Emerging Arboviruses in Europe
Abstract
:1. Introduction
2. Mosquito-Transmitted Viruses
2.1. West Nile Fever Virus
2.2. Usutu Virus
2.3. Dengue Virus
2.4. Chikungunya Virus
2.5. Zika Virus
3. Tick-Transmitted Viruses
3.1. Crimean–Congo Haemorrhagic Fever Virus
3.2. Tick-Borne Encepahlitis Virus
4. Sand Fly-Transmitted Viruses
Toscana Virus and Other Phleboviruses
5. Challenges
6. Future Perspectives
Funding
Conflicts of Interest
References
- Higgs, S.; Beaty, B.J. Natural Cycles of Vector-Borne Pahogens Biology of Disease Vectors; Elsevier Academic Press: New York, NY, USA, 2005. [Google Scholar]
- World Health Organization. Global Arbovirus Initiative: Preparing for the Next Pandemic by Tackling Mosquito-Borne Viruses with Epidemic and Pandemic Potential; World Health Organization: Geneva, Switzerland, 2024. [Google Scholar]
- European Centre for Disease Prevention (ECDC). Worsening Spread of Mosquito-Borne Disease Outbreaks in EU/EEA, According to Latest ECDC Figures 2024. 11 June 2024. Available online: https://www.ecdc.europa.eu/en/news-events/worsening-spread-mosquito-borne-disease-outbreaks-eueea-according-latest-ecdc-figures (accessed on 3 November 2024).
- European Centre for Disease Prevention and Control and European Food Safety Authority. Mosquito Maps Stockholm ECDC. 2023. Available online: https://ecdc.europa.eu/en/disease-vectors/surveillance-and-disease-data/mosquito-maps (accessed on 24 October 2024).
- Rezza, G.; Nicoletti, L.; Angelini, R.; Romi, R.; Finarelli, A.; Panning, M.; Cordioli, P.; Fortuna, C.; Boros, S.; Magurano, F.; et al. Infection with chikungunya virus in Italy: An outbreak in a temperate region. Lancet 2007, 370, 1840–1846. [Google Scholar] [CrossRef] [PubMed]
- Leblebicioglu, H.; Eroglu, C.; Erciyas-Yavuz, K.; Hokelek, M.; Acici, M.; Yilmaz, H. Role of migratory birds in spreading Crimean-Congo hemorrhagic fever, Turkey. Emerg. Infect. Dis. 2014, 20, 1331–1334. [Google Scholar] [CrossRef]
- Fanelli, A.; Buonavoglia, D. Risk of Crimean Congo haemorrhagic fever virus (CCHFV) introduction and spread in CCHF-free countries in southern and Western Europe: A semi-quantitative risk assessment. One Health 2021, 13, 100290. [Google Scholar] [CrossRef]
- Waldenström, J.; Lundkvist, Å.; Falk, K.I.; Garpmo, U.; Bergström, S.; Lindegren, G.; Sjöstedt, A.; Mejlon, H.; Fransson, T.; Haemig, P.D.; et al. Migrating birds and tickborne encephalitis virus. Emerg. Infect. Dis. 2007, 13, 1215–1218. [Google Scholar] [CrossRef] [PubMed]
- Semenza, J.C.; Suk, J.E. Vector-borne diseases and climate change: A European perspective. FEMS Microbiol. Lett. 2018, 365, fnx244. [Google Scholar]
- Gould, E.A.; Higgs, S. Impact of climate change and other factors on emerging arbovirus diseases. Trans. R. Soc. Trop. Med. Hyg. 2009, 103, 109–121. [Google Scholar] [CrossRef] [PubMed]
- Kelly, L.; Koopmans, M.; Horigan, V.; Papa, A.; Sikkema, R.; Koren, L.; Snary, E. Assessing the quality of data for drivers of disease emergence. Rev. Sci. Tech. 2023, 42, 90–102. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization (WHO). Pathogens Prioritization: A Scientific Framework for Epidemic and Pandemic Research Preparedness; WHO Headquarters in Geneva; World Health Organization: Geneva, Switzerland, 2024. [Google Scholar]
- European Climate and Health Observatory-Climate-ADAPT. Vectorborne Diseases. 2024. Available online: https://climate-adapt.eea.europa.eu/en/observatory/evidence/health-effects/vector-borne-diseases (accessed on 26 October 2024).
- Smithburn, K.; Hughes, T.; Burke, A. A neurotropic virus isolated from the blood of a native of Uganda. Am. J. Trop. Med. 1940, 20, 471–492. [Google Scholar] [CrossRef]
- Hurlbut, H.S.; Rizk, F.; Taylor, R.M.; Work, T.H. A study of the ecology of West Nile virus in Egypt. Am. J. Trop. Med. Hyg. 1956, 5, 579–620. [Google Scholar] [PubMed]
- Colpitts, T.M.; Conway, M.J.; Montgomery, R.R.; Fikrig, E. West Nile Virus: Biology, transmission, and human infection. Clin. Microbiol. Rev. 2012, 25, 635–648. [Google Scholar]
- Domanović, D.; Gossner, C.M.; Lieshout-Krikke, R.; Mayr, W.; Baroti-Toth, K.; Dobrota, A.M.; Escoval, M.A.; Henseler, O.; Jungbauer, C.; Liumbruno, G.; et al. West Nile and Usutu Virus Infections and Challenges to Blood Safety in the European Union. Emerg. Infect. Dis. 2019, 25, 1050–1057. [Google Scholar] [CrossRef] [PubMed]
- Sambri, V.; Capobianchi, M.; Charrel, R.; Fyodorova, M.; Gaibani, P.; Gould, E.; Niedrig, M.; Papa, A.; Pierro, A.; Rossini, G.; et al. West Nile virus in Europe: Emergence, epidemiology, diagnosis, treatment, and prevention. Clin. Microbiol. Infect. 2013, 19, 699–704. [Google Scholar]
- Hayes, E.B.; Komar, N.; Nasci, R.S.; Montgomery, S.P.; O’Leary, D.R.; Campbell, G.L. Epidemiology and transmission dynamics of West Nile virus disease. Emerg. Infect. Dis. 2005, 11, 1167–1173. [Google Scholar] [CrossRef] [PubMed]
- Samuel, M.A.; Diamond, M.S. Pathogenesis of West Nile Virus infection: A balance between virulence, innate and adaptive immunity, and viral evasion. J. Virol. 2006, 80, 9349–9360. [Google Scholar] [CrossRef] [PubMed]
- Herring, R.; Desai, N.; Parnes, M.; Jarjour, I. Pediatric West Nile Virus-Associated Neuroinvasive Disease: A Review of the Literature. Pediatr. Neurol. 2019, 92, 16–25. [Google Scholar] [CrossRef] [PubMed]
- Naveed, A.; Eertink, L.G.; Wang, D.; Li, F. Lessons Learned from West Nile Virus Infection:Vaccinations in Equines and Their Implications for One Health Approaches. Viruses 2024, 16, 781. [Google Scholar] [CrossRef]
- Tsai, T.F.; Popovici, F.; Cernescu, C.; Campbell, G.L.; Nedelcu, N.I. West Nile encephalitis epidemic in southeastern Romania. Lancet 1998, 352, 767–771. [Google Scholar] [PubMed]
- Bakonyi, T.; Ivanics, É.; Erdélyi, K.; Ursu, K.; Ferenczi, E.; Weissenböck, H.; Nowotny, N. Lineage 1 and 2 strains of encephalitic West Nile virus, central Europe. Emerg. Infect. Dis. 2006, 12, 618–623. [Google Scholar] [CrossRef]
- Papa, A.; Danis, K.; Bakas, A.; Dougas, G.; Lytras, T.; Theocharopoulos, G.; Chrysagis, D.; Vassiliadou, E.; Kamaria, F.; Liona, A.; et al. Ongoing outbreak of West Nile virus infections in humans in Greece, July-August 2010. Eurosurveillance 2010, 15, 19644. [Google Scholar] [PubMed]
- European Centre for Disease Prevention and Control (ECDC). West Nile Virus Infection; Annual Epidemiological Report for 2018; ECDC: Stockholm, Sweden, 2019.
