Evaluation of the Antibacterial and Antibiofilm Activity of E. senegalensis Leaf Extract Against Multidrug-Resistant Bacteria
Abstract
:1. Introduction
2. Material and Methods
2.1. Plant Materials
Collection and Identification
2.2. Processing of Plant Material
Preparation of Ethanol and Aqueous Leaf Extracts of E. senegalensis
2.3. Qualitative Phytochemical Screening of the Plant Extract
2.3.1. Terpenoids
2.3.2. Test for Alkaloids
2.3.3. Test for Ketones
2.3.4. Test for Anthraquinone
2.3.5. Test for Free-Reducing Sugar (Fehling’s Test)
2.3.6. Test for Cardiac Glycosides
2.3.7. Test for Flavonoids
2.3.8. Saponin
2.3.9. Test for Phlobatannins (HCl Test)
2.3.10. Test for Tannins
2.4. Test Organism
2.5. Preliminary Susceptibility Testing
2.6. Biofilm Production Assay
2.7. Determination of Antibacterial Activity
2.8. Statistical Analysis
3. Results and Discussion
3.1. Phytochemical Properties of Aqueous and Ethanolic Leaf Extracts of Erythrina senegalensis
3.2. Antibiotic Susceptibility Profile
3.3. Biofilm Forming Potentials of the Isolates
3.4. Antibacterial Activity of Aqueous and Ethanolic Extract of Erythrina senegalensis
3.4.1. Antibiofilm Activity of Aqueous Leaf Extract of Erythrinia senegalensis
3.4.2. Antibiofilm Activity of Ethanolic Leaf Extract of Erythrinia senegalensis
4. Conclusions
5. Recommendations
- i.
- The findings of this study suggest that E. senegalensis can serve as a natural source with the potential to inhibit cell attachment (biofilm) or can be explored as an antibiofilm agent against K. pneumoniae, P. aeruginosa and S. Enteritidis in the healthcare system.
- ii.
- The result from the study strongly recommends aqueous solvent be the standard solvent in the extraction of bioactive components from E. senegalensis, since the plant contains high polar bioactive compounds that can easily be extracted using water.
- iii.
- Since the ability of these Gram-negative bacteria to form biofilm is not associated with their antibiotic profile, routine biofilm monitoring is critical for improving the quality of treatment strategy for infection associated with biofilm.
- iv.
- Evaluation of the synergistic effects of this plant extract with conventional antibiotics is suggested for further studies
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ruba, M.; Tania, S.; Hebba, K.; Jennifer, M.; Lan, D.; Liz, C.; Kelly, D.; Taylor, K.; Katia, A.; Thuhue, H.; et al. Biofilms: Formation, drug resistance and alternatives to conventional approaches. AIMS Microbiol. Rev. 2022, 8, 239–277. [Google Scholar] [CrossRef]
- Monte, J.; Abreu, A.C.; Borges, A.; Simões, L.C.; Simões, M. Antimicrobial activity of selected phytochemicals against Escherichia coli and Staphylococcus aureus and their biofilms. Pathogens 2014, 3, 473–498. [Google Scholar] [CrossRef] [PubMed]
- Antimicrobial Resistance Collaborators. Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis. Lancet 2022, 399, 629–655. [Google Scholar] [CrossRef]
- Assefa, M.; Amare, A. Biofilm-Associated multi-drug resistance in hospital-acquired infections: A review. J. Infect. Drug Resist. 2022, 15, 5061–5068. [Google Scholar] [CrossRef]
- Elhabibi, T.; Ramzy, S. Biofilm production by multidrug resistant bacteria pathogens isolated from patients in intensive care units in Egyptian hospitals. J. Microb. Biochem. Technol. 2017, 9, 151–158. [Google Scholar]
