of Drake Passage. Science 2006, 312, 428–430. [Google Scholar] [CrossRef] [PubMed]
- De Conto, R.D.; Pollard, D. Rapid Cenozoic glaciation of Antarctica triggered by declining atmospheric CO2. Nature 2003, 421, 245–249. [Google Scholar] [CrossRef]
- Gasson, E.G.W.; Keisling, B.A. The Antarctic Ice Sheet: A paleoclimate modeling perspective. Oceanography 2020, 33, 90–100. [Google Scholar] [CrossRef]
- Halberstadt, A.R.; Chorley, H.; Levy, R.H.; Naish, T.; DeConto, R.M.; Gasson, E.; Kowalewski, D.E. CO2 and tectonic controls on Antarctic climate and ice-sheet evolution in the mid-Miocene. Earth Planet Sci. Lett. 2021, 564, 116908. [Google Scholar] [CrossRef]
- McKay, R.M.; Escutia, C.; De Santis, L.; Donda, F.; Duncan, B.; Gohl, K.; Gulick, S.; Hernández-Molina, J.; Hillenbrand, C.D.; Hochmuth, K.; et al. Cenozoic history of Antarctic glaciation and climate from onshore and offshore studies. In Antarctic Climate Evolution; Elsevier: Amsterdam, The Netherlands, 2022; pp. 41–164. [Google Scholar] [CrossRef]
- Meehl, G.A.; Senior, C.A.; Eyring, V.; Flato, G.; Lamarque, J.F.; Stouffer, R.J.; Taylor, K.E.; Schlund, M. Context for interpreting equilibrium climate sensitivity and transient climate response from the CMIP6 Earth system models. Sci. Adv. 2020, 6, eaba1981. [Google Scholar] [CrossRef] [PubMed]
- Huybrechts, P. Glaciological modelling of the Late Cenozoic East Antarctic ice sheet: Stability or dynamism? Geogr. Ann. Ser. A Phys. Geogr. 1993, 75, 221–238. [Google Scholar] [CrossRef]
- Lemasurier, W.E.; Rocchi, S. Terrestrial record of post-eocene climate history in marie byrd land, west antarctica. Geogr. Ann. Ser. A Phys. Geogr. 2005, 87, 51–66. [Google Scholar] [CrossRef]
- Rocchi, S.; LeMasurier, W.; Di Vicenzo, G. Oligocene to Holocene erosion and glacial history in Marie Byrd Land, West Antarctica, inferred from exhumation of the Dorrel rock intrusive complex and from volcano morphologies. Geol. Soc. Am. Bull. 2006, 118, 991–1005. [Google Scholar] [CrossRef]
- Spiegel, C.; Lindow, J.; Kamp, P.J.; Meisel, O.; Mukasa, S.; Lisker, F.; Kuhn, G.; Gohl, K. Tectonomorphic evolution of Marie Byrd Land–Implications for Cenozoic rifting activity and onset of West Antarctic glaciation. Glob. Planet. Change 2016, 145, 98–115. [Google Scholar] [CrossRef]
- Paxman, G.J.G.; Jamieson, S.S.R.; Hochmuth, K.; Gohl, K.; Bentley, M.J.; Leitchenkov, G.; Ferraccioli, F. Reconstructions of Antarctic topography since the Eocene–Oligocene boundary. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2019, 535, 109346. [Google Scholar] [CrossRef]
- Behrendt, J.C.; Cooper, A. Evidence of rapid Cenozoic uplift of the shoulder escarpment of the Cenozoic West Antarctic rift system and a speculation on possible climate forcing. Geology 1991, 19, 315–319. [Google Scholar] [CrossRef]
- Fitzgerald, P. Tectonics and landscape evolution of the Antarctic plate since the breakup of Gondwana, with an emphasis on the West Antarctic Rift system and the Transantarctic Mountains. R. Soc. N. Z. Bull. 2002, 35, 453–469. [Google Scholar]
- Peixoto, J.P.; Oort, A.H. Physics of Climate; American Institute of Physics: New York, NY, USA, 1992; 520p. [Google Scholar]
- Ou, H.W. Meridional thermal field of a coupled ocean-atmosphere system: A conceptual model. Tellus A 2006, 58, 404–415. [Google Scholar] [CrossRef]
- Ou, H.W. Thermohaline circulation: A missing equation and its climate change implications. Clim. Dyn. 2018, 50, 641–653. [Google Scholar] [CrossRef]
- Ozawa, H.; Ohmura, A.; Lorenz, R.D.; Pujol, T. The second law of thermodynamics and the global climate system: A review of the maximum entropy production principle. Rev. Geophys. 2003, 41, 10182003. [Google Scholar] [CrossRef]
- Kleidon, A. Non-equilibrium thermodynamics and maximum entropy production in the Earth system: Applications and implications. Naturwissenschaften 2009, 96, 653–677. [Google Scholar] [CrossRef] [PubMed]