- Bakonyi, T.; Haussig, J.M. West Nile virus keeps on moving up in Europe. Eurosurveillance 2020, 25, 2001938. [Google Scholar] [PubMed]
- Barzon, L.; Montarsi, F.; Quaranta, E.; Monne, I.; Pacenti, M.; Michelutti, A.; Toniolo, F.; Danesi, P.; Marchetti, G.; Gobbo, F.; et al. Early start of seasonal transmission and co-circulation of West Nile virus lineage 2 and a newly introduced lineage 1 strain, northern Italy, June 2022. Eurosurveillance 2022, 27, 2200548. [Google Scholar]
- Tran, A.; Sudre, B.; Paz, S.; Rossi, M.; Desbrosse, A.; Chevalier, V.; Semenza, J.C. Environmental predictors of West Nile fever risk in Europe. Int. J. Health Geogr. 2014, 13, 26. [Google Scholar]
- Paz, S.; Malkinson, D.; Green, M.S.; Tsioni, G.; Papa, A.; Danis, K.; Sirbu, A.; Ceianu, C.; Katalin, K.; Ferenczi, E.; et al. Permissive summer temperatures of the 2010 European West Nile fever upsurge. PLoS ONE 2013, 8, e56398. [Google Scholar]
- European Centre for Disease Prevention and Control (ECDC). Communicable Disease Threats Report; ECDC: Stockholm, Sweden, 2024.
- European Centre for Disease Prevention (ECDC). Monthly Updates: 2024 West Nile Virus Transmission Season; ECDC: Stockholm, Sweden, 2024.
- Lu, L.; Zhang, F.; Munnink, B.B.O.; Munger, E.; Sikkema, R.S.; Pappa, S.; Tsioka, K.; Sinigaglia, A.; Molin, E.D.; Shih, B.B.; et al. West Nile virus spread in Europe: Phylogeographic pattern analysis and key drivers. PLoS Pathog. 2024, 20, e1011880. [Google Scholar] [CrossRef] [PubMed]
- Williams, M.C.; Simpson, D.I.; Haddow, A.J.; Knight, E.M. The Isolation of West Nile Virus from Man and of Usutu Virus from the Bird-Biting Mosquito Mansonia Aurites (Theobald) in the Entebbe Area of Uganda. Ann. Trop. Med. Parasitol. 1964, 58, 367–374. [Google Scholar]
- Zannoli, S.; Sambri, V. West Nile Virus and Usutu Virus Co-Circulation in Europe: Epidemiology and Implications. Microorganisms 2019, 7, 184. [Google Scholar] [CrossRef] [PubMed]
- Weissenbock, H.; Bakonyi, T.; Rossi, G.; Mani, P.; Nowotny, N. Usutu virus, Italy, 1996. Emerg. Infect. Dis. 2013, 19, 274–277. [Google Scholar] [CrossRef] [PubMed]
- Weissenbock, H.; Kolodziejek, J.; Url, A.; Lussy, H.; Rebel-Bauder, B.; Nowotny, N. Emergence of Usutu virus, an African mosquito-borne flavivirus of the Japanese encephalitis virus group, central Europe. Emerg. Infect. Dis. 2002, 8, 652–656. [Google Scholar]
- Pecorari, M.; Longo, G.; Gennari, W.; Grottola, A.; Sabbatini, A.M.; Tagliazucchi, S.; Savini, G.; Monaco, F.; Simone, M.; Lelli, R.; et al. First human case of Usutu virus neuroinvasive infection, Italy, August-September 2009. Eurosurveillance 2009, 14, 19446. [Google Scholar] [PubMed]
- Cadar, D.; Maier, P.; Müller, S.; Kress, J.; Chudy, M.; Bialonski, A.; Schlaphof, A.; Jansen, S.; Jöst, H.; Tannich, E.; et al. Blood donor screening for West Nile virus (WNV) revealed acute Usutu virus (USUV) infection, Germany, September 2016. Eurosurveillance 2017, 22, 30501. [Google Scholar] [CrossRef] [PubMed]
- Vilibic-Cavlek, T.; Kaic, B.; Barbic, L.; Pem-Novosel, I.; Slavic-Vrzic, V.; Lesnikar, V.; Kurecic-Filipovic, S.; Babic-Erceg, A.; Listes, E.; Stevanovic, V.; et al. First evidence of simultaneous occurrence of West Nile virus and Usutu virus neuroinvasive disease in humans in Croatia during the 2013 outbreak. Infection 2014, 42, 689–695. [Google Scholar] [CrossRef]
- Bakonyi, T.; Erdelyi, K.; Brunthaler, R.; Dan, A.; Weissenbock, H.; Nowotny, N. Usutu virus, Austria and Hungary, 2010–2016. Emerg. Microbes Infect. 2017, 6, e85. [Google Scholar] [PubMed]
- Zelená, H.; Kleinerová, J.; Šikutová, S.; Straková, P.; Kocourková, H.; Stebel, R.; Husa, P.; Husa, P.; Tesařová, E.; Lejdarová, H.; et al. First Autochthonous West Nile Lineage 2 and Usutu Virus Infections in Humans, July to October 2018, Czech Republic. Pathogens 2021, 10, 651. [Google Scholar] [CrossRef] [PubMed]
- Simonin, Y.; Sillam, O.; Carles, M.J.; Gutierrez, S.; Gil, P.; Constant, O.; Martin, M.F.; Grard, G.; van de Perre, P.; Salinas, S.; et al. Human Usutu Virus Infection with Atypical Neurologic Presentation, Montpellier, France, 2016. Emerg. Infect. Dis. 2018, 24, 875–878. [Google Scholar] [CrossRef]
- Pacenti, M.; Sinigaglia, A.; Martello, T.; de Rui, M.E.; Franchin, E.; Pagni, S.; Peta, E.; Riccetti, S.; Milani, A.; Montarsi, F.; et al. Clinical and virological findings in patients with Usutu virus infection, northern Italy, 2018. Eurosurveillance 2019, 24, 1900180. [Google Scholar]
- Vilibic-Cavlek, T.; Savic, V.; Sabadi, D.; Peric, L.; Barbic, L.; Klobucar, A.; Miklausic, B.; Tabain, I.; Santini, M.; Vucelja, M.; et al. Prevalence and molecular epidemiology of West Nile and Usutu virus infections in Croatia in the ‘One health’ context, 2018. Transbound. Emerg. Dis. 2019, 66, 1946–1957. [Google Scholar] [PubMed]
- Gaibani, P.; Barp, N.; Massari, M.; Negri, E.A.; Rossini, G.; Vocale, C.; Trenti, C.; Gallerani, A.; Cantergiani, S.; Romani, F.; et al. Case report of Usutu virus infection in an immunocompromised patient in Italy, 2022. J. Neurovirol. 2023, 29, 364–366. [Google Scholar]
- European Centre for Disease Prevention and Control, European Food Safety Authority. Surveillance, Prevention and Control of West Nile Virus and Usutu Virus Infections in the EU/EEA; European Centre for Disease Prevention and Control, European Food Safety Authority: Stockholm, Sweden, 2023.
