Mathematical Modelling of Gonorrhoea Spread in Northern Ireland between 2012 and 2022
Abstract
:1. Introduction
1.1. Gonorrhoea
1.2. Mathematical Models of Spread of Gonorrhoea and Sexually Transmitted Infections
1.3. Northern Ireland
2. Materials and Methods
2.1. Data
2.2. The Model
2.3. The Basic Reproduction Number
2.4. Parameter Estimation
2.5. Confidence Intervals
2.6. Parameter Sensitivity Analysis
3. Results
3.1. Fitted Parameters and Initial Values
3.1.1. Parameters
3.1.2. Initial Values
Parameter | Meaning | Value | CI |
---|---|---|---|
Transmission rate | 0.0968–0.1020 | ||
Infectiousness reduction in asymptomatic | 0.3562–0.3927 | ||
Time from infectiousness to positive test of asymptomatic (days) | 30.4953–37.4233 | ||
Time from infectiousness to positive test of symptomatic (days) | 16.4988–19.6343 | ||
Average latent period (days) | 2.4638–2.6256 | ||
Average contactless period of complicated (days) | 48.5581–190.5469 | ||
Average contactless period of symptomatic (days) | 11.8992–39.4454 | ||
p | The probability of being asymptomatic | 0.5651 | |
The probability of recovery without treatment, asymptomatic | 0.3959–0.4165 | ||
The probability of recovery without treatment, symptomatic | 0.3989–0.4213 | ||
Time spontaneous clearance, asymptomatic | 14.3744–15.1723 | ||
Time spontaneous clearance, symptomatic | 8.4850–8.8217 |
3.2. Simulations
3.3. The Basic Reproduction Number
3.4. The Endemic Equilibrium
4. Discussion
5. Conclusions
6. The Derivation of (4) and (6)
6.1. Derivation of the Basic Reproduction Number
6.2. Derivation of the Endemic Equilibrium
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- BBC. Gonorrhoea and Syphilis Sex Infections Reach Record Levels in England. 2022. Available online: https://www.bbc.co.uk/news/health-65810160 (accessed on 23 May 2023).
- Fountain, H.; Migchelsen, S.; Charles, H.; Ram, T.; Fifer, H.; Mohammed, H.; Sinka, K. Rebound of Gonorrhea after Lifting of COVID-19 Preventive Measures, England. Emerg. Infect. Dis. 2024, 30, 329. [Google Scholar] [CrossRef] [PubMed]
- NHS Inform. Gonorrhoea. 2022. Available online: https://www.nhsinform.scot/illnesses-and-conditions/sexual-and-reproductive/gonorrhoea (accessed on 3 February 2023).
- BBC. Northern Ireland Sexual Health: Gonorrhoea Cases in Northern Ireland Highest on Record. 2022. Available online: https://www.bbc.co.uk/news/uk-northern-ireland-49204784 (accessed on 23 May 2023).
- Gonorrhoea (Neisseria Gonorrhoeae Infection). Available online: https://www.who.int/news-room/fact-sheets/detail/gonorrhoea-(neisseria-gonorrhoeae-infection) (accessed on 24 April 2023).
- Murray, J.D. Mathematical Biology: I. An Introduction; Springer: Berlin/Heidelberg, Germany, 2002. [Google Scholar]
- Handsfield, H.H.; Lipman, T.O.; Harnisch, J.P.; Tronca, E.; Holmes, K.K. Asymptomatic gonorrhea in men: Diagnosis, natural course, prevalence and significance. N. Engl. J. Med. 1974, 290, 117–123. [Google Scholar] [CrossRef] [PubMed]
- Portnoy, J.; Mendelson, J.; Clecner, B.; Heisler, L. Asymptomatic gonorrhea in the male. Can. Med. Assoc. J. 1974, 110, 169. [Google Scholar] [PubMed]
- Farley, T.A.; Cohen, D.A.; Elkins, W. Asymptomatic sexually transmitted diseases: The case for screening. Prev. Med. 2003, 36, 502–509. [Google Scholar] [CrossRef] [PubMed]
- Korenromp, E.L.; Sudaryo, M.K.; de Vlas, S.J.; Gray, R.H.; Sewankambo, N.K.; Serwadda, D.; Wawer, M.J.; Habbema, J.D.F. What proportion of episodes of gonorrhoea and chlamydia becomes symptomatic? Int. J. STD AIDS 2002, 13, 91–101. [Google Scholar] [CrossRef] [PubMed]
- NHS. Gonorrhoea. 2022. Available online: https://www.nhs.uk/conditions/gonorrhoea/ (accessed on 23 May 2023).
