Effects of a Saccharomyces cerevisiae-Derived Postbiotic in Adult Labrador Retrievers Undergoing Exercise and Transport Stress
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals and Housing
2.2. Diet and Treatments
2.3. Digestibility
2.4. Fecal Quality Scoring
2.5. Exercise Regimen
2.6. Transport Stress Test
2.7. Blood Collection and Analysis
2.8. Fecal Collections and Analysis
2.9. Saliva Collection and Analysis
2.10. Gait Analysis and FRK Total Gait Inflammation Index
2.11. Statistical Analysis
3. Results
3.1. Digestibility and Food Consumption
3.2. Fecal Quality Scores
3.3. Body Weights
3.4. Complete Blood Counts and Blood Chemistry
3.5. Cytokines and Chemokines
3.6. Fecal Biomarkers
3.7. Dysbiosis Index Score
3.8. FRK Gait Inflammation Index Score
3.9. Monitored Exercise Activity
3.10. Saliva Cortisol
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Żółkiewicz, J.; Marzec, A.; Ruszczyński, M.; Feleszko, W. Postbiotics-A Step Beyond Pre- and Probiotics. Nutrients 2020, 12, 2189. [Google Scholar] [CrossRef]
- Vinderola, G.; Sanders, M.E.; Salminen, S. The Concept of Postbiotics. Foods 2022, 11, 1077. [Google Scholar] [CrossRef]
- Asres, A.; Amha, N. Effect of Stress on Animal Health: A Review. J. Biol. Agric. Healthc. 2014, 4, 116–121. [Google Scholar]
- Liu, R.T. The Microbiome as a Novel Paradigm in Studying Stress and Mental Health. Am. Psychol. 2017, 72, 655–667. [Google Scholar] [CrossRef] [PubMed]
- Mills, D.; Karagiannis, C.; Zulch, H. Stress-Its Effects on Health and Behavior: A Guide for Practitioners. Vet. Clin. N. Am.-Small Anim. Pract. 2014, 44, 525–541. [Google Scholar] [CrossRef] [PubMed]
- Chuang, W.Y.; Hsieh, Y.C.; Lee, T.T. The Effects of Fungal Feed Additives in Animals: A Review. Animals 2020, 10, 805. [Google Scholar] [CrossRef] [PubMed]
- Zhu, C.; Wang, L.; Wei, S.-Y.; Chen, Z.; Ma, X.-Y.; Zheng, C.-T.; Jiang, Z.-Y. Effect of Yeast Saccharomyces Cerevisiae Supplementation on Serum Antioxidant Capacity, Mucosal SIgA Secretions and Gut Microbial Populations in Weaned Piglets. J. Integr. Agric. 2017, 16, 2029–2037. [Google Scholar] [CrossRef]
- Danielo, J.; McCarty, K.J.; Tipton, J.E.; Ricks, R.E.; Long, N.M. Effects of Post-Weaning Supplementation of Immunomodulatory Feed Ingredient on Body Weight and Cortisol Concentrations in Program-Fed Beef Heifers. Domest. Anim. Endocrinol. 2020, 72. [Google Scholar] [CrossRef]
- Lucey, P.M.; Lean, I.J.; Aly, S.S.; Golder, H.M.; Block, E.; Thompson, J.S.; Rossow, H.A. Effects of Mannan-Oligosaccharide and Bacillus Subtilis Supplementation to Preweaning Holstein Dairy Heifers on Body Weight Gain, Diarrhea, and Shedding of Fecal Pathogens. J. Dairy Sci. 2021, 104, 4290–4302. [Google Scholar] [CrossRef]
- Ganda, E.; Chakrabarti, A.; Sardi, M.I.; Tench, M.; Kozlowicz, B.K.; Norton, S.A.; Warren, L.K.; Khafipour, E. Saccharomyces Cerevisiae Fermentation Product Improves Robustness of Equine Gut Microbiome upon Stress. Front. Vet. Sci. 2023, 10, 1134092. [Google Scholar] [CrossRef]