- Preda, V.G.; Sandulescu, O. Communication is the key: Biofilms, quorum sensing, formation and prevention. Discoveries 2019, 7, e10. [Google Scholar] [CrossRef]
- Pompilio, A.; Scribano, D.; Sarshar, M.; Di Bonaventura, G.; Palamara, A.T.; Ambrosi, C. Gram-Negative Bacteria Holding Together in a biofilm: The Acinetobacter baumannii way. Microorganisms 2021, 9, 1353. [Google Scholar] [CrossRef]
- Cepas, V.; Lopez, Y.; Munoz, E.; Rolo, D.; Ardanuy, C.; Marti, S.; Xercavins, M.; Horcajada, J.P.; Bosch, J.; Soto, S.M. Relationship between Biofilm Formation and Antimicrobial Resistance in Gram-Negative Bacteria. Microb. Drug Resist. 2019, 25, 72–79. [Google Scholar] [CrossRef] [PubMed]
- Mommenah, A.M.; Bakri, R.A.; Jalal, N.A.; Ashgar, S.S.; Felemban, R.F.; Bantun, F.; Hariri, S.H.; Barhameen, A.A.; Faidah, H.; Al-Said, H.M. Antimicrobial Resistance Pattern of Pseudomonas aeruginosa: An 11-Year Experience in a Tertiary Care Hospital in Makkah, Saudi Arabia. Infect. Drug Resist. 2023, 16, 4113–4122. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mohd Asri, N.A.; Ahmed, S.; Mohamud, R.; Mohd Hanafi, N.; Mohd Zaidi, N.F.; Irekeola, A.A.; Shueb, R.H.; Yee, L.C.; Nor, N.M.; Mustapha, F.H.; et al. Global Prevalence of Nosocomial Multidrug Resistant Klebsiella pneumoniae: Systemic review and meta-analysis. Antibiotics 2021, 10, 1508. [Google Scholar] [CrossRef]
- Meng, H.; Han, L.; Niu, M.; Xu, L.; Xu, M.; An, Q.; Lu, J. Risk factors for mortality and outcomes in heamatological malignancy patients with carbapenems-resistance Klebsiella pneumoniae blood stream infections. Drug Resist. 2022, 15, 4241–4251. [Google Scholar] [CrossRef] [PubMed]
- Balkan, I.I.; Alkan, M.; Aygun, G.; Kuskucu, M.; Ankarali, H.; Karagoz, A.; Şen, S.; Arsu, H.Y.; Biçer, M.; Kaya, S.Y.; et al. Colistin resistance increases 28-day mortality in blood stream infections due to carbapenem-resistant Klebsiella pneumoniae. Eur. J. Clin. Microbiol. Infect. Dis. 2021, 40, 2161–2170. [Google Scholar] [CrossRef] [PubMed]
- Falcone, M.; Bassetti, M.; Tiseo, G.; Giordano, C.; Nencini, E.; Russo, A.; Graziano, E.; Tagliaferri, E.; Leonildi, A.; Barnini, S.; et al. Time to appropriate antibiotic therapy is a predictor of outcome in patients with bloodstream infection caused yb KPC-producing Klebsiella pneumoniae. Crit. Care 2020, 24, 29. [Google Scholar] [CrossRef]
- Ikuta, K.; Swetschinski, L.R.; Aguilar, G.; Sharara, F.; Meštrović, T.; Gray, A.; Weaver, N.; Wool, E.E.; Han, C.; Hayoon, A.; et al. Global mortality associated with 33 bacterial pathogens in 2019: A systemic analysis for the Global Burden of Disease Study 2019. Lancet 2022, 400, 2221–2248. [Google Scholar] [CrossRef]
- Antillon, M.; Warren, J.L.; Crawford, F.W.; Weinberger, D.M.; Kurum, E.; Pak, G.D.; Marks, F.; Pitzer, V.E. The burden of typhoid fever in low-and middle-income countries: A meta-regression approach. PLOS Neglected Trop. Dis. 2017, 11, e0005376. [Google Scholar] [CrossRef] [PubMed]
- CDC. Antimicrobial Resistance Facts and Stats. Available online: https://www.cdc.gov/antimicrobial-resistance/data-research/facts-stats/?CDC_AAref_Val=https://www.cdc.gov/drugresistance/national-estimates.html (accessed on 5 September 2024).
- TyVAC. Potential of Typhoid Conjugate Vaccines in Nigeria. Available online: https://www.coalitionagainsttyphoid.org/wp-content/uploads/2017/11/TCV-country-specific-factsheet-Nigeria_final.pdf (accessed on 2 September 2024).