- Mensforth, S.; Ayinde, O.C.; Ross, J. Spontaneous clearance of genital and extragenital Neisseria gonorrhoeae: Data from GToG. Sex. Transm. Infect. 2020, 96, 556–561. [Google Scholar] [CrossRef] [PubMed]
- Apewokin, S.K.; Geisler, W.M.; Bachmann, L.H. Spontaneous resolution of extragenital chlamydial and gonococcal infections prior to therapy. Sex. Transm. Dis. 2010, 37, 343–344. [Google Scholar] [CrossRef] [PubMed]
- Van Liere, G.; Dukers-Muijrers, N.; Wolffs, P.; Hoebe, C. P3. 186 Substantial Natural Clearance of Genital and Extragenital Chlamydia Trachomatis and Neisseria Gonorrhoeae in STD Clinic Attendees. Sex. Transm. Infect. 2013, 89 (Suppl. 1), A206. [Google Scholar]
- Van Liere, G.A.; Hoebe, C.J.; Dirks, J.A.; Wolffs, P.F.; Dukers-Muijrers, N.H. Spontaneous clearance of urogenital, anorectal and oropharyngeal Chlamydia trachomatis and Neisseria gonorrhoeae in women, MSM and heterosexual men visiting the STI clinic: A prospective cohort study. Sex. Transm. Infect. 2019, 95, 505–510. [Google Scholar] [CrossRef]
- Van Rooijen, M.S.; van der Loeff, M.F.S.; Morré, S.A.; van Dam, A.P.; Speksnijder, A.G.; de Vries, H.J. Spontaneous pharyngeal Chlamydia trachomatis RNA clearance. A cross-sectional study followed by a cohort study of untreated STI clinic patients in Amsterdam, The Netherlands. Sex. Transm. Infect. 2015, 91, 157–164. [Google Scholar] [CrossRef]
- Ghani, A.C.; Swinton, J.; Garnett, G.P. The role of sexual partnership networks in the epidemiology of gonorrhea. Sex. Transm. Dis. 1997, 24, 45–56. [Google Scholar] [CrossRef] [PubMed]
- O’Brien, J.P.; Goldenberg, D.; Rice, P.A. Disseminated gonococcal infection: A prospective analysis of 49 patients and a review of pathophysiology and immune mechanisms. Medicine 1983, 62, 395–406. [Google Scholar] [CrossRef] [PubMed]
- Unemo, M.; Ballard, R.; Ison, C.; Lewis, D.; Ndowa, F.; Peeling, R.; World Health Organization. Laboratory Diagnosis of Sexually Transmitted Infections, Including Human Immunodeficiency Virus; World Health Organization: Geneva, Switzerland, 2013. [Google Scholar]
- Pattman, R.; Sankar, N.; Elawad, B.; Handy, P.; Price, D.A. (Eds.) Oxford Handbook of Genitourinary Medicine, HIV, and Sexual Health; OUP Oxford: Oxford, UK, 2010. [Google Scholar]
- Centers for Disease Control and Prevention. Gonorrhea—CDC Detailed Fact Sheet. 2022. Available online: https://www.cdc.gov/std/gonorrhea/stdfact-gonorrhea-detailed.htm (accessed on 23 May 2023).
- Unemo, M.; Shafer, W.M. Antimicrobial resistance in Neisseria gonorrhoeae in the 21st century: Past, evolution, and future. Clin. Microbiol. Rev. 2014, 27, 587–613. [Google Scholar] [CrossRef] [PubMed]
- The London Clinic. Pelvic Inflammatory Disease. 2022. Available online: https://www.thelondonclinic.co.uk/services/conditions/pelvic-inflammatory-disease (accessed on 3 February 2023).
- Spach, D.H.; Wendel, K.A. Pelvic Inflammatory Disease. 2022. Available online: https://www.std.uw.edu/go/comprehensive-study/pelvic-inflammatory-disease/core-concept/all (accessed on 3 February 2023).