- Liu, Q.; Kang, J.; Zhang, Z.; Zhou, D.; Zhang, Y.; Zhuang, S. Comparative Study on the Nutrient Digestibility of Diets Containing Brewer’s Yeast Products Processed by Different Techniques Fed to T-Cannulated Growing Pigs. Anim. Feed Sci. Technol. 2021, 278, 114981. [Google Scholar] [CrossRef]
- Santos, K.d.M.; Risolia, L.W.; Rentas, M.F.; Amaral, A.R.; Rodrigues, R.B.A.; Urrego, M.I.G.; Vendramini, T.H.A.; Ventura, R.V.; Balieiro, J.C.d.C.; Massoco, C.d.O.; et al. Saccharomyces Cerevisiae Dehydrated Culture Modulates Fecal Microbiota and Improves Innate Immunity of Adult Dogs. Fermentation 2022, 8, 2. [Google Scholar] [CrossRef]
- Wilson, S.M.; Oba, P.M.; Applegate, C.C.; Koziol, S.A.; Panasevich, M.R.; Norton, S.A.; Swanson, K.S. Effects of a Saccharomyces Cerevisiae Fermentation Product-Supplemented Diet on Fecal Characteristics, Oxidative Stress, and Blood Gene Expression of Adult Dogs Undergoing Transport Stress. J. Anim. Sci. 2023, 101, skac378. [Google Scholar] [CrossRef]
- Oba, P.M.; Carroll, M.Q.; Sieja, K.M.; Yang, X.; Epp, T.Y.; Warzecha, C.M.; Varney, J.L.; Fowler, J.W.; Coon, C.N.; Swanson, K.S. Effects of a Saccharomyces Cerevisiae Fermentation Product on Fecal Characteristics, Metabolite Concentrations, and Microbiota Populations of Dogs Undergoing Transport Stress. J. Anim. Sci. 2023, 101, skad191. [Google Scholar] [CrossRef]
- Oba, P.M.; Carroll, M.Q.; Sieja, K.M.; Nogueira, J.P.d.S.; Yang, X.; Epp, T.Y.; Warzecha, C.M.; Varney, J.L.; Fowler, J.W.; Coon, C.N.; et al. Effects of a Saccharomyces Cerevisiae Fermentation Product on Fecal Characteristics, Metabolite Concentrations, and Microbiota Populations of Dogs Subjected to Exercise Challenge. J. Anim. Sci. 2022, 101, skac424. [Google Scholar] [CrossRef] [PubMed]
- Miller-Webster, T.; Hoover, W.H.; Holt, M.; Nocek, J.E. Influence of Yeast Culture on Ruminal Microbial Metabolism in Continuous Culture. J. Dairy Sci. 2002, 85, 2009–2014. [Google Scholar] [CrossRef] [PubMed]
- Camarasa, C.; Sanchez, I.; Brial, P.; Bigey, F.; Dequin, S. Phenotypic Landscape of Saccharomyces Cerevisiae during Wine Fermentation: Evidence for Origin-Dependent Metabolic Traits. PLoS ONE 2011, 6, e25147. [Google Scholar] [CrossRef]
- Parapouli, M.; Vasileiadis, A.; Afendra, A.S.; Hatziloukas, E. Saccharomyces Cerevisiae and Its Industrial Applications. AIMS Microbiol. 2020, 6, 1–31. [Google Scholar] [CrossRef]
- NRC. Nutrient Requirements of Dogs and Cats; National Academies Press: Washington, DC, USA, 2006; ISBN 978-0-309-08628-8. [Google Scholar]
- Alvarenga, I.C.; Aldrich, C.G.; Ou, Z. Comparison of Four Digestibility Markers to Estimate Fecal Output of Dogs. J. Anim. Sci. 2019, 97, skz020. [Google Scholar] [CrossRef]
- AAFCO. Association of American Feed Control Officials Official Publication; AAFCO: Oxford, IN, USA, 2022. [Google Scholar]
- Bosch, G.; Verbrugghe, A.; Hesta, M.; Holst, J.J.; Van Der Poel, A.F.B.; Janssens, G.P.J.; Hendriks, W.H. The Effects of Dietary Fibre Type on Satiety-Related Hormones and Voluntary Food Intake in Dogs. Br. J. Nutr. 2009, 102, 318–325. [Google Scholar] [CrossRef]