- Angeloni, G.; Bertola, M.; Lazzaro, E.; Morini, M.; Masi, G.; Sinigaglia, A.; Trevisan, M.; Gossner, C.M.; Haussig, J.M.; Bakonyi, T.; et al. Epidemiology, surveillance and diagnosis of Usutu virus infection in the EU/EEA, 2012 to 2021. Eurosurveillance 2023, 28, 2200929. [Google Scholar]
- Panagopoulou, A.; Tegos, N.; Beleri, S.; Mpimpa, A.; Balatsos, G.; Michaelakis, A.; Hadjichristodoulou, C.; Patsoula, E. Molecular detection of Usutu virus in pools of Culex pipiens mosquitoes in Greece. Acta Trop. 2024, 258, 107330. [Google Scholar] [CrossRef]
- Simonin, Y. Circulation of West Nile Virus and Usutu Virus in Europe: Overview and Challenges. Viruses 2024, 16, 599. [Google Scholar] [CrossRef] [PubMed]
- Cadar, D.; Lühken, R.; van der Jeugd, H.; Garigliany, M.; Ziegler, U.; Keller, M.; Lahoreau, J.; Lachmann, L.; Becker, N.; Kik, M.; et al. Widespread activity of multiple lineages of Usutu virus, western Europe, 2016. Eurosurveillance 2017, 22, 11–17. [Google Scholar] [CrossRef]
- Zecchin, B.; Zecchin, B.; Fusaro, A.; Fusaro, A.; Milani, A.; Milani, A.; Schivo, A.; Schivo, A.; Ravagnan, S.; Ravagnan, S.; et al. The central role of Italy in the spatial spread of USUTU virus in Europe. Virus Evol. 2021, 7, veab048. [Google Scholar] [CrossRef] [PubMed]
- Kimura, R.; Hotta, S. Studies on Dengue Fever (VI). On the Inoculation of Dengue Virus into Mice. Nippom Igaku 1944, 3379, 629–633. (In Japanese) [Google Scholar]
- Whitehorn, J.; Kien, D.T.; Nguyen, N.M.; Nguyen, H.L.; Kyrylos, P.P.; Carrington, L.B.; Tran, C.N.B.; Quyen, N.T.H.; Thi, L.V.; Le Thi, D.; et al. Comparative Susceptibility of Aedes albopictus and Aedes aegypti to Dengue Virus Infection After Feeding on Blood of Viremic Humans: Implications for Public Health. J. Infect. Dis. 2015, 212, 1182–1190. [Google Scholar] [CrossRef] [PubMed]
- Levi, J.E. Dengue Virus and Blood Transfusion. J. Infect. Dis. 2016, 213, 689–690. [Google Scholar] [CrossRef] [PubMed]
- World Health Organisation (WHO). Dengue and Severe Dengue. 2024. Available online: https://www.who.int/news-room/fact-sheets/detail/dengue-and-severe-dengue (accessed on 26 October 2024).
- Tejo, A.M.; Hamasaki, D.T.; Menezes, L.M.; Ho, Y.L. Severe dengue in the intensive care unit. J. Intensive Med. 2024, 4, 16–33. [Google Scholar] [CrossRef] [PubMed]
- Katzelnick, L.C.; Escoto, A.C.; Huang, A.T.; Garcia-Carreras, B.; Chowdhury, N.; Berry, I.M.; Chavez, C.; Buchy, P.; Duong, V.; Dussart, P.; et al. Antigenic evolution of dengue viruses over 20 years. Science 2021, 374, 999–1004. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization (WHO). Vaccines and Immunization: Dengue 2024. 10 May 2024. Available online: https://www.who.int/news-room/questions-and-answers/item/dengue-vaccines (accessed on 3 November 2024).
- European Centre for Disease Prevention and Control. Dengue Worldwide Overview—Situation Update. September 2024. Available online: https://www.ecdc.europa.eu/en/dengue-monthly (accessed on 2 November 2024).
- European Centre for Disease Prevention and Control (ECDC). Local Transmission of Dengue Virus in Mainland EU/EEA, 2010–Present. 2024. Available online: https://www.ecdc.europa.eu/en/all-topics-z/dengue/surveillance-and-disease-data/autochthonous-transmission-dengue-virus-eueea (accessed on 3 November 2024).
- Lourenco, J.; Recker, M. The 2012 Madeira dengue outbreak: Epidemiological determinants and future epidemic potential. PLoS Negl. Trop. Dis. 2014, 8, e3083. [Google Scholar] [CrossRef] [PubMed]
- Franco, L.; Pagan, I.; Serre del Cor, N.; Schunk, M.; Neumayr, A.; Molero, F.; Potente, A.; Hatz, C.; Wilder-Smith, A.; Sánchez-Seco, M.P.; et al. Molecular epidemiology suggests Venezuela as the origin of the dengue outbreak in Madeira, Portugal in 2012–2013. Clin. Microbiol. Infect. 2015, 21, 713.e5–713.e8. [Google Scholar] [CrossRef]
- Wilder-Smith, A.; Quam, M.; Sessions, O.; Rocklov, J.; Liu-Helmersson, J.; Franco, L.; Khan, K. The 2012 dengue outbreak in Madeira: Exploring the origins. Eurosurveillance 2014, 19, 20718. [Google Scholar] [CrossRef] [PubMed]
- Papaevangelou, G.; Halstead, S.B. Infections with two dengue viruses in Greece in the 20th century. Did dengue hemorrhagic fever occur in the 1928 epidemic? J. Trop. Med. Hyg. 1977, 80, 46–51. [Google Scholar]
- Lambrechts, L.; Scott, T.W.; Gubler, D.J. Consequences of the expanding global distribution of Aedes albopictus for dengue virus transmission. PLoS Negl. Trop. Dis. 2010, 4, e646. [Google Scholar] [CrossRef] [PubMed]
- Ross, R. The Newala epidemic. III. The virus: Isolation, pathogenic properties and relationship to the epidemic. Epidemiol. Infect. 1956, 54, 177–191. [Google Scholar] [CrossRef] [PubMed]
- Vazeille, M.; Moutailler, S.; Coudrier, D.; Rousseaux, C.; Khun, H.; Huerre, M.; Thiria, J.; Dehecq, J.-S.; Fontenille, D.; Schuffenecker, I.; et al. Two Chikungunya isolates from the outbreak of La Reunion (Indian Ocean) exhibit different patterns of infection in the mosquito, Aedes albopictus. PLoS ONE 2007, 2, e1168. [Google Scholar] [CrossRef] [PubMed]
- Tsetsarkin, K.A.; Vanlandingham, D.L.; McGee, C.E.; Higgs, S. A single mutation in chikungunya virus affects vector specificity and epidemic potential. PLoS Pathog. 2007, 3, e201. [Google Scholar] [CrossRef]
- Tsetsarkin, K.A.; McGee, C.E.; Volk, S.M.; Vanlandingham, D.L.; Weaver, S.C.; Higgs, S. Epistatic roles of E2 glycoprotein mutations in adaption of chikungunya virus to Aedes albopictus and Ae. aegypti mosquitoes. PLoS ONE 2009, 4, e6835. [Google Scholar] [CrossRef]