- Hillis, S.D.; Joesoef, R.; Marchbanks, P.A.; Wasserheit, J.N.; Cates, W., Jr.; Westrom, L. Delayed care of pelvic inflammatory disease as a risk factor for impaired fertility. Am. J. Obstet. Gynecol. 1993, 168, 1503–1509. [Google Scholar] [CrossRef] [PubMed]
- Brunham, R.C.; Gottlieb, S.L.; Paavonen, J. Pelvic inflammatory disease. N. Engl. J. Med. 2015, 372, 2039–2048. [Google Scholar] [CrossRef] [PubMed]
- UK Health Security Agency. Gonococcal Resistance to Antimicrobials Surveillance Programme (GRASP) Protocol. 2023. Available online: https://www.gov.uk/government/publications/gonococcal-resistance-to-antimicrobials-surveillance-programme-grasp-protocol (accessed on 23 May 2023).
- Unemo, M.; Golparian, D.; Eyre, D.W. Antimicrobial resistance in Neisseria gonorrhoeae and treatment of gonorrhea. In Neisseria Gonorrhoeae; Springer: Berlin/Heidelberg, Germany, 2019; pp. 37–58. [Google Scholar]
- Fifer, H.; Natarajan, U.; Jones, L.; Alexander, S.; Hughes, G.; Golparian, D.; Unemo, M. Failure of dual antimicrobial therapy in treatment of gonorrhea. N. Engl. J. Med. 2016, 374, 2504–2506. [Google Scholar] [CrossRef] [PubMed]
- Whittles, L.K.; White, P.J.; Paul, J.; Didelot, X. Epidemiological trends of antibiotic resistant gonorrhoea in the United Kingdom. Antibiotics 2018, 7, 60. [Google Scholar] [CrossRef] [PubMed]
- Ewers, E.C.; Curtin, J.M.; Ganesan, A. Challenges in managing gonorrhea and new advances in prevention. Infect. Dis. Clin. 2023, 37, 223–243. [Google Scholar] [CrossRef] [PubMed]
- Quilter, L.A.; Cyr, S.B.S.; Barbee, L.A. The Management of Gonorrhea in the Era of Emerging Antimicrobial Resistance: What Primary Care Clinicians Should Know. Med. Clin. 2024, 108, 279–296. [Google Scholar]
- Eyre, D.W.; Sanderson, N.D.; Lord, E.; Regisford-Reimmer, N.; Chau, K.; Barker, L.; Morgan, M.; Newnham, R.; Golparian, D.; Unemo, M.; et al. Gonorrhoea treatment failure caused by a Neisseria gonorrhoeae strain with combined ceftriaxone and high-level azithromycin resistance, England, February 2018. Eurosurveillance 2018, 23, 1800323. [Google Scholar]
- Golparian, D.; Vestberg, N.; Södersten, W.; Jacobsson, S.; Ohnishi, M.; Fang, H.; Bhattarai, K.H.; Unemo, M. Multidrug-resistant Neisseria gonorrhoeae isolate SE690: Mosaic penA-60.001 gene causing ceftriaxone resistance internationally has spread to the more antimicrobial-susceptible genomic lineage, Sweden, September 2022. Eurosurveillance 2023, 28, 2300125. [Google Scholar] [CrossRef] [PubMed]
- Fifer, H.; Saunders, J.; Soni, S.; Sadiq, S.T.; FitzGerald, M. 2018 UK national guideline for the management of infection with Neisseria gonorrhoeae. Int. J. STD AIDS 2020, 31, 4–15. [Google Scholar] [CrossRef] [PubMed]
- Jensen, J.; Unemo, M. Antimicrobial treatment and resistance in sexually transmitted bacterial infections. Nat. Rev. Microbiol. 2024, 22, 435–450. [Google Scholar] [CrossRef] [PubMed]
- Wi, T.; Lahra, M.M.; Ndowa, F.; Bala, M.; Dillon, J.A.R.; Ramon-Pardo, P.; Eremin, S.R.; Bolan, G.; Unemo, M. Antimicrobial resistance in Neisseria gonorrhoeae: Global surveillance and a call for international collaborative action. PLoS Med. 2017, 14, e1002344. [Google Scholar] [CrossRef] [PubMed]
- Alirol, E.; Wi, T.E.; Bala, M.; Bazzo, M.L.; Chen, X.S.; Deal, C.; Dillon, J.A.R.; Kularatne, R.; Heim, J.; van Huijsduijnen, R.H.; et al. Multidrug-resistant gonorrhea: A research and development roadmap to discover new medicines. PLoS Med. 2017, 14, e1002366. [Google Scholar] [CrossRef] [PubMed]
- Bodie, M.; Gale-Rowe, M.; Alexandre, S.; Auguste, U.; Tomas, K.; Martin, I. Multidrug resistant gonorrhea: Addressing the rising rates of gonorrhea and drug-resistant gonorrhea: There is no time like the present. Can. Commun. Dis. Rep. 2019, 45, 54. [Google Scholar] [CrossRef]
- World Health Organization. Multi-Drug Resistant Gonorrhoea; 2022. Available online: https://www.who.int/news-room/fact-sheets/detail/multi-drug-resistant-gonorrhoea (accessed on 3 February 2023).