- Hansen, B.D.; Lascelles, D.X.; Keene, B.W.; Adams, A.K.; Thomson, A.E. Evaluation of an Accelerometer for At-Home Monitoring of Spontaneous Activity in Dogs. Am. J. Vet. Res. 2007, 68, 468–475. [Google Scholar] [CrossRef] [PubMed]
- Rowlison de Ortiz, A.; Belda, B.; Hash, J.; Enomoto, M.; Robertson, J.; Lascelles, B.D.X. Initial Exploration of the Discriminatory Ability of the PetPace Collar to Detect Differences in Activity and Physiological Variables between Healthy and Osteoarthritic Dogs. Front. Pain Res. 2022, 3, 949877. [Google Scholar] [CrossRef] [PubMed]
- Heilmann, R.M.; Ruaux, C.G.; Burgener, I.A.; Hern, J.D.; Suchodolski, J.S.; Steiner, J.M. Serum Alpha1-Proteinase Inhibitor Concentrations in Healthy Dogs—Method Validation and Determination of Reference Interval and Intra-Individual Variation. Vet. Clin. Pathol. 2013, 42, 190–195. [Google Scholar] [CrossRef] [PubMed]
- Heilmann, R.M.; Ruaux, C.G.; Grützner, N.; Cranford, S.M.; Bridges, C.S.; Steiner, J.M. Biological Variation of Serum Canine Calprotectin Concentrations as Measured by ELISA in Healthy Dogs. Vet. J. 2019, 247, 61–64. [Google Scholar] [CrossRef] [PubMed]
- Panasevich, M.R.; Daristotle, L.; Quesnell, R.; Reinhart, G.A.; Frantz, N.Z. Altered Fecal Microbiota, IgA, and Fermentative End-Products in Adult Dogs Fed Prebiotics and a Nonviable Lactobacillus Acidophilus. J. Anim. Sci. 2021, 99, skab347. [Google Scholar] [CrossRef]
- AlShawaqfeh, M.K.; Wajid, B.; Minamoto, Y.; Markel, M.; Lidbury, J.A.; Steiner, J.M.; Serpedin, E.; Suchodolski, J.S. A Dysbiosis Index to Assess Microbial Changes in Fecal Samples of Dogs with Chronic Inflammatory Enteropathy. FEMS Microbiol. Ecol. 2017, 93, fix136. [Google Scholar] [CrossRef]
- Pilla, R.; Gaschen, F.P.; Barr, J.W.; Olson, E.; Honneffer, J.; Guard, B.C.; Blake, A.B.; Villanueva, D.; Khattab, M.R.; AlShawaqfeh, M.K.; et al. Effects of Metronidazole on the Fecal Microbiome and Metabolome in Healthy Dogs. J. Vet. Intern. Med. 2020, 34, 1853–1866. [Google Scholar] [CrossRef]
- Fahie, M.A.; Cortez, J.C.; Ledesma, M.; Su, Y. Pressure Mat Analysis of Walk and Trot Gait Characteristics in 66 Normal Small, Medium, Large, and Giant Breed Dogs. Front. Vet. Sci. 2018, 5, 256. [Google Scholar] [CrossRef]
- Guadalupi, M.; Crovace, A.M.; Monopoli Forleo, D.; Staffieri, F.; Lacitignola, L. Pressure-Sensitive Walkway System for Evaluation of Lameness in Dogs Affected by Unilateral Cranial Cruciate Ligament Rupture Treated with Porous Tibial Tuberosity Advancement. Vet. Sci. 2023, 10, 696. [Google Scholar] [CrossRef]
- Varney, J.L.; Fowler, J.W.; Coon, C.N. Impact of Supplemented Undenatured Type II Collagen on Pain and Mobility in Healthy Labrador Retrievers during an Exercise Regimen. Transl. Anim. Sci. 2022, 6, txac123. [Google Scholar] [CrossRef]
- Hogan, S.P.; Rosenberg, H.F.; Moqbel, R.; Phipps, S.; Foster, P.S.; Lacy, P.; Kay, A.B.; Rothenberg, M.E. Eosinophils: Biological Properties and Role in Health and Disease. Clin. Exp. Allergy 2008, 38, 709–750. [Google Scholar] [CrossRef]
- Zoetis VETSCAN HM5 Operator’s Manual; Abaxis, Inc.: Union City, CA, USA, 2018.