- Fortuna, C.; Toma, L.; Remoli, M.E.; Amendola, A.; Severini, F.; Boccolini, D.; Romi, R.; Venturi, G.; Rezza, G.; di Luca, M. Vector competence of Aedes albopictus for the Indian Ocean lineage (IOL) chikungunya viruses of the 2007 and 2017 outbreaks in Italy: A comparison between strains with and without the E1:A226V mutation. Eurosurveillance 2018, 23, 1800246. [Google Scholar] [CrossRef] [PubMed]
- Calba, C.; Guerbois-Galla, M.; Franke, F.; Jeannin, C.; Auzet-Caillaud, M.; Grard, G.; Pigaglio, L.; Decoppet, A.; Weicherding, J.; Savaill, M.-C.; et al. Preliminary report of an autochthonous chikungunya outbreak in France, July to September 2017. Eurosurveillance 2017, 22, 17-00647. [Google Scholar] [CrossRef]
- Lindh, E.; Argentini, C.; Remoli, M.E.; Fortuna, C.; Faggioni, G.; Benedetti, E.; Amendola, A.; Marsili, G.; Lista, F.; Rezza, G.; et al. The Italian 2017 outbreak Chikungunya virus belongs to an emerging Aedes albopictus-adapted virus cluster introduced from the Indian subcontinent. Open Forum Infect. Dis. 2019, 6, ofy321. [Google Scholar] [CrossRef]
- Venturi, G.; di Luca, M.; Fortuna, C.; Remoli, M.E.; Riccardo, F.; Severini, F.; Toma, L.; del Manso, M.; Benedetti, E.; Caporali, M.G.; et al. Detection of a chikungunya outbreak in Central Italy, August to September 2017. Eurosurveillance 2017, 22, 17-00646. [Google Scholar] [CrossRef]
- Srivastava, P.; Kumar, A.; Hasan, A.; Mehta, D.; Kumar, R.; Sharma, C.; Sunil, S. Disease Resolution in Chikungunya—What Decides the Outcome? Front. Immunol. 2020, 11, 695. [Google Scholar] [CrossRef]
- Chen, L.H.; Fritzer, A.; Hochreiter, R.; Dubischar, K.; Meyer, S. From bench to clinic: The development of VLA1553/IXCHIQ, a live-attenuated chikungunya vaccine. J. Travel Med. 2024, 31, taae123. [Google Scholar] [CrossRef] [PubMed]
- European Centre for Disease Prevention and Control (ECDC). Local Transmission of Chikungunya Virus in Mainland EU/EEA, 2007–Present; ECDC: Stockholm, Sweden, 2024.
- Vega-Rua, A.; Zouache, K.; Caro, V.; Diancourt, L.; Delaunay, P.; Grandadam, M.; Failloux, A.-B. High efficiency of temperate Aedes albopictus to transmit chikungunya and dengue viruses in the Southeast of France. PLoS ONE 2013, 8, e59716. [Google Scholar] [CrossRef]
- Vega-Rua, A.; Zouache, K.; Girod, R.; Failloux, A.B.; Lourenco-de-Oliveira, R. High level of vector competence of Aedes aegypti and Aedes albopictus from ten American countries as a crucial factor in the spread of Chikungunya virus. J. Virol. 2014, 88, 6294–6306. [Google Scholar] [CrossRef] [PubMed]
- Dick, G.W.A. Zika Virus (I). Isolations and Serological Specificity. Trans. R. Soc. Trop. Med. Hyg. 1952, 46, 509–520. [Google Scholar] [CrossRef] [PubMed]
- Macnamara, F.N. Zika virus: A report on three cases of human infection during an epidemic of jaundice in Nigeria. Trans. R. Soc. Trop. Med. Hyg. 1954, 48, 139–145. [Google Scholar] [CrossRef]
- Foy, B.D.; Kobylinski, K.C.; Chilson Foy, J.L.; Blitvich, B.J.; Travassos da Rosa, A.; Haddow, A.D.; Lanciotti, R.S.; Tesh, R.B. Probable non-vector-borne transmission of Zika virus, Colorado, USA. Emerg. Infect. Dis. 2011, 17, 880–882. [Google Scholar] [CrossRef]
- Musso, D.; Stramer, S.L.; Committee, A.T.-T.D.; Busch, M.P.; International Society of Blood Transfusion Working Party on Transfusion-Transmitted Infectious D. Zika virus: A new challenge for blood transfusion. Lancet 2016, 387, 1993–1994. [Google Scholar] [CrossRef]
- Wiwanitkit, S.; Wiwanitkit, V. Based on the risk of dengue virus transmission via blood transfusion: What about the risk in case of Zika virus? Asian Pac. J. Trop. Med. 2016, 9, 1123–1124. [Google Scholar] [CrossRef] [PubMed]
- Fajs, L.; Jakupi, X.; Ahmeti, S.; Humolli, I.; Dedushaj, I.; Avsic-Zupanc, T. Molecular epidemiology of Crimean-Congo hemorrhagic fever virus in Kosovo. PLoS Negl. Trop. Dis. 2014, 8, e2647. [Google Scholar] [CrossRef]
- World Health Organization (WHO). Zika Virus 2022. 8 December 2022. Available online: https://www.who.int/news-room/fact-sheets/detail/zika-virus (accessed on 3 November 2024).
- Costa, M.C.N.; Cardim, L.L.; Teixeira, M.G.; Barreto, M.L.; Carvalho-Sauer, R.C.O.; Barreto, F.R.; Itaparica Carvalho, M.S.; Oliveira, W.K.; França, G.V.; Carmo, E.H.; et al. Case Fatality Rate Related to Microcephaly Congenital Zika Syndrome and Associated Factors: A Nationwide Retrospective Study in Brazil dagger. Viruses 2020, 12, 1228. [Google Scholar] [CrossRef] [PubMed]
- Cao-Lormeau, V.-M.; Blake, A.; Mons, S.; Lastère, S.; Roche, C.; Vanhomwegen, J.; Dub, T.; Baudouin, L.; Teissier, A.; Larre, P.; et al. Guillain-Barre Syndrome outbreak associated with Zika virus infection in French Polynesia: A case-control study. Lancet 2016, 387, 1531–1539. [Google Scholar] [CrossRef] [PubMed]
- Giron, S.; Franke, F.; Decoppet, A.; Cadiou, B.; Travaglini, T.; Thirion, L.; Durand, G.; Jeannin, C.; L’ambert, G.; Grard, G.; et al. Vector-borne transmission of Zika virus in Europe, southern France, August 2019. Eurosurveillance 2019, 24, 1900655. [Google Scholar] [CrossRef]
- European Centre for Disease Prevention (ECDC). Zika Virus Transmission Worldwide [Press Release]; ECDC: Stockholm, Sweden, 2019.
- European Centre for Disease Prevention (ECDC). Factsheet for Health Professionals About Crimean-Congo Haemorrhagic Fever. 2023. Available online: https://www.ecdc.europa.eu/en/crimean-congo-haemorrhagic-fever/facts/factsheet (accessed on 3 August 2024).