- De Vries, H.J.; de Laat, M.; Jongen, V.W.; Heijman, T.; Wind, C.M.; Boyd, A.; de Korne-Elenbaas, J.; van Dam, A.P.; van der Loeff, M.F.S.; Bruisten, S.; et al. Efficacy of ertapenem, gentamicin, fosfomycin, and ceftriaxone for the treatment of anogenital gonorrhoea (NABOGO): A randomised, non-inferiority trial. Lancet Infect. Dis. 2022, 22, 706–717. [Google Scholar] [CrossRef]
- World Health Organization. Global Health Sector Strategies 2022–2030; 2022. Available online: https://www.who.int/teams/global-hiv-hepatitis-and-stis-programmes/strategies/global-health-sector-strategies (accessed on 23 May 2023).
- Lajmanovich, A.; Yorke, J.A. A deterministic model for gonorrhea in a nonhomogeneous population. Math. Biosci. 1976, 28, 221–236. [Google Scholar] [CrossRef]
- Fairley, C.K.; Cornelisse, V.J.; Hocking, J.S.; Chow, E.P. Models of gonorrhoea transmission from the mouth and saliva. Lancet Infect. Dis. 2019, 19, e360–e366. [Google Scholar] [CrossRef]
- Dietz, K.; Hadeler, K. Epidemiological models for sexually transmitted diseases. J. Math. Biol. 1988, 26, 1–25. [Google Scholar] [CrossRef]
- Moghadas, S. Two core group models for sexual transmission of disease. Ecol. Model. 2002, 148, 15–26. [Google Scholar] [CrossRef]
- Datta, S.; Mercer, C.H.; Keeling, M.J. Capturing sexual contact patterns in modelling the spread of sexually transmitted infections: Evidence using Natsal-3. PLoS ONE 2018, 13, e0206501. [Google Scholar] [CrossRef] [PubMed]
- Castillo-Chavez, C.; Huang, W.; Li, J. Competitive exclusion in gonorrhea models and other sexually transmitted diseases. SIAM J. Appl. Math. 1996, 56, 494–508. [Google Scholar] [CrossRef]
- Whittles, L.K.; White, P.J.; Didelot, X. Estimating the fitness cost and benefit of cefixime resistance in Neisseria gonorrhoeae to inform prescription policy: A modelling study. PLoS Med. 2017, 14, e1002416. [Google Scholar] [CrossRef] [PubMed]
- Carey, K.A.; Newman, L.M.; Spicknall, I.H. Estimating the population level impact of a gonococcal vaccine candidate: Predictions from a simple mathematical model. Vaccine 2022, 40, 7176–7181. [Google Scholar] [CrossRef] [PubMed]
- Northern Ireland Statistics and Research Agency. 2021 Mid-Year Population Estimates for Northern Ireland. 2021. Available online: https://www.ons.gov.uk/peoplepopulationandcommunity/populationandmigration/populationestimates/timeseries/nipop/pop (accessed on 23 May 2023).
- Office for National Statistics. Principal Projection—Northern Ireland Population in Age Groups. 2020. Available online: https://www.ons.gov.uk/peoplepopulationandcommunity/populationandmigration/populationprojections/datasets/tablea27principalprojectionnorthernirelandpopulationinagegroups (accessed on 23 May 2023).
- Northern Ireland Statistics and Research Agency (NISRA). Monthly Births. 2023. Available online: https://www.nisra.gov.uk/publications/monthly-births (accessed on 3 February 2023).
- Public Health Agency. Available online: https://www.publichealth.hscni.net (accessed on 15 April 2023).