- Beerda, B.; Schilder, M.B.H.; Van Hooff, J.A.R.A.M.; De Vries, H.W. Manifestations of Chronic and Acute Stress in Dogs. Appl. Anim. Behav. Sci. 1997, 52, 307–319. [Google Scholar] [CrossRef]
- Beerda, B.; Schilder, M.B.H.; Bernadina, W.; Van Hooff, J.A.R.A.M.; De Vries, H.W.; Mol, J.A. Chronic Stress in Dogs Subjected to Social and Spatial Restriction. II. Hormonal and Immunological Responses. Physiol. Behav. 1999, 66, 243–254. [Google Scholar] [CrossRef]
- Lin, C.Y.; Alexander, C.; Steelman, A.J.; Warzecha, C.M.; De Godoy, M.R.C.; Swanson, K.S. Effects of a Saccharomyces Cerevisiae Fermentation Product on Fecal Characteristics, Nutrient Digestibility, Fecal Fermentative End-Products, Fecal Microbial Populations, Immune Function, and Diet Palatability in Adult Dogs. J. Anim. Sci. 2019, 97, 1586–1599. [Google Scholar] [CrossRef]
- Middelbos, I.S.; Godoy, M.R.; Fastinger, N.D.; Fahey, G.C. A Dose-Response Evaluation of Spray-Dried Yeast Cell Wall Supplementation of Diets Fed to Adult Dogs: Effects on Nutrient Digestibility, Immune Indices, and Fecal Microbial Populations. J. Anim. Sci. 2007, 85, 3022–3032. [Google Scholar] [CrossRef]
- Murphy, K.F.; German, A.J.; Ruaux, C.G.; Steiner, J.M.; Williams, D.A.; Hall, E.J. Fecal A1-Proteinase Inhibitor Concentration in Dogs with Chronic Gastrointestinal Disease. Vet. Clin. Pathol. 2003, 32, 67–72. [Google Scholar] [CrossRef] [PubMed]
- Heilmann, R.M.; Volkmann, M.; Otoni, C.C.; Grützner, N.; Kohn, B.; Jergens, A.E.; Steiner, J.M. Fecal S100A12 Concentration Predicts a Lack of Response to Treatment in Dogs Affected with Chronic Enteropathy. Vet. J. 2016, 215, 96–100. [Google Scholar] [CrossRef] [PubMed]
- Heilmann, R.M.; Berghoff, N.; Mansell, J.; Grützner, N.; Parnell, N.K.; Gurtner, C.; Suchodolski, J.S.; Steiner, J.M. Association of Fecal Calprotectin Concentrations with Disease Severity, Response to Treatment, and Other Biomarkers in Dogs with Chronic Inflammatory Enteropathies. J. Vet. Intern. Med. 2018, 32, 679–692. [Google Scholar] [CrossRef] [PubMed]
- Heilmann, R.M.; Guard, M.M.; Toresson, L.; Unterer, S.; Grellet, A.; Grützner, N.; Suchodolski, J.S.; Steiner, J.M. Association of Clinical Characteristics and Lifestyle Factors with Fecal S100/Calgranulin Concentrations in Healthy Dogs. Vet. Med. Sci. 2021, 7, 1131–1143. [Google Scholar] [CrossRef]
- Texas A&M Vet Med Alpha1-Proteinase Inhibitor (A1-PI). Available online: https://vetmed.tamu.edu/gilab/service/assays/alpha1/ (accessed on 6 December 2023).