- Tsergouli, K.; Karampatakis, T.; Haidich, A.B.; Metallidis, S.; Papa, A. Nosocomial infections caused by Crimean-Congo haemorrhagic fever virus. J. Hosp. Infect. 2020, 105, 43–52. [Google Scholar] [CrossRef] [PubMed]
- Chumakov, M.P. A new virus disease—Crimean hemorrhagic fever. Nov. Med. 1947, 4, 9–11. [Google Scholar]
- Simpson, D.I.; Knight, E.M.; Courtois, G.; Williams, M.C.; Weinbren, M.P.; Kibukamusoke, J.W. Congo virus: A hitherto undescribed virus occurring in Africa. I. Human isolations—Clinical notes. East Afr. Med. J. 1967, 44, 86–92. [Google Scholar] [PubMed]
- World Health Organization (WHO). Factsheet Crimean-Congo Haemorrhagic Fever WHO, Geneva. 2022. Available online: https://www.who.int/news-room/fact-sheets/detail/crimean-congo-haemorrhagic-fever (accessed on 3 August 2024).
- Papa, A.; Christova, I.; Papadimitriou, E.; Antoniadis, A. Crimean-Congo hemorrhagic fever in Bulgaria. Emerg. Infect. Dis. 2004, 10, 1465–1467. [Google Scholar] [CrossRef]
- Papa, A.; Maltezou, H.C.; Tsiodras, S.; Dalla, V.G.; Papadimitriou, T.; Pierroutsakos, I.; Kartalis, G.N.; Antoniadis, A. A case of Crimean-Congo haemorrhagic fever in Greece, June 2008. Eurosurveillance 2008, 13, 18952. [Google Scholar] [CrossRef]
- Papa, A.; Bozovi, B.; Pavlidou, V.; Papadimitriou, E.; Pelemis, M.; Antoniadis, A. Genetic detection and isolation of crimean-congo hemorrhagic fever virus, Kosovo, Yugoslavia. Emerg. Infect. Dis. 2002, 8, 852–854. [Google Scholar] [CrossRef]
- Papa, A.; Bino, S.; Llagami, A.; Brahimaj, B.; Papadimitriou, E.; Pavlidou, V.; Velo, E.; Cahani, G.; Hajdini, M.; Pilaca, A.; et al. Crimean-Congo hemorrhagic fever in Albania, 2001. Eur. J. Clin. Microbiol. Infect. Dis. 2002, 21, 603–606. [Google Scholar] [CrossRef] [PubMed]
- Ahmeti, S.; Berisha, L.; Halili, B.; Ahmeti, F.; von Possel, R.; Thome-Bolduan, C.; Michel, A.; Priesnitz, S.; Reisinger, E.C.; Günther, S.; et al. Crimean-Congo Hemorrhagic Fever, Kosovo, 2013–2016. Emerg. Infect. Dis. 2019, 25, 321–324. [Google Scholar] [CrossRef]
- Volynkina, A.; Lisitskaya, Y.; Kolosov, A.; Shaposhnikova, L.; Pisarenko, S.; Dedkov, V.; Dolgova, A.; Platonov, A.; Kulichenko, A. Molecular epidemiology of Crimean-Congo hemorrhagic fever virus in Russia. PLoS ONE 2022, 17, e0266177. [Google Scholar] [CrossRef] [PubMed]
- Negredo, A.; de la Calle-Prieto, F.; Palencia-Herrejón, E.; Mora-Rillo, M.; Astray-Mochales, J.; Sánchez-Seco, M.P.; Lopez, E.B.; Menárguez, J.; Fernández-Cruz, A.; Sánchez-Artola, B.; et al. Autochthonous Crimean-Congo Hemorrhagic Fever in Spain. N. Engl. J. Med. 2017, 377, 154–161. [Google Scholar] [CrossRef] [PubMed]
- Negredo, A.; Sánchez-Ledesma, M.; Llorente, F.; Pérez-Olmeda, M.; Belhassen-García, M.; González-Calle, D.; Sánchez-Seco, M.P.; Jiménez-Clavero, M. Retrospective Identification of Early Autochthonous Case of Crimean-Congo Hemorrhagic Fever, Spain, 2013. Emerg. Infect. Dis. 2021, 27, 1754–1756. [Google Scholar] [CrossRef]
- European Centre for Disease Prevention and Control (ECDC). Cases of Crimean—Congo Haemorrhagic Fever Infected in the EU/EEA, 2013—Present; ECDC: Stockholm, Sweden, 2024. Available online: https://www.ecdc.europa.eu/en/crimean-congo-haemorrhagic-fever/surveillance/cases-eu-since-2013 (accessed on 28 October 2024).
- Jakimovski, D.; Grozdanovski, K.; Rangelov, G.; Pavleva, V.; Banović, P.; Cabezas-Cruz, A.; Spasovska, K. Cases of Crimean-Congo haemorrhagic fever in North Macedonia, July to August 2023. Eurosurveillance 2023, 28, 2300409. [Google Scholar] [CrossRef] [PubMed]
- Estrada-Peña, A.; Palomar, A.M.; Santibáñez, P.; Sánchez, N.; Habela, M.A.; Portillo, A.; Romero, L.; Oteo, J.A. Crimean-Congo hemorrhagic fever virus in ticks, Southwestern Europe, 2010. Emerg. Infect. Dis. 2012, 18, 179–180. [Google Scholar] [CrossRef]
- Bernard, C.; Joly Kukla, C.; Rakotoarivony, I.; Duhayon, M.; Stachurski, F.; Huber, K.; Giupponi, C.; Zortman, I.; Holzmuller, P.; Pollet, T.; et al. Detection of Crimean-Congo haemorrhagic fever virus in Hyalomma marginatum ticks, southern France, May 2022 and April 2023. Eurosurveillance 2024, 29, 2400023. [Google Scholar] [CrossRef] [PubMed]
- Spengler, J.R.; Estrada-Pena, A.; Garrison, A.R.; Schmaljohn, C.; Spiropoulou, C.F.; Bergeron, E.; Bente, D.A. A chronological review of experimental infection studies of the role of wild animals and livestock in the maintenance and transmission of Crimean-Congo hemorrhagic fever virus. Antivir. Res. 2016, 135, 31–47. [Google Scholar] [CrossRef]
- Schuster, I.; Mertens, M.; Mrenoshki, S.; Staubach, C.; Mertens, C.; Brüning, F.; Wernike, K.; Hechinger, S.; Berxholi, K.; Mitrov, D.; et al. Sheep and goats as indicator animals for the circulation of CCHFV in the environment. Exp. Appl. Acarol. 2016, 68, 337–346. [Google Scholar] [CrossRef]
- Cuadrado-Matías, R.; Cardoso, B.; Sas, M.A.; García-Bocanegra, I.; Schuster, I.; González-Barrio, D.; Reiche, S.; Mertens, M.; Cano-Terriza, D.; Casades-Martí, L.; et al. Red deer reveal spatial risks of Crimean-Congo haemorrhagic fever virus infection. Transbound. Emerg. Dis. 2022, 69, e630–e645. [Google Scholar] [CrossRef]
- Papa, A.; Marklewitz, M.; Paraskevopoulou, S.; Garrison, A.R.; Alkhovsky, S.V.; Avsic-Zupanc, T.; Bente, D.A.; Bergeron, É.; Burt, F.; di Paola, N.; et al. History and classification of Aigai virus (formerly Crimean-Congo haemorrhagic fever virus genotype VI). J. Gen. Virol. 2022, 103, 001734. [Google Scholar] [PubMed]
- Papadopoulos, O.; Koptopoulos, G. Isolation of Crimean-Congo haemorrhagic fever (CCHF) virus from Rhipicephalus bursa ticks in Greece. Acta Hell Microbiol. 1978, 23, 20–28. (In Greek) [Google Scholar]