- Asokan, G.; Ramadhan, T.; Ahmed, E.; Sanad, H. WHO Global Priority Pathogens List: A Bibliometric Analysis of Medline-Pubmed for Knowledge Mobilization to Infection Prevention and Control Practices in Behrain. Oman Med. J. 2019, 34, 184–193. [Google Scholar] [CrossRef]
- Tacconelli, E.; Carrara, E.; Savoldi, A.; Harbarth, S.; Mendelson, M.; Monnet, D.L.; Pulcini, C.; Kahlmeter, G.; Kluytmans, J.; Carmeli, Y.; et al. Discovery, Research, and Development of New Antibiotics: The WHO Priority List of Antibiotic- Resistant Bacteria and Tuberculosis. Lancet Infect. Dis. 2018, 18, 318–327. [Google Scholar] [CrossRef]
- Basak., S.; Rajurkar, M.N.; Attal, R.O. Biofilms: A Challenge to Medical Fraternity in Infection Control. Infect. Control 2013, 10, 55649. [Google Scholar] [CrossRef]
- Davery, M.E.; O’Toole, G.A. Microbial biofilms: From ecology to molecular genetics. Microbiol. Mol. Biol. Rev. 2000, 64, 847–867. [Google Scholar] [CrossRef]
- Macià, M.D.; Rojo-Molinero, E.; Oliver, A. Antimicrobial Susceptibility testing in Biofilm-growing Bacteria. Clin. Microbiol. Infect. 2014, 20, 981–990. [Google Scholar] [CrossRef]
- Donlan, R.M. Biofilm formation: A clinically relevant microbiological process. Clin. Infect. Dis. 2001, 33, 1387–1392. [Google Scholar] [CrossRef] [PubMed]
- Eduardo, S.; Catalina, R.M.; Sandra, C.; Catalina, L.; Ledy, G.; David, M.O.M. Antibacterial and antibiofilm activity of methanolic plant extracts against nosocomial microorganisms. Evid.-Based Complement. Altern. Med. 2016, 2016, 1572697. [Google Scholar]
- Shrestha, L.B.; Bhattarai, N.R.; Khanal, B. Comparative evaluation of methods for the detection of biofilm formation in coagulase-negative staphylococci and correlation with antibiogram. Infect. Drug Resist. 2018, 11, 607–613. [Google Scholar] [CrossRef] [PubMed]
- Stewart, P.S.; Costerton, J.W. Antibiotic Resistance of Bacteria in Biofilms. Lancet 2001, 358, 135–138. [Google Scholar] [CrossRef] [PubMed]
- Ijewereme, F.O.; Jodi, S.M.; Nkene, I.H.; Abimiku, R.H.; Ngwai, Y.B.; Ibrahim, T. Antibacterial and Antibiofilm Properties of the Crude Ethanolic, Methanolic and Aqueous Bark and Seed Extracts of Citrullus lanatus Fruit. Microbiol. Res. J. Int. 2018, 24, 1–13. [Google Scholar] [CrossRef]
- Tanwar, J.; Das, S.; Fatima, Z.; Hameed, S. Multidrug Resistance: An Emerging Crisis. Interdiscip. Perspect. Infect. Dis. 2014, 2014, 541340. [Google Scholar] [CrossRef] [PubMed]
- Adiaratou, T. Ethnopharmacology, Phytochemistry and Biological Activities of Malian Medicinal Plants. Ph.D. Thesis, University of Oslo, Oslo, Norway, 2008; pp. 1–82. Available online: https://www.mn.uio.no/farmasi/english/research/projects/maliplants/theses/phd-theses/2008-togola.html (accessed on 4 August 2024).
- Diaz, Y.M.; Laverde, G.V.; Gamba, L.R.; Wandurraga, H.M.; Arevalo-Ferro, C.; Rodriguez, F.R.; Beltran, C.D.; Hernandez, L.C. Biofilm inhibition activity of compounds isolated from two Eunicea species collected at the Caribbean Sea. Braz. J. Pharmacogn. 2015, 25, 605–611. [Google Scholar] [CrossRef]
- Trevisan, D.A.C.; Silva, A.F.; Negri, M.; Abreu, F.; Benício, A.; Machinski, J.; Miguel, P.; Eliana, V.C.; Paula, A.Z.; Mikcha, J.M.G. Antibacterial and antibiofilm activity of carvacrol against Salmonella enterica serotype Typhimurium. Braz. J. Pharm. Sci. 2018, 54, e17229. [Google Scholar] [CrossRef]
- Tsobou, R.; Mapongmetsem, P.; Igor, V.K.; Patrick, V.D. Phytochemical screening and antibacterial activity of medicinal plants used to treat typhoid fever in Bamboutos division, West Cameroon. J. Appl. Pharm. Sci. 2015, 5, 034–049. [Google Scholar] [CrossRef]
- Desrini, S.; Girardot, M.; Imbert, C.; Mustofa, M.; Nuryastuti, T. Screening antibiofilm activity of invasive plants growing at the Slope Merapi Mountain, Central Java, against Candida albicans. BMC Complement Med. Ther. 2023, 23, 2662–7671. [Google Scholar] [CrossRef]