- Bruunsgaard, H.; Galbo, H.; Halkjaer-Kristensen, J.; Johansen, T.L.; MacLean, D.A.; Pedersen, B.K. Exercise-Induced Increase in Serum Inferleukin-6 in Humans Is Related to Muscle Damage. J. Physiol. 1997, 499, 833–841. [Google Scholar] [CrossRef]
- Pedersen, B.K.; Febbraio, M.A. Muscle as an Endocrine Organ: Focus on Muscle-Derived Interleukin-6. Physiol. Rev. 2008, 88, 1379–1406. [Google Scholar] [CrossRef] [PubMed]
- von Pfeil, D.J.F.; Cummings, B.P.; Loftus, J.P.; Levine, C.B.; Mann, S.; Downey, R.L.; Griffitts, C.; Wakshlag, J.J. Evaluation of Plasma Inflammatory Cytokine Concentrations in Racing Sled Dogs. Can. Vet. J. 2015, 56, 1252–1256. [Google Scholar] [PubMed]
- Varney, J.L.; Fowler, J.W.; Coon, C.N. Undenatured Type II Collagen Mitigates Inflammation and Cartilage Degeneration in Healthy Labrador Retrievers during an Exercise Regimen. Transl. Anim. Sci. 2021, 5, txab084. [Google Scholar] [CrossRef]
- Jiménez, A.G. Inflammaging in Domestic Dogs: Basal Level Concentrations of IL-6, IL-1β, and TNF-α in Serum of Healthy Dogs of Different Body Sizes and Ages. Biogerontology 2023, 24, 593–602. [Google Scholar] [CrossRef]
- Creevy, K.E.; Grady, J.; Little, S.E.; Moore, G.E.; Groetzinger Strickler, B.; Thompson, S.; Webb, J.A. 2019 AAHA Canine Life Stage Guidelines. J. Am. Anim. Hosp. Assoc. 2019, 55, 267–290. [Google Scholar] [CrossRef] [PubMed]
- Murase, S.; Terazawa, E.; Queme, F.; Ota, H.; Matsuda, T.; Hirate, K.; Kozaki, Y.; Katanosaka, K.; Taguchi, T.; Urai, H.; et al. Bradykinin and Nerve Growth Factor Play Pivotal Roles in Muscular Mechanical Hyperalgesia after Exercise (Delayed-Onset Muscle Soreness). J. Neurosci. 2010, 30, 3752–3761. [Google Scholar] [CrossRef]
- Ando, I.; Karasawa, K.; Matsuda, H.; Tanaka, A. Changes in Serum NGF Levels after the Exercise Load in Dogs: A Pilot Study. J. Vet. Med. Sci. 2016, 78, 1709–1712. [Google Scholar] [CrossRef]
- Lee, K.S.; Kim, S.R.; Park, S.J.; Min, K.H.; Lee, K.Y.; Choe, Y.H.; Park, S.Y.; Chai, O.H.; Zhang, X.; Song, C.H.; et al. Mast Cells Can Mediate Vascular Permeability through Regulation of the PI3K-HIF-1alpha-VEGF Axis. Am. J. Respir. Crit. Care Med. 2008, 178, 787–797. [Google Scholar] [CrossRef]
- Wagner, P.D. The Critical Role of VEGF in Skeletal Muscle Angiogenesis and Blood Flow. In Proceedings of the Biochemical Society Transactions. Biochem. Soc. Trans. 2011, 39, 1556–1559. [Google Scholar] [CrossRef]
- Richardson, R.S.; Wagner, H.; Mudaliar, S.R.D.; Saucedo, E.; Henry, R.; Wagner, P.D. Exercise Adaptation Attenuates VEGF Gene Expression in Human Skeletal Muscle. Am. J. Physiol. Heart Circ. Physiol. 2000, 279, H772–H778. [Google Scholar] [CrossRef]
- Gavin, T.P.; Wagner, P.D. Effect of Short-Term Exercise Training on Angiogenic Growth Factor Gene Responses in Rats. J. Appl. Physiol. 2001, 90, 1219–1226. [Google Scholar] [CrossRef] [PubMed]