- Midilli, K.; Gargılı, A.; Ergonul, O.; Elevli, M.; Ergin, S.; Turan, N.; Şengöz, G.; Ozturk, R.; Bakar, M. The first clinical case due to AP92 like strain of Crimean-Congo Hemorrhagic Fever virus and a field survey. BMC Infect. Dis. 2009, 9, 90. [Google Scholar] [CrossRef]
- Papa, A.; Chaligiannis, I.; Kontana, N.; Sourba, T.; Tsioka, K.; Tsatsaris, A.; Sotiraki, S. A novel AP92-like Crimean-Congo hemorrhagic fever virus strain, Greece. Ticks Tick Borne Dis. 2014, 5, 590–593. [Google Scholar] [PubMed]
- Sherifi, K.; Cadar, D.; Muji, S.; Robaj, A.; Ahmeti, S.; Jakupi, X.; Emmerich, P.; Krüger, A. Crimean-Congo hemorrhagic fever virus clades V and VI (Europe 1 and 2) in ticks in Kosovo, 2012. PLoS Negl. Trop. Dis. 2014, 8, e3168. [Google Scholar]
- Panayotova, E.; Papa, A.; Trifonova, I.; Christova, I. Crimean-Congo hemorrhagic fever virus lineages Europe 1 and Europe 2 in Bulgarian ticks. Ticks Tick Borne Dis. 2016, 7, 1024–1028. [Google Scholar] [CrossRef] [PubMed]
- Papa, A.; Velo, E.; Kadiaj, P.; Tsioka, K.; Kontana, A.; Kota, M.; Bino, S. Crimean-Congo hemorrhagic fever virus in ticks collected from livestock in Albania. Infect. Genet. Evol. 2017, 54, 496–500. [Google Scholar] [CrossRef] [PubMed]
- Ozkaya, E.; Dincer, E.; Carhan, A.; Uyar, Y.; Ertek, M.; Whitehouse, C.A.; Ozkul, A. Molecular epidemiology of Crimean-Congo hemorrhagic fever virus in Turkey: Occurrence of local topotype. Virus Res. 2010, 149, 64–70. [Google Scholar] [CrossRef] [PubMed]
- Papa, A.; Sidira, P.; Kallia, S.; Ntouska, M.; Zotos, N.; Doumbali, E.; Maltezou, H.C.; Demiris, N.; Tsatsaris, A. Factors associated with IgG positivity to Crimean-Congo hemorrhagic fever virus in the area with the highest seroprevalence in Greece. Ticks Tick Borne Dis. 2013, 4, 417–420. [Google Scholar] [PubMed]
- Sidira, P.; Maltezou, H.C.; Haidich, A.B.; Papa, A. Seroepidemiological study of Crimean-Congo haemorrhagic fever in Greece, 2009–2010. Clin. Microbiol. Infect. 2012, 18, E16–E19. [Google Scholar]
- Durie, I.A.; Tehrani, Z.R.; Karaaslan, E.; Sorvillo, T.E.; McGuire, J.; Golden, J.W.; Welch, S.R.; Kainulainen, M.H.; Harmon, J.R.; Mousa, J.J.; et al. Structural characterization of protective non-neutralizing antibodies targeting Crimean-Congo hemorrhagic fever virus. Nat. Commun. 2022, 13, 7298. [Google Scholar] [CrossRef] [PubMed]
- Pickin, M.J.; Devignot, S.; Weber, F.; Groschup, M.H. Comparison of Crimean-Congo Hemorrhagic Fever Virus and Aigai Virus in Life Cycle Modeling Systems Reveals a Difference in L Protein Activity. J. Virol. 2022, 96, e0059922. [Google Scholar]
- Kwasnik, M.; Rola, J.; Rozek, W. Tick-Borne Encephalitis-Review of the Current Status. J. Clin. Med. 2023, 12, 6603. [Google Scholar] [CrossRef] [PubMed]
- Ruzek, D.; Županc, T.A.; Borde, J.; Chrdle, A.; Eyer, L.; Karganova, G.; Kholodilov, I.; Knap, N.; Kozlovskaya, L.; Matveev, A.; et al. Tick-borne encephalitis in Europe and Russia: Review of pathogenesis, clinical features, therapy, and vaccines. Antivir. Res. 2019, 164, 23–51. [Google Scholar]
- Schneider, H. Über epidemische acute “meningitis serosa”. Wien Klin Wochenschr. 1931, 44, 350–352. [Google Scholar]
- Zilber, L.A. Spring–summer tick-borne encephalitis. Arkhiv. Biol. Nauk. 1939, 56, 9–37. (In Russian) [Google Scholar]
- Kutschera, L.S.; Wolfinger, M.T. Evolutionary traits of Tick-borne encephalitis virus: Pervasive non-coding RNA structure conservation and molecular epidemiology. Virus Evol. 2022, 8, veac051. [Google Scholar]
- European Centre for Disease Prevention (ECDC). Factsheet About Tick-Borne Encephalitis (TBE). 2024. Available online: https://www.ecdc.europa.eu/en/tick-borne-encephalitis/facts/factsheet (accessed on 4 November 2024).
- Golovljova, I.; Vene, S.; Sjolander, K.B.; Vasilenko, V.; Plyusnin, A.; Lundkvist, A. Characterization of tick-borne encephalitis virus from Estonia. J. Med. Virol. 2004, 74, 580–588. [Google Scholar] [CrossRef] [PubMed]
- Jääskeläinen, A.; Tonteri, E.; Pieninkeroinen, I.; Sironen, T.; Voutilainen, L.; Kuusi, M.; Vaheri, A.; Vapalahti, O. Siberian subtype tick-borne encephalitis virus in Ixodes ricinus in a newly emerged focus, Finland. Ticks Tick Borne Dis. 2016, 7, 216–223. [Google Scholar] [CrossRef] [PubMed]
- Gritsun, T.S.; Lashkevich, V.A.; Gould, E.A. Tick-borne encephalitis. Antivir. Res. 2003, 57, 129–146. [Google Scholar] [CrossRef] [PubMed]
- Angulo, F.J.; Zhang, P.; Halsby, K.; Kelly, P.; Pilz, A.; Madhava, H.; Moïsi, J.C.; Jodar, L. A systematic literature review of the effectiveness of tick-borne encephalitis vaccines in Europe. Vaccine 2023, 41, 6914–6921. [Google Scholar] [CrossRef]
- Krzysiak, M.K.; Anusz, K.; Konieczny, A.; Rola, J.; Salat, J.; Strakova, P.; Olech, W.; Larska, M. The European bison (Bison bonasus) as an indicatory species for the circulation of tick-borne encephalitis virus (TBEV) in natural foci in Poland. Ticks Tick Borne Dis. 2021, 12, 101799. [Google Scholar] [CrossRef]
- Beaute, J.; Spiteri, G.; Warns-Petit, E.; Zeller, H. Tick-borne encephalitis in Europe, 2012 to 2016. Eurosurveillance 2018, 23, 1800201. [Google Scholar] [CrossRef] [PubMed]
- Van Heuverswyn, J.; Hallmaier-Wacker, L.K.; Beauté, J.; Dias, J.G.; Haussig, J.M.; Busch, K.; Kerlik, J.; Markowicz, M.; Mäkelä, H.; Nygren, T.M.; et al. Spatiotemporal spread of tick-borne encephalitis in the EU/EEA, 2012 to 2020. Eurosurveillance 2023, 28, 2200543. [Google Scholar] [CrossRef] [PubMed]
- Dekker, M.; Laverman, G.D.; de Vries, A.; Reimerink, J.; Geeraedts, F. Emergence of tick-borne encephalitis (TBE) in the Netherlands. Ticks Tick Borne Dis. 2019, 10, 176–179. [Google Scholar] [CrossRef]