- Sanchez, E.; Heredia, N.; García, S. Extracts of edible and medicinal plants damage membranes of Vibrio cholerae. Appl. Environ. Microbiol. 2010, 76, 6888–6894. [Google Scholar] [CrossRef] [PubMed]
- Bekro, Y.; Bekro, J.; Boua, B.B.; Tra-Bi, F.; Ehile, E.E. Etude ethanonotanique et screening phytochimique de Caesalpinia benthamiana (Baill.) Herend et Zarruchi (Caesalpiniaceae). Sci. Nat. 2007, 4, 217–225. [Google Scholar]
- Rathore, S.K.; Bhatt, S.; Dhyani, S.; Jain, A. Preliminary phytochemical screening of medicinal plant Ziziphus mauritiana Lam fruits. Int. J. Curr. Pharm. Res. 2012, 4, 160–162. [Google Scholar]
- Firdouse, S.; Alam, P. Phytochemical investigation of extract of Amorphophallus campanulatus tubers. Int. J. Phytomed. 2011, 3, 32–35. [Google Scholar]
- Cheesbrough, M. District Laboratory Practice in Tropical Countries, 2nd ed.; Cambridge University Press: Cambridge, UK, 2010. [Google Scholar]
- Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Disk Susceptibility Testing: Fourteenth Informational Supplement, 30th ed.; CLSI Document M02–M07, M11; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2020; 332p. [Google Scholar]
- Joshua, P.E.; Ikechukwu, J.O.; Daniel, E.E.; Innocent, U.O.; Victor, N.O. Methanol extract of E. senegalensis leaves (MEES) ameliorates Plasmodium berghei-ANKA 65-parasitised aberrations in mice. All Life 2020, 13, 66–77. [Google Scholar] [CrossRef]
- Kossonou, Y.K.; Adingra, A.C.; Koffi, Y.M.; Tra Bi, F.H.; Tano, K. Activité Antifongique In vitro des extraits de cinq pantes locales sur Colletotrichum Higginsianum, Fusarium Oxysporum et Rhizopus stolonifer, agents pathogènes de la papaye (Carica papaya L.) et de la tomate (Solanum lycopersicum L.). Eur. Sci. J. 2020, 15, 304–321. [Google Scholar]
- Cowan, M.M. Plant products as antimicrobial agents. Clin. Microbiol. Rev. 1999, 12, 564–582. [Google Scholar] [CrossRef]
- Emad, M.A.; Amna, S.K.; Nazlina, I. Antibacterial activity of oleo-gum resin of Commiphora molmol and Boswellia papyrifera against methicillin resistant Staphylococcus aureus (MRSA). Sci. Res. Essay 2009, 4, 351–356. [Google Scholar]
- Suffredini, I.B.; Sader, H.S.; Gonçalves, A.G.; Reis, A.O.; Gales, A.C.; Varella, A.D.; Younes, R.N. Screening if antibacterial active extracts obtained from plants native to Brazilian Amazon rain forest and Atlantic forest. Braz. J. Med. Biol. Res. 2004, 37, 379–384. [Google Scholar] [CrossRef]
- Ahmad, I.; Sabah, A.; Anwar, Z.; Arif, A.; Arsalan, A.; Qadeer, K. Effect of solvent polarity on the extraction of components of pharmaceutical plastic containers. Pak J. Pharm. Sci. 2017, 30 (Suppl. 1), 247–252. [Google Scholar] [PubMed]
- Chen, R.; Wang, X.J.; Zhang, Y.Y.; Xing, Y.; Yang, L.; Ni, H.; Li, H.H. Simultaneous extraction and separation of oil, proteins and glucosinolates from Moringa oleifera seeds. Food Chem. 2019, 300, 125162. [Google Scholar] [CrossRef] [PubMed]
- Do, Q.D.; Angkawijaya, A.E.; Tran-Nguyen, P.L.; Huynh, L.H.; Soetaredjo, F.E.; Ismadji, S.; Ju, Y.H. Effect of extraction solvent on total phenol content, total flavonoid content and antioxidant activity of Limnophila aromatica. J. Food Drug Anal. 2014, 22, 296–302. [Google Scholar] [CrossRef] [PubMed]
- Ullah, I.; Wakeel, A.; Shinwari, Z.K.; Jan, S.A.; Khalil, A.T.; Ali, M. Antibacterial and antifungal activity of Isatistinctoria L. (Brassicaceae) using the micro-plate method. Pak. J. Bot. 2017, 49, 1949–1957. [Google Scholar]
- Wakeel, A.; Jan, S.A.; Ullah, I.; Shinwari, Z.K.; Xu, M. Solvent polarity mediates phytochemical yield and antioxidant capacity of Isatistinctoria. Peer J. 2019, 7, e7857. [Google Scholar] [CrossRef]