- Zheng, G.; Qiu, P.; Xia, R.; Lin, H.; Ye, B.; Tao, J.; Chen, L. Effect of Aerobic Exercise on Inflammatory Markers in Healthy Middle-Aged and Older Adults: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Front. Aging Neurosci. 2019, 11, 98. [Google Scholar] [CrossRef] [PubMed]
- Koch, A.E.; Polverini, P.J.; Kunkel, S.L.; Harlow, L.A.; DiPietro, L.A.; Elner, V.M.; Elner, S.G.; Strieter, R.M. Interleukin-8 as a Macrophage-Derived Mediator of Angiogenesis. Science 1992, 258, 1798–1801. [Google Scholar] [CrossRef]
- Ängeby Möller, K.; Kinert, S.; Størkson, R.; Berge, O.G. Gait Analysis in Rats with Single Joint Inflammation: Influence of Experimental Factors. PLoS ONE 2012, 7, e46129. [Google Scholar] [CrossRef] [PubMed]
- Lasselin, J.; Sundelin, T.; Wayne, P.M.; Olsson, M.J.; Paues Göranson, S.; Axelsson, J.; Lekander, M. Biological Motion during Inflammation in Humans. Brain Behav. Immun. 2020, 84, 147–153. [Google Scholar] [CrossRef]
- Lord, S.R.; Lloyd, D.G.; Nirui, M.; Raymond, J.; Williams, P.; Stewart, R.A. The Effect of Exercise on Gait Patterns in Older Women: A Randomized Controlled Trial. J. Gerontol.-Ser. A Biol. Sci. Med. Sci. 1996, 51, M64–M70. [Google Scholar] [CrossRef]
- Peake, J.M.; Neubauer, X.O.; Della Gatta, P.A.; Nosaka, X.K. REVIEW Recovery from Exercise Muscle Damage and Inflammation during Recovery from Exercise. J. Appl. Physiol. 2017, 122, 559–570. [Google Scholar] [CrossRef] [PubMed]
- Docherty, S.; Harley, R.; McAuley, J.J.; Crowe, L.A.N.; Pedret, C.; Kirwan, P.D.; Siebert, S.; Millar, N.L. The Effect of Exercise on Cytokines: Implications for Musculoskeletal Health: A Narrative Review. BMC Sports Sci. Med. Rehabil. 2022, 14, 5. [Google Scholar] [CrossRef]
- Glenmark, B.; Nilsson, M.; Gao, H.; Gustafsson, J.Å.; Dahlman-Wright, K.; Westerblad, H. Difference in Skeletal Muscle Function in Males vs. Females: Role of Estrogen Receptor-β. Am. J. Physiol. Endocrinol. Metab. 2004, 287, E1125–E1131. [Google Scholar] [CrossRef]
- Carter, S.L.; Rennie, C.; Tarnopolsky, M.A. Substrate Utilization during Endurance Exercise in Men and Women after Endurance Training. Am. J. Physiol. Endocrinol. Metab. 2001, 280, E898–E907. [Google Scholar] [CrossRef]
- Lu, H.; Huang, D.; Ransohoff, R.M.; Zhou, L. Acute Skeletal Muscle Injury: CCL2 Expression by Both Monocytes and Injured Muscle Is Required for Repair. FASEB J. 2011, 25, 3344–3355. [Google Scholar] [CrossRef] [PubMed]
- Duffy, A.L.; Olea-Popelka, F.J.; Eucher, J.; Rice, D.M.; Dow, S.W. Brief Communication: Serum Concentrations of Monocyte Chemoattractant Protein-1 in Healthy and Critically Ill Dogs. Vet. Clin. Pathol. 2010, 39, 302–305. [Google Scholar] [CrossRef] [PubMed]
- Harada, A.; Sekido, N.; Akahoshi, T.; Wada, T.; Mukaida, N.; Matsushima, K. Essential Involvement of Interleukin-8 (IL-8) in Acute Inflammation. Proc. J. Leukoc. Biol. 1994, 56, 559–564. [Google Scholar] [CrossRef]