- Martcheva, M.; Thieme, H.R. Progression age enhanced backward bifurcation in an epidemic model with super-infection. J. Math. Biol. 2003, 46, 385–424. [Google Scholar] [CrossRef] [PubMed]
- Van den Driessche, P.; Watmough, J. A simple SIS epidemic model with a backward bifurcation. J. Math. Biol. 2000, 40, 525–540. [Google Scholar] [CrossRef]
- Van den Driessche, P.; Watmough, J. Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math. Biosci. 2002, 180, 29–48. [Google Scholar] [CrossRef] [PubMed]
- Eames, K.T.; Keeling, M.J. Modeling dynamic and network heterogeneities in the spread of sexually transmitted diseases. Proc. Natl. Acad. Sci. USA 2002, 99, 13330–13335. [Google Scholar] [CrossRef]
- Jolly, A.; Wylie, J. Gonorrhoea and chlamydia core groups and sexual networks in Manitoba. Sex. Transm. Infect. 2002, 78 (Suppl. 1), i145–i151. [Google Scholar] [CrossRef]
- Efron, B.; Tibshirani, R. Bootstrap methods for standard errors, confidence intervals, and other measures of statistical accuracy. Stat. Sci. 1986, 1, 54–75. [Google Scholar] [CrossRef]
- McKay, M.D.; Beckman, R.J.; Conover, W.J. A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics 2000, 42, 55–61. [Google Scholar] [CrossRef]
- Pujol, G.; Iooss, B. Partial Correlation Coefficients; 2023. Available online: https://search.r-project.org/CRAN/refmans/sensitivity/html/pcc.html (accessed on 23 May 2023).
- Pinto, C.N.; Niles, J.K.; Kaufman, H.W.; Marlowe, E.M.; Alagia, D.P.; Chi, G.; Van Der Pol, B. Impact of the COVID-19 pandemic on chlamydia and gonorrhea screening in the US. Am. J. Prev. Med. 2021, 61, 386–393. [Google Scholar] [CrossRef] [PubMed]
- Hui, B.; Fairley, C.K.; Chen, M.; Grulich, A.; Hocking, J.; Prestage, G.; Walker, S.; Law, M.; Regan, D. Oral and anal sex are key to sustaining gonorrhoea at endemic levels in MSM populations: A mathematical model. Sex. Transm. Infect. 2015, 91, 365–369. [Google Scholar] [CrossRef] [PubMed]
- Pleininger, S.; Indra, A.; Golparian, D.; Heger, F.; Schindler, S.; Jacobsson, S.; Heidler, S.; Unemo, M. Extensively drug-resistant (XDR) Neisseria gonorrhoeae causing possible gonorrhoea treatment failure with ceftriaxone plus azithromycin in Austria, April 2022. Eurosurveillance 2022, 27, 2200455. [Google Scholar] [CrossRef] [PubMed]
- Brunham, R.; Plummer, F. A general model of sexually transmitted disease epidemiology and its implications for control. Med. Clin. N. Am. 1990, 74, 1339–1352. [Google Scholar] [CrossRef] [PubMed]
- Denford, S.; Abraham, C.; Campbell, R.; Busse, H. A comprehensive review of reviews of school-based interventions to improve sexual-health. Health Psychol. Rev. 2017, 11, 33–52. [Google Scholar] [CrossRef] [PubMed]
- Yorke, J.A.; Hethcote, H.W.; Nold, A. Dynamics and control of the transmission of gonorrhea. Sex. Transm. Dis. 1978, 5, 51–56. [Google Scholar] [CrossRef] [PubMed]
- Public Health England. Guidance for the Detection of Gonorrhoea in England. 2021. Available online: https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/972388/Guidance_for_the_detection_of_gonorrhoea_in_England_2021.pdf (accessed on 3 February 2023).
- White, P.J.; Ward, H.; Cassell, J.A.; Mercer, C.H.; Garnett, G.P. Vicious and virtuous circles in the dynamics of infectious disease and the provision of health care: Gonorrhea in Britain as an example. J. Infect. Dis. 2005, 192, 824–836. [Google Scholar] [CrossRef]
- BBC. Sexual Disease Clinics ‘Failing’. 2005. Available online: http://news.bbc.co.uk/1/hi/health/4225320.stm (accessed on 23 May 2023).