- Abd-Alla, M.A.; Haggag, W.M. Use of some plant essential oils as post-harvest botanical fungicides in the management of anthracnose disease of mango fruits (Mangifera indica L.) caused by Colletotrichum gloeosporioides (Penz). Int. J. Agric. For. 2013, 3, 1–6. [Google Scholar]
- Compean, K.L.; Ynalvez, R.A. Antimicrobial activity of plant secondary metabolites: A Review. Res. J. Med. Plant 2014, 8, 204–213. [Google Scholar]
- Igbokwe, G.E.; Anagonye, C.O.; Obiudu, I.K. Phytochemical characteristics of the root bark of E. senegalensis. Int. J. Nat. Appl. Sci. 2006, 2, 12–15. [Google Scholar] [CrossRef]
- Pagare, S.; Bhatia, M.; Tripathi, N.; Pagare, S.; Bansal, Y.K. Secondary Metabolites of Plants and their Role: Overview. Curr. Trends Biotechnol. Pharm. 2015, 9, 293–304. [Google Scholar]
- Togola, A.; Austarheim, I.; Theïs, A.; Diallo, D.; Paulsen, B.S. Ethnopharmacological uses of E. senegalensis: A comparison of three areas in Mali, and a link between traditional knowledge and modern biological science. J. Ethnobiol. Ethnomed. 2008, 4, 6–17. [Google Scholar] [CrossRef]
- Egwu, E.; Ibiam, F.A.; Moses, I.B.; Iroha, C.S.; Orji, I.; Okafor-Alu, F.N.; Eze, C.O.; Iroha, I.R. Antimicrobial Susceptibility and Molecular Characteristics of Beta-Lactam and Fluoroquinolones-Resistant E. coli From Human Clinical Samples in Nigeria. Sci. Afr. 2023, 21, e01863. [Google Scholar] [CrossRef]
- Duse, A.G. Infection Control in Developing Countries with Particular Emphasis on South Africa. S. Afr. J. Epidemiol. Infect. 2015, 20, 37–41. [Google Scholar] [CrossRef]
- Eggleston, K.; Zhang, R.; Zeckhauser, R.J. The Global Challenge of Antimicrobial Resistance: Insights from Economic Analysis. Int. J. Environ. Res. Public Health 2010, 7, 3141–3149. [Google Scholar] [CrossRef] [PubMed]
- Elsayed, T.I.; Ismail, H.A.; Elgamal, S.A. The Occurrence of Multidrug Resistant E. coli Which Produce ESBL and Cause Urinary Tract Infections. J. Appl. Microbiol. Biochem. 2017, 1, 8. [Google Scholar] [CrossRef]
- Tansarli, G.S.; Anthanasiou, S.; Falagas, M.E. Evaluation of Antimicrobial Susceptibility of Enterobacteriaceae Causing Urinary Tract Infections in Africa. Antimicrob. Agents Chemother. 2013, 57, 3628–3639. [Google Scholar] [CrossRef]
- Baugh, S.; Ekanayaka, A.S.; Paddock, L.J.; Webber, M.A. Loss of or inhibition of all Multidrug Resistance Efflux Pumps of Salmonella enterica serovar Typhimurium results in impaired ability to form a biofilm. J. Antimicrob. Chemother. 2012, 67, 2409–2417. [Google Scholar] [CrossRef] [PubMed]
- Fabrega, A.; Soto, S.M.; Balleste-Delpierre, C.; Fernandez-Orth, D.; Jimenez De Anta, M.T.; Vila, J. Impact of quinolone-resistance acquisition on Biofilm Production and fitness in Salmonella enterica. J. Antimicrob. Chemother. 2014, 69, 1815–1824. [Google Scholar] [CrossRef] [PubMed]
- Hoiby, N.; Bjarnsholt, T.; Givskov, M.; Molin, S.; Ciofu, O. Antibiotic Resistance of Bacterial Biofilms. Int. J. Antimicrob. Agents 2010, 35, 322–332. [Google Scholar] [CrossRef]
- Di Domenico, E.G.; Toma, L.; Provot, C.; Ascenzioni, F.; Sperduti, I.; Prignano, G.; Gallo, M.T.; Pimpinelli, F.; Bordignon, V.; Bernardi, T.; et al. Development of an in vitro Assay, Based on the BioFilm Ring Test, for Rapid Profiling of Biofilm-Growing Bacteria. Front. Microbiol. 2016, 7, 1429. [Google Scholar] [CrossRef]
- Stepanovic, S.; Vukovic, D.; Dakic, I.; Savic, B.; Svabic-Vlahovic, M. A modified microtiter-plate test for quantification of staphylococcal biofilm formation. J. Microbiol. Methods 2000, 40, 175–179. [Google Scholar] [CrossRef]
- Stepanovic, S.; Vukonic, D.; Hola, V.; Bonaventure, G.D.; Djukic, S.; Cirkovic, I.; Ruzicka, F. Quantification of Biofilm in Microtiter Plates: Overview testing conditions and practical recommendations for assessment of biofilm production by Staphyloccoci. Acta Pathol. Microbiol. Immunol. Scand. 2007, 115, 891–899. [Google Scholar] [CrossRef]