- Velay, A.; Solis, M.; Kack-Kack, W.; Gantner, P.; Maquart, M.; Martinot, M.; Augereau, O.; de Briel, D.; Kieffer, P.; Lohmann, C.; et al. A new hot spot for tick-borne encephalitis (TBE): A marked increase of TBE cases in France in 2016. Ticks Tick Borne Dis. 2018, 9, 120–125. [Google Scholar] [CrossRef]
- Alkan, C.; Bichaud, L.; de Lamballerie, X.; Alten, B.; Gould, E.A.; Charrel, R.N. Sandfly-borne phleboviruses of Eurasia and Africa: Epidemiology, genetic diversity, geographic range, control measures. Antivir. Res. 2013, 100, 54–74. [Google Scholar] [CrossRef] [PubMed]
- Ayhan, N.; Charrel, R.N. An update on Toscana virus distribution, genetics, medical and diagnostic aspects. Clin. Microbiol. Infect. 2020, 26, 1017–1023. [Google Scholar] [CrossRef]
- Bartels, S.; de Boni, L.; Kretzschmar, H.A.; Heckmann, J.G. Lethal encephalitis caused by the Toscana virus in an elderly patient. J. Neurol. 2012, 259, 175–177. [Google Scholar] [CrossRef]
- Verani, P.; Lopes, M.C.; Nicoletti, L.; Balducci, M. Studies on Phlebotomus-transmitted virus in Italy: I. Isolation and characterization of a Sandfly fever Naples-like virus. In Arboviruses in the Mediterranean Countries; Gustav Fischer Verlag: Stuttgart, Germany; New York, NY, USA, 1980; pp. 195–201. [Google Scholar]
- Nicoletti, L.; Renzi, A.; Caciolli, S.; Bartolozzi, D.; Balducci, M.; Traini, E.; Leoncini, F.; Baldereschi, M.; Paci, P.; Padovani, P.; et al. Central nervous system involvement during infection by Phlebovirus toscana of residents in natural foci in central Italy (1977–1988). Am. J. Trop. Med. Hyg. 1991, 45, 429–434. [Google Scholar] [CrossRef]
- Garcia San Miguel, L.; Sierra, M.J.; Vazquez, A.; Fernandez-Martinez, B.; Molina, R.; Sanchez-Seco, M.P.; Lucientes, J.; Figuerola, J.; de Ory, F.; Monge, S.; et al. Phlebovirus-associated diseases transmitted by Phlebotominae in Spain: Are we at risk? Enferm. Infecc. Microbiol. Clin. (Engl. Ed.) 2021, 39, 345–351. [Google Scholar] [CrossRef]
- Amaro, F.; Ze-Ze, L.; Alves, M.J. Sandfly-Borne Phleboviruses in Portugal: Four and Still Counting. Viruses 2022, 14, 1768. [Google Scholar] [CrossRef] [PubMed]
- Papa, A.; Konstantinou, G.; Pavlidou, V.; Antoniadis, A. Sandfly fever virus outbreak in Cyprus. Clin. Microbiol. Infect. 2006, 12, 192–194. [Google Scholar] [CrossRef]
- Gori Savellini, G.; Gandolfo, C.; Cusi, M.G. Epidemiology of Toscana virus in South Tuscany over the years 2011–2019. J. Clin. Virol. 2020, 128, 104452. [Google Scholar] [CrossRef]
- Papa, A.; Paraforou, T.; Papakonstantinou, I.; Pagdatoglou, K.; Kontana, A.; Koukoubani, T. Severe encephalitis caused by Toscana virus, Greece. Emerg. Infect. Dis. 2014, 20, 1417–1419. [Google Scholar] [CrossRef] [PubMed]
- Sigfrid, L.; Eckerle, I.; Papa, A.; Horby, P.; Koopmans, M.; Reusken, C. Strengthening preparedness for (re-) emerging arboviruses in Europe. Clin. Microbiol. Infect. 2018, 24, 219–220. [Google Scholar] [CrossRef] [PubMed]
- Papa, A.; Kotrotsiou, T.; Papadopoulou, E.; Reusken, C.; GeurtsvanKessel, C.; Koopmans, M. Challenges in laboratory diagnosis of acute viral central nervous system infections in the era of emerging infectious diseases: The syndromic approach. Expert Rev. Anti-Infect. Ther. 2016, 14, 829–836. [Google Scholar] [CrossRef]
- Souza, J.V.C.; Santos, H.d.O.; Leite, A.B.; Giovanetti, M.; Bezerra, R.d.S.; de Carvalho, E.; Bernardino, J.d.S.T.; Viala, V.L.; Haddad, R.; Ciccozzi, M.; et al. Viral Metagenomics for the Identification of Emerging Infections in Clinical Samples with Inconclusive Dengue, Zika, and Chikungunya Viral Amplification. Viruses 2022, 14, 1933. [Google Scholar] [CrossRef]
- Reusken, C.B.; Mogling, R.; Smit, P.W.; Grunow, R.; Ippolito, G.; di Caro, A.; Koopmans, M. Status, quality and specific needs of Ebola virus diagnostic capacity and capability in laboratories of the two European preparedness laboratory networks EMERGE and EVD-LabNet. Eurosurveillance 2018, 23, 17-00404. [Google Scholar] [CrossRef]
- Reusken, C.; Baronti, C.; Mogling, R.; Papa, A.; Leitmeyer, K.; Charrel, R.N. Toscana, West Nile, Usutu and tick-borne encephalitis viruses: External quality assessment for molecular detection of emerging neurotropic viruses in Europe, 2017. Eurosurveillance 2019, 24, 1900051. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization (WHO). Laboratory Testing for Zika Virus and Dengue Virus Infections; WHO: Geneva, Switzerland, 2022. [Google Scholar]
- Taylor-Robinson, A.W. Complex transmission epidemiology of neglected Australian arboviruses: Diverse non-human vertebrate hosts and competent arthropod invertebrate vectors. Front. Microbiol. 2024, 15, 1469710. [Google Scholar] [CrossRef] [PubMed]
- Kuno, G.; Mackenzie, J.S.; Junglen, S.; Hubalek, Z.; Plyusnin, A.; Gubler, D.J. Vertebrate Reservoirs of Arboviruses: Myth, Synonym of Amplifier, or Reality? Viruses 2017, 9, 185. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.S.; Higgs, S.; Vanlandingham, D.L. Arbovirus-Mosquito Vector-Host Interactions and the Impact on Transmission and Disease Pathogenesis of Arboviruses. Front. Microbiol. 2019, 10, 22. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.; Sweeny, A.R.; Wu, V.Y.; Christofferson, R.C.; Ebel, G.; Fagre, A.C.; Gallichotte, E.; Kading, R.C.; Ryan, S.J.; Carlson, C.J. Exploring the Mosquito-Arbovirus Network: A Survey of Vector Competence Experiments. Am. J. Trop. Med. Hyg. 2023, 108, 987–994. [Google Scholar] [CrossRef]
- Albery, G.F.; Becker, D.J.; Brierley, L.; Brook, C.E.; Christofferson, R.C.; Cohen, L.E.; Dallas, T.A.; Eskew, E.A.; Fagre, A.; Farrell, M.J.; et al. The science of the host-virus network. Nat. Microbiol. 2021, 6, 1483–1492. [Google Scholar] [CrossRef]
- Ruckert, C.; Ebel, G.D. How Do Virus-Mosquito Interactions Lead to Viral Emergence? Trends Parasitol. 2018, 34, 310–321. [Google Scholar] [CrossRef] [PubMed]