- Kucera, M.; Weinelt, M.; Kiefer, T.; Pflaumann, U.; Hayes, A.; Weinelt, M.; Chen, M.T.; Mix, A.C.; Barrows, T.T.; Cortijo, E.; et al. Reconstruction of sea-surface temperatures from assemblages of planktonic foraminifera: Multi-technique approach based on geographically constrained calibration data sets and its application to glacial Atlantic and Pacific Oceans. Quat. Sci. Rev. 2005, 24, 951–998. [Google Scholar] [CrossRef]
- Ou, H.W. A theory of orbital-forced glacial cycles: Resolving Pleistocene puzzles. J. Mar. Sci. Eng. 2023, 11, 564. [Google Scholar] [CrossRef]
- Macdonald, A.M. The global ocean circulation: A hydrographic estimate and regional analysis. Prog. Oceanogr. 1998, 41, 281–382. [Google Scholar] [CrossRef]
- Hansen, J.; Sato, M.; Russell, G.; Kharecha, P. Climate sensitivity, sea level and atmospheric carbon dioxide. Phil. Trans. R. Soc. A 2013, 371, 20120294. [Google Scholar] [CrossRef]
- Goldner, A.; Huber, M.; Caballero, R. Does Antarctic glaciation cool the world? Clim. Past. 2013, 9, 173–189. [Google Scholar] [CrossRef]
- Haq, B.U.; Hardenbol, J.A.; Vail, P.R. Chronology of fluctuating sea levels since the Triassic. Science 1987, 235, 1156–1167. [Google Scholar] [CrossRef]
- Flower, B.P.; Kennett, J.P. The middle Miocene climatic transition: East Antarctic ice sheet development, deep ocean circulation and global carbon cycling. Palaeogeogr. Palaeoclimatol. Palaeoecol. 1994, 108, 537–555. [Google Scholar] [CrossRef]
- Wilson, D.S.; Pollard, D.; DeConto, R.M.; Jamieson, S.S.R.; Luyendyk, B.P. Initiation of the West Antarctic Ice Sheet and estimates of total Antarctic ice volume in the earliest Oligocene. Geophys. Res. Lett. 2013, 40, 4305–4309. [Google Scholar] [CrossRef]
- Bart, P.J. Were West Antarctic ice sheet grounding events in the Ross Sea a consequence of East Antarctic ice sheet expansion during the middle Miocene? Earth Planet. Sci. Lett. 2003, 216, 93–107. [Google Scholar] [CrossRef]
- Pierce, E.L.; van de Flierdt, T.; Williams, T.; Hemming, S.R.; Cook, C.P.; Passchier, S. Evidence for a dynamic East Antarctic ice sheet during the mid-Miocene climate transition. Earth Planet. Sci. Lett. 2017, 478, 1–13. [Google Scholar] [CrossRef]
- Barrett, P. Resolving views on Antarctic Neogene glacial history—The Sirius debate. Earth Environ. Sci. Trans. R. Soc. Edinburgh 2013, 104, 31–53. [Google Scholar] [CrossRef]
- Lozier, M.S. Deconstructing the conveyer belt. Science 2010, 328, 1507–1511. [Google Scholar] [CrossRef]
- Liu, T.; Ou, H.W.; Liu, X.; Chen, D. On the role of eddy mixing in the subtropical ocean circulation. Front. Mar. Sci. 2022, 9, 832992. [Google Scholar] [CrossRef]
- Rahmstorf, S.; Crucifix, M.; Ganopolski, A.; Goosse, M.; Kamenkovich, I.; Knutti, R.; Lohmann, G.; Marsh, R.; Mysak, L.A.; Wang, Z.; et al. Thermohaline circulation hysteresis: A model intercomparison. Geophys. Res. Lett. 2005, 32, L23605. [Google Scholar] [CrossRef]
- Kunz, T.; Fraedrich, K.; Kirk, E. Optimisation of simplified GCMs using circulation indices and maximum entropy production. Clim. Dyn. 2008, 30, 803–813. [Google Scholar] [CrossRef]
- Naish, T.; Powell, R.; Levy, R.; Wilson, G.; Scherer, R.; Talarico, F.; Krissek, L.; Niessen, F.; Pompilio, M.; Wilson, T.; et al. Obliquity-paced Pliocene West Antarctic ice sheet oscillations. Nature 2009, 458, 322–328. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ou, H.-W. Two-Step Glaciation of Antarctica: Its Tectonic Origin in Seaway Opening and West Antarctica Uplift. Glacies 2024, 1, 80-91. https://doi.org/10.3390/glacies1020006
Ou H-W. Two-Step Glaciation of Antarctica: Its Tectonic Origin in Seaway Opening and West Antarctica Uplift. Glacies. 2024; 1(2):80-91. https://doi.org/10.3390/glacies1020006
Chicago/Turabian StyleOu, Hsien-Wang. 2024. "Two-Step Glaciation of Antarctica: Its Tectonic Origin in Seaway Opening and West Antarctica Uplift" Glacies 1, no. 2: 80-91. https://doi.org/10.3390/glacies1020006
APA StyleOu, H. -W. (2024). Two-Step Glaciation of Antarctica: Its Tectonic Origin in Seaway Opening and West Antarctica Uplift. Glacies, 1(2), 80-91. https://doi.org/10.3390/glacies1020006