- Doughari, J.H. Evaluation of antimicrobial potentials of stem bark extracts of E. senegalensis DC. Afr. J. Microbiol. Res. 2010, 4, 1836–1841. [Google Scholar]
- Kone, W.M.; Atindehou, K.K.; Kacou-N’douba, A.; Dosso, M. Evaluation of 17 Medicinal Plants from Northern Cote D’ivoire for their in Vitro Activity against Streptococcus Pneumoniae. Afr. J. Tradit. Complement. Altern. Med. 2007, 4, 17–22. [Google Scholar] [CrossRef]
- Sato, M.; Tanaka, H.; Oh-Uchi, T.; Fukai, T.; Etoh, H.; Yamaguchi, R. Antibacterial activity of phytochemicals isolated from Erythrina zeyheri against vancomycin-resistant enterococci and their combinations with vancomycin. Phytotherapy 2004, 18, 906–910. [Google Scholar] [CrossRef]
- Yenjai, C.; Prasanphen, K.; Daodee, S.; Kittakoop, P. Bioactive flavonoids from kaempheriliaparvin flora. Fitoterapia 2004, 75, 89–92. [Google Scholar] [CrossRef]
- Furuta, T.; Kimura, T.; Kondo, S.; Wakimoto, T.; Nukaya, H.; Tsuji, K.; Tanaka, K. Concise total synthesis of flavones C-glycoside having potent anti-inflammatory activity. Tetrahedron 2004, 60, 9375–9379. [Google Scholar] [CrossRef]
- Wanjala, C.C.W.; Juma, B.F.; Bojase, G.; Gashe, B.A.; Majinda, R.R.T. Erythrinaline alkaloids and antimicrobial flavonoids from Erythrina latissima. Planta Medica 2002, 68, 640–642. [Google Scholar] [CrossRef] [PubMed]
- Nkengfack, A.E.; Azebaze, A.G.B.; Waffo, A.K.; Fomum, Z.T.; Meyer, M.; van Heerden, F.R. Cytotoxic isoflavones from Erythrina indica. Phytochemistry 2001, 58, 1113–1120. [Google Scholar] [CrossRef]
- Egharevba, H.O.; Odigwe, A.C.; Abdullahi, M.S.; Okwute, S.K.; Okogun, J.I. Phytochemical Analysis and Broad Spectrum Antimicrobial Activity of Cassia occidentalis L. (whole plant). N. Y. Sci. J. 2010, 3, 74–81. [Google Scholar]
- Bavington, C.; Page, C. Stopping Bacterial Adhesion: A Novel Approach to Treating Infections. Respiration 2005, 72, 335–344. [Google Scholar] [CrossRef]
- Kim, B.; Park, J.S.; Choi, H.Y.; Yoon, S.S.; Kim, W.G. Terrain is an inhibitor of quorum sensing and c-di-GMP in Pseudomonas aeruginosa: A connection between quorum sensing and c-di-GMP. Sci. Rep. J. 2018, 8, 8617. [Google Scholar] [CrossRef]
- Song, X.; Xia, Y.X.; He, Z.D.; Zhang, H.J. A review of natural products with antibiofilm activity. Curr. Org. Chem. J. 2018, 22, 789–817. [Google Scholar] [CrossRef]
- Amaya, S.; Pereira, J.A.; Borkosky, S.A.; Valdez, J.C.; Bardon, A.; Arena, M.E. Inhibition of Quorum Sensing in Pseudomonas aeruginosa by Sesquiterpene Lactones. Phytomedicine 2012, 19, 1173–1177. [Google Scholar] [CrossRef]
- Baishya, R.; Banerjee, S. Effect of Medicinal Plants on Biofilm-Forming Staphylococcus aureus from Tertiary Health Care Hospital and Characterization of Biofilm-Associated Extracellular Polymeric Substances (EPS). In Advances in Bioprocess Engineering and Technology: Select Proceedings ICABET 2020; Springer: Singapore, 2021; pp. 189–197. ISBN 978-981-15-7409-2. [Google Scholar] [CrossRef]
- Ramage, G.; Martínez, J.P.; López-Ribot, J.L. Candida biofilms on implanted biomaterials: A clinically significant problem. FEMS Yeast Res. 2006, 6, 979–986. [Google Scholar] [CrossRef] [PubMed]
- Merghni, A.; Noumi, E.; Hadded, O.; Dridi, N.; Panwar, H.; Ceylan, O.; Mastouri, M.; Snoussi, M. Assessment of the Antibiofilm and Antiquorum sensing activities of Eucalyptus globulus essential oil and its Main component 1, 8-cineole against methicillin-resistant Staphylococcus aureus strains. Microb. Pathog. 2018, 118, 74–80. [Google Scholar] [CrossRef] [PubMed]
- Giaouris, E.; Heir, E.; Hébraud, M.; Chorianopoulos, N.; Langsrud, S.; Møretrø, T.; Habimana, O.; Desvaux, M.; Renier, S.; Nychas, G.J. Attachment and biofilm formation by foodborne bacteria in meat processing environments: Causes, implications, role of bacterial interactions and control by alternative novel methods. Meat Sci. 2014, 97, 298–309. [Google Scholar] [CrossRef]