- Esser, H.J.; Liefting, Y.; Ibáñez-Justicia, A.; van der Jeugd, H.; van Turnhout, C.A.M.; Stroo, A.; Reusken, C.B.E.M.; Koopmans, M.P.G.; de Boer, W.F. Spatial risk analysis for the introduction and circulation of six arboviruses in the Netherlands. Parasites Vectors 2020, 13, 464. [Google Scholar] [CrossRef]
- Kazimírová, M.; Thangamani, S.; Bartíková, P.; Hermance, M.; Holíková, V.; Štibrániová, I.; Nuttall, P.A. Tick-Borne Viruses and Biological Processes at the Tick-Host-Virus Interface. Front. Cell. Infect. Microbiol. 2017, 7, 339. [Google Scholar] [CrossRef]
- Mariconti, M.; Obadia, T.; Mousson, L.; Malacrida, A.; Gasperi, G.; Failloux, A.-B.; Yen, P.-S. Estimating the risk of arbovirus transmission in Southern Europe using vector competence data. Sci. Rep. 2019, 9, 17852. [Google Scholar] [CrossRef]
- Walter, M.; Vogelgesang, J.R.; Rubel, F.; Brugger, K. Tick-Borne Encephalitis Virus and Its European Distribution in Ticks and Endothermic Mammals. Microorganisms 2020, 8, 1065. [Google Scholar] [CrossRef]
- European Food Safety Authority (EFSA); European Centre for disease Prevention and Control (ECDC). The European Union One Health 2021 Zoonoses Report. EFSA J. 2022, 20, e07666. [Google Scholar]
- Pfenning-Butterworth, A.; Buckley, L.B.; Drake, J.M.; Farner, J.E.; Farrell, M.J.; Gehman, A.-L.M.; Mordecai, E.A.; Stephens, P.R.; Gittleman, J.L.; Davies, T.J. Interconnecting global threats: Climate change, biodiversity loss, and infectious diseases. Lancet Planet. Health 2024, 8, e270–e283. [Google Scholar] [CrossRef]
- European Centre for Disease Prevention (ECDC). EU Institutions and Agencies 2024. Available online: https://www.ecdc.europa.eu/en/about-ecdc/partners-and-networks/eu-institutions-and-agencies (accessed on 30 April 2024).
- Papa, A. West Nile virus infections in humans—Focus on Greece. J. Clin. Virol. 2013, 58, 351–353. [Google Scholar] [CrossRef] [PubMed]
- Mancuso, E.; Toma, L.; Pascucci, I.; D’alessio, S.G.; Marini, V.; Quaglia, M.; Riello, S.; Ferri, A.; Spina, F.; Serra, L.; et al. Direct and Indirect Role of Migratory Birds in Spreading CCHFV and WNV: A Multidisciplinary Study on Three Stop-Over Islands in Italy. Pathogens 2022, 11, 1056. [Google Scholar] [CrossRef]
- England, M.E.; Phipps, P.; Medlock, J.M.; Atkinson, P.M.; Atkinson, B.; Hewson, R.; Gale, P. Hyalomma ticks on northward migrating birds in southern Spain: Implications for the risk of entry of Crimean-Congo haemorrhagic fever virus to Great Britain. J. Vector Ecol. 2016, 41, 128–134. [Google Scholar] [CrossRef]
- Cleton, N.; Koopmans, M.; Reimerink, J.; Godeke, G.J.; Reusken, C. Come fly with me: Review of clinically important arboviruses for global travelers. J. Clin. Virol. 2012, 55, 191–203. [Google Scholar] [CrossRef]
- McIntyre, K.M.; Setzkorn, C.; Hepworth, P.J.; Morand, S.; Morse, A.P.; Baylis, M. Systematic Assessment of the Climate Sensitivity of Important Human and Domestic Animals Pathogens in Europe. Sci. Rep. 2017, 7, 7134. [Google Scholar] [CrossRef] [PubMed]
- Tjaden, N.B.; Caminade, C.; Beierkuhnlein, C.; Thomas, S.M. Mosquito-Borne Diseases: Advances in Modelling Climate-Change Impacts. Trends Parasitol. 2018, 34, 227–245. [Google Scholar] [CrossRef]
- Caminade, C.; McIntyre, K.M.; Jones, A.E. Impact of recent and future climate change on vector-borne diseases. Ann. N. Y. Acad. Sci. 2019, 1436, 157–173. [Google Scholar] [CrossRef] [PubMed]
- Fernandez-Ruiz, N.; Estrada-Pena, A. Towards New Horizons: Climate Trends in Europe Increase the Environmental Suitability for Permanent Populations of Hyalomma marginatum (Ixodidae). Pathogens 2021, 10, 95. [Google Scholar] [CrossRef] [PubMed]
- Zardini, A.; Menegale, F.; Gobbi, A.; Manica, M.; Guzzetta, G.; D’Andrea, V.; Marziano, V.; Trentini, F.; Montarsi, F.; Caputo, B.; et al. Estimating the potential risk of transmission of arboviruses in the Americas and Europe: A modelling study. Lancet Planet. Health 2024, 8, e30–e40. [Google Scholar] [CrossRef] [PubMed]
- Nova, N.; Deyle, E.R.; Shocket, M.S.; MacDonald, A.J.; Childs, M.L.; Rypdal, M.; Sugihara, G.; Mordecai, E.A. Susceptible host availability modulates climate effects on dengue dynamics. Ecol. Lett. 2021, 24, 415–425. [Google Scholar] [CrossRef]
Vector | Virus | Family | Genus | Genome | Vector |
---|---|---|---|---|---|
Mosquitoes | West Nile | Flaviviridae | Flavivirus | RNA, linear | Culex spp. |
Usutu | Flaviviridae | Flavivirus | RNA, linear | Culex spp. | |
Dengue | Flaviviridae | Flavivirus | RNA, linear | Aedes aegypti, Aedes albopictus | |
Zika | Flaviviridae | Flavivirus | RNA, linear | ||
Chikungunya | Togaviridae | Alphavirus | RNA, linear | ||
Ticks | Tick-borne encephalitis | Flaviviridae | Flavivirus | RNA, linear | Ixodes spp. |
Crimean–Congo haemorrhagic fever | Nairoviridae | Orthonairovirus | RNA, linear, 3-segmented | Hyalomma marginatum | |
Sandflies | Toscana and other phleboviruses | Phenuiviridae | Phlebovirus | RNA, linear, 3-segmented | Phlebotomus spp. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Published by MDPI on behalf of the Hellenic Society for Microbiology. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Papa, A. Emerging Arboviruses in Europe. Acta Microbiol. Hell. 2024, 69, 322-337. https://doi.org/10.3390/amh69040029
Papa A. Emerging Arboviruses in Europe. Acta Microbiologica Hellenica. 2024; 69(4):322-337. https://doi.org/10.3390/amh69040029
Chicago/Turabian StylePapa, Anna. 2024. "Emerging Arboviruses in Europe" Acta Microbiologica Hellenica 69, no. 4: 322-337. https://doi.org/10.3390/amh69040029
APA StylePapa, A. (2024). Emerging Arboviruses in Europe. Acta Microbiologica Hellenica, 69(4), 322-337. https://doi.org/10.3390/amh69040029