- Collinson, S.; Khan, K.; Heffernan, J.M. The effects of media reports on disease spread and important public health measurements. PLoS ONE 2015, 10, e0141423. [Google Scholar] [CrossRef]
- Cui, J.; Sun, Y.; Zhu, H. The impact of media on the control of infectious diseases. J. Dyn. Differ. Equations 2008, 20, 31–53. [Google Scholar] [CrossRef] [PubMed]
- Misra, A.; Sharma, A.; Shukla, J. Modeling and analysis of effects of awareness programs by media on the spread of infectious diseases. Math. Comput. Model. 2011, 53, 1221–1228. [Google Scholar] [CrossRef]
- Hethcote, H.W.; Stech, H.W.; Van DenDriessche, P. Nonlinear oscillations in epidemic models. SIAM J. Appl. Math. 1981, 40, 1–9. [Google Scholar] [CrossRef]
- Gumel, A.B. Causes of backward bifurcations in some epidemiological models. J. Math. Anal. Appl. 2012, 395, 355–365. [Google Scholar] [CrossRef]
Parameter | Meaning | Value | Range |
Transmission rate (days −1) | 0–1 | ||
Infectiousness reduction in asymptomatic | 0–1 | ||
Average time from infectiousness to positive test of asymptomatic (days) [10] | 40 | 2–150 | |
Average time from infectiousness to positive test of symptomatic (days) | 14 | 2–14 | |
Average latent period (days) [10] | 2 | 2–5 | |
Average contactless period of complicated (days) | 49 | 30–130 | |
Average contactless period of symptomatic (days) | 14 | 7–30 | |
p | The probability of being asymptomatic [9,10,22] (p. 588) | 0.2–0.8 | |
The probability of recovery without treatment, asymptomatic [12,13,14,15,16] | 0.05–0.57 | ||
The probability of recovery without treatment, symptomatic [12,13,14,15,16] | 0.05–0.57 | ||
Time to spontaneous clearance, symptomatic (days) [12,13,14,15,16] | 30 | 5–130 | |
Time to spontaneous clearance, asymptomatic (days) [12,13,14,15,16] | 30 | 5–130 | |
Birth rate (days −1) | |||
d | Death rate (days −1) |
Compartment | Meaning | Value | Range |
---|---|---|---|
S | Susceptible individuals | ||
E | Exposed individuals | 10 | 5–20 |
A | Asymptomatically infectious individuals | 10 | 10–100 |
I | Infectious individuals with symptoms | 10 | 1–100 |
Treated individuals complications | 10 | ||
T | Treated individuals without complications | ||
C | Cumulative case numbers |
Comparment | Meaning | Value | CI |
---|---|---|---|
E | Exposed individuals | 11.3232–12.1985 | |
A | Asymptomatically infectious individuals | 28.3610–36.4412 | |
I | Infectious individuals with symptoms | 21.9749–29.3474 | |
Treated individuals complications | 0.1901–8.1531 | ||
T | Treated individuals without complications | Not computed |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kiss, G.; Corken, D.; Hall, R.; Ibrahim, A.; Moutari, S.; Kee, F.; Armstrong, G.; Bradley, D.; Middleton, M.; Patterson, L.; et al. Mathematical Modelling of Gonorrhoea Spread in Northern Ireland between 2012 and 2022. Acta Microbiol. Hell. 2024, 69, 114-141. https://doi.org/10.3390/amh69020012
Kiss G, Corken D, Hall R, Ibrahim A, Moutari S, Kee F, Armstrong G, Bradley D, Middleton M, Patterson L, et al. Mathematical Modelling of Gonorrhoea Spread in Northern Ireland between 2012 and 2022. Acta Microbiologica Hellenica. 2024; 69(2):114-141. https://doi.org/10.3390/amh69020012
Chicago/Turabian StyleKiss, Gabor, Daniel Corken, Rebecca Hall, Alhassan Ibrahim, Salissou Moutari, Frank Kee, Gillian Armstrong, Declan Bradley, Maeve Middleton, Lynsey Patterson, and et al. 2024. "Mathematical Modelling of Gonorrhoea Spread in Northern Ireland between 2012 and 2022" Acta Microbiologica Hellenica 69, no. 2: 114-141. https://doi.org/10.3390/amh69020012
APA StyleKiss, G., Corken, D., Hall, R., Ibrahim, A., Moutari, S., Kee, F., Armstrong, G., Bradley, D., Middleton, M., Patterson, L., & Lamrock, F. (2024). Mathematical Modelling of Gonorrhoea Spread in Northern Ireland between 2012 and 2022. Acta Microbiologica Hellenica, 69(2), 114-141. https://doi.org/10.3390/amh69020012