- Olawuwo, O.S.; Famuyide, I.M.; McGaw, L.J. Antibacterial and Antibiofilm Activity of Selected Medicinal Plant Leaf Extracts against Pathogens Implicated in Poultry Diseases. Front. Vet. Sci. 2022, 9, 820304. [Google Scholar] [CrossRef]
- Koo, H.; Allan, R.N.; Howlin, R.P.; Stoodley, P.; Hall-Stoodley, L. Targeting microbial biofilms: Current and prospective therapeutic strategies. Nat. Rev. Microbiol. 2017, 15, 740–755. [Google Scholar] [CrossRef]
- Nostro, A.; Sudano, R.A.; Bisignano, G.; Marino, A.; Cannatelli, M.A.; Pizzimenti, F.C.; Cioni, P.L.; Procopio, F.; Blanco, A.R. Effects of oregano, carvacrol and thymol on Staphylococcus aureus and Staphylococcus epidermidis biofilms. J. Med. Microbiol. 2007, 56 Pt 4, 519–523. [Google Scholar] [CrossRef]
- Sa, S.; Me, A.; Sm, H.; Ar, A. Chemical Composition, Antimicrobial and antibiofilm Activity Of The Essential Oil And Methanol Extract Of The Mediterranean Cypress (Cupressus sempervirens L.). BMC Complement. Altern. Med. 2014, 14, 179. [Google Scholar]
- Sandasi, M.; Leonard, C.M.; Viljoen, A.M. The effect of five common essential oil components on Listeria monocytogenes biofilms. Soc. Appl. Microbiol. Lett. Appl. Microbiol. 2010, 50, 30–35. [Google Scholar] [CrossRef]
- Ofek, I.; Hasty, D.L.; Sharon, N. Anti-adhension therapy of bacterial diseases: Prospects and problems. FEMS Imunol. Med. Microbiol. J. 2003, 38, 181–191. [Google Scholar] [CrossRef] [PubMed]
- Djihane, B.; Wafa, N.; Elkhamssa, S.; Maria, A.E.; Mihoub, Z.M. Chemical Constituents of Helichrysum italicum (Roth) G. Don Essential Oil and their antimicrobial activity against gram-positive and gram-negative bacteria, filamentous fungi and Candida albicans. Saudi Pharm. J. 2017, 25, 780–787. [Google Scholar] [CrossRef] [PubMed]
- Biswas, B.; Rogers, K.; Mclaughlin, F.; Daniels, D.; Yadav, A. Antimicrobial activities of leaf extracts of guava (Psidium guajava L.) on two gram-negative and gram-positive bacteria. Int. J. Microbiol. 2013, 2013, 746165. [Google Scholar] [CrossRef]
- Boulekbache-Makhlouf, L.; Slimani, S.; Madani, K. Total Phenolic Content, Antioxidant and Antibacterial Activities of Fruits of Eucalyptus globules Cultivated in Algeria. Ind. Crop Prod. 2013, 41, 85–89. [Google Scholar] [CrossRef]
- Cushnie, T.P.; Hamilton, V.E.; Chapman, D.G.; Taylor, P.W.; Lamb, A.J. Aggregation of Staphylococcus aureus following treatment with the antibacterial flavonol galangin. J. Appl. Microbiol. 2007, 103, 1562–1567. [Google Scholar] [CrossRef]
- Bore, E.; Langsrud, S.; Langsrud, Ø.; Rode, T.M.; Holck, A. Acid-shock responses in Staphylococcus aureus investigated by global gene expression analysis. Microbiology 2007, 153 Pt 7, 2289–2303. [Google Scholar] [CrossRef]
- Di-Domenico, E.G.; Farulla, I.; Prignano, G.; Gallo, M.T.; Vespaziani, M.; Cavallo, I.; Sperduti, I.; Pontone, M.; Bordignon, V.; Cilli, L.; et al. Biofilm is a major virulence determinant in bacterial colonization of chronic skin ulcers independently from the multidrug resistant phenotype. Int. J. Mol. Sci. 2017, 18, 1077. [Google Scholar] [CrossRef]
- Singhai, M.; Malik, A.; Shahid, M.; Malik, M.A.; Goyal, R. A Study on Device-related Infections with Special Reference to Biofilm Production and Antibiotic Resistance. J. Glob. Infect. Dis. 2012, 4, 193–198. [Google Scholar] [CrossRef] [PubMed]
- Soto, S.M.; Smithson, A.; Martinez, J.P.; Horcajada, J.P.; Mensa, J.; Vila, J. Biofilm Formation in Uropathogenic Escherichia coli strains: Relationship with Prostatitis, Urovirulence Factors and Antimicrobial Resistance. J. Urol. 2007, 77, 365–368. [Google Scholar] [CrossRef]
- Musafer, H.K.; Kuchma, S.L.; Naimie, A.A.; Schwartzman, J.D.; Al-Muthkhury, H.J.; O’Toole, G.A. Investigating the link between imipenem resistance and Biofilm Formation by Pseudomonas aeruginosa. Microb. Ecol. 2014, 63, 111–120. [Google Scholar] [CrossRef]
- Freeman, D.J.; Falkiner, F.R.; Keane, C.T. New method for detecting slime production by coagulase negative Staphylococci. J. Clin. Pathol. 1989, 42, 872–874. [Google Scholar] [CrossRef] [PubMed]
- Kouidhi, B.; Zmantar, T.; Hentati, H.; Bakhrouf, A. Cell surface hydrophobicity, biofilm formation, adhesives properties and molecular detection of adhesives genes in Staphylococcus aureus associated to dental caries. Microb. Pathog. 2010, 49, 14–22. [Google Scholar] [CrossRef]
- Pajohesh, R.; Tajbakhsh, E.; Momtaz, H.; Rahimi, E. Genotyping and distribution of putative virulence factors of Staphylococcus aureus isolated from dairy products in Shahrekord, Iran. Arch. Pharm. Pract. 2019, 10, 63–75. [Google Scholar]
- Bissong, M.E.A.; Ateba, C.N. Genotypic and phenotypic evaluation of biofilm production and antimicrobial resistance in Staphylococcus aureus isolated from milk, Northwest Province, South Africa. Antibiotics 2020, 9, 156. [Google Scholar] [CrossRef] [PubMed]
Phytochemicals | Aqueous | Ethanolic |
---|---|---|
Tannsins | + | + |
Saponins | + | + |
Cardiac glycosides | + | − |
Flavonoids | + | + |
Terpenoids | + | − |
Alkaloids | + | − |
Anthraquinone | + | − |
Reducing sugar | + | − |
Ketones | + | − |
Phlobatannins | − | − |
Diameter of Zone of Inhibition (mm) (Mean ± S.D) of the Antimicrobials | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Isolate | SXT | CH | SP | CPX | AM | AU | CN | PEF | OFX | Streptomycin |
S. Typhimurium | 22± 0.00 S | 38 ± 0.71 S | 0 ± 0.00 R | 14 ± 0.00 R | 0 ± 0.00 R | 0 ± 0.00 R | 0 ± 0.00 R | 0 ± 0.00 R | 6 ± 1.41 R | 4 ± 0.00 R |
S. Typhi | 28 ± 0.00 S | 30 ± 0.00 S | 30 ± 0.71 S | 29 ± 1.41 I | 30 ± 0.00 S | 31 ± 1.41 S | 28 ± 0.71 S | 30 ± 0.00 S | 30 ± 0.71 S | 30 ± 0.00 S |
S. Enteritidis | 31 ± 1.41 S | 30 ± 0.71 S | 18 ± 0.00 S | 22 ± 0.00 I | 0 ± 0.00 R | 0 ± 0.00 R | 24 ± 0.00 S | 17 ± 1.41 R | 18 ± 0.00 S | 0 ± 0.00 R |
Klebsiella pneumoniae | 18 ± 0.00 S | 29 ± 1.41 S | 21 ± 1.41 S | 32 ± 0.00 S | 10 ± 0.71 R | 8 ± 0.71 R | 14 ± 0.00 I | 20 ± 0.00 R | 22 ± 0.00 S | 14 ± 0.71 I |
Pseudomonas aeruginosa | 0 ± 0.00 R | 0 ± 0.00 R | 14 ± 0.00 I | 17 ± 1.41 I | 0 ± 0.00 R | 0 ± 0.00 R | 13 ± 1.41 I | 8 ± 0.00 R | 10 ± 0.71 R | 4 ± 0.00 R |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Published by MDPI on behalf of the Hellenic Society for Microbiology. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Enupe, O.J.; Umar, C.M.; Philip, M.; Musa, E.; Oti, V.B.; Khaliq, A. Evaluation of the Antibacterial and Antibiofilm Activity of E. senegalensis Leaf Extract Against Multidrug-Resistant Bacteria. Acta Microbiol. Hell. 2024, 69, 258-273. https://doi.org/10.3390/amh69040024
Enupe OJ, Umar CM, Philip M, Musa E, Oti VB, Khaliq A. Evaluation of the Antibacterial and Antibiofilm Activity of E. senegalensis Leaf Extract Against Multidrug-Resistant Bacteria. Acta Microbiologica Hellenica. 2024; 69(4):258-273. https://doi.org/10.3390/amh69040024
Chicago/Turabian StyleEnupe, Oyibo Joel, Christiana Micah Umar, Manbyen Philip, Emmanuel Musa, Victor Baba Oti, and Asif Khaliq. 2024. "Evaluation of the Antibacterial and Antibiofilm Activity of E. senegalensis Leaf Extract Against Multidrug-Resistant Bacteria" Acta Microbiologica Hellenica 69, no. 4: 258-273. https://doi.org/10.3390/amh69040024
APA StyleEnupe, O. J., Umar, C. M., Philip, M., Musa, E., Oti, V. B., & Khaliq, A. (2024). Evaluation of the Antibacterial and Antibiofilm Activity of E. senegalensis Leaf Extract Against Multidrug-Resistant Bacteria. Acta Microbiologica Hellenica, 69(4), 258-273. https://doi.org/10.3390/amh69040024