- Teixeira, C.F.P.; Zamunér, S.R.; Zuliani, J.P.; Fernandes, C.M.; Cruz-Hofling, M.A.; Fernandes, I.; Chaves, F.; Gutiérrez, J.M. Neutrophils Do Not Contribute to Local Tissue Damage, but Play a Key Role in Skeletal Muscle Regeneration, in Mice Injected with Bothrops Asper Snake Venom. Muscle Nerve 2003, 28, 449–459. [Google Scholar] [CrossRef]
- Maekawa, N.; Konnai, S.; Asano, Y.; Sajiki, Y.; Deguchi, T.; Okagawa, T.; Watari, K.; Takeuchi, H.; Takagi, S.; Hosoya, K.; et al. Exploration of Serum Biomarkers in Dogs with Malignant Melanoma Receiving Anti-PD-L1 Therapy and Potential of COX-2 Inhibition for Combination Therapy. Sci. Rep. 2022, 12, 9265. [Google Scholar] [CrossRef]
- Allende, C.; Higgins, B.; Johns, J. Comparison of Serum Cytokine Concentrations between Healthy Dogs and Canine Osteosarcoma Patients at the Time of Diagnosis. Vet. Immunol. Immunopathol. 2020, 227, 110084. [Google Scholar] [CrossRef]
- Beerda, B.; Schilder, M.B.H.; Janssen, N.S.C.R.M.; Mol, J.A. The Use of Saliva Cortisol, Urinary Cortisol, and Cateoholamine Measurements for a Noninvasive Assessment of Stress Responses in Dogs. Horm. Behav. 1996, 30, 272–279. [Google Scholar] [CrossRef]
- Bergamasco, L.; Osella, M.C.; Savarino, P.; Larosa, G.; Ozella, L.; Manassero, M.; Badino, P.; Odore, R.; Barbero, R.; Re, G. Heart Rate Variability and Saliva Cortisol Assessment in Shelter Dog: Human-Animal Interaction Effects. Appl. Anim. Behav. Sci. 2010, 125, 56–68. [Google Scholar] [CrossRef]
- Chmelíková, E.; Bolechová, P.; Chaloupková, H.; Svobodová, I.; Jovičić, M.; Sedmíková, M. Salivary Cortisol as a Marker of Acute Stress in Dogs: A Review. Domest. Anim. Endocrinol. 2020, 72, 106428. [Google Scholar] [CrossRef]
- Herbel, J.; Aurich, J.; Gautier, C.; Melchert, M.; Aurich, C. Stress Response of Beagle Dogs to Repeated Short-Distance Road Transport. Animals 2020, 10, 2114. [Google Scholar] [CrossRef]
- Siyuan, S.; Tong, L.; Liu, R.H. Corn Phytochemicals and Their Health Benefits. Food Sci. Hum. Wellness 2018, 7, 185–195. [Google Scholar] [CrossRef]
Item | Treatment | ||
---|---|---|---|
Control | Low | High | |
Moisture, % | 9.8 | 9.9 | 9.8 |
Crude protein, % | 27.8 | 27.8 | 27.6 |
Acid-hydrolyzed fat, % | 15.6 | 15.4 | 15.4 |
Crude fiber, % | 2.4 | 2.5 | 2.8 |
Ash, % | 9.6 | 9.7 | 9.5 |
Nitrogen-free extract, % 3 | 38.5 | 38.5 | 38.8 |
ME, kcal/kg 4 | 3708 | 3685 | 3678 |
Item 1 | Treatment 2 | p-Value | ||
---|---|---|---|---|
Control | Low | High | ||
Dry matter, % | 83 ± 2 | 87 ± 2 | 87 ± 2 | 0.24 |
Crude protein, % | 59 ± 5 | 66 ± 5 | 67 ± 5 | 0.44 |
Acid-hydrolyzed fat, % | 90 ± 1 | 91 ± 1 | 92 ± 1 | 0.55 |
Nitrogen-free extract, % | 59 ± 5 | 69 ± 4 | 72 ± 4 | 0.14 |
Consumption, % | 86 ± 4 | 92 ± 4 | 89 ± 4 | 0.50 |
Consumption, g/d | 684 ± 30 | 682 ± 30 | 640 ± 30 | 0.51 |
Item | Run | Treatment 1 | p-Value | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Control | Low | High | Sex | Run | Trt | Time | Trt × Time | |||||
Pre-Run | Post-Run | Pre-Run | Post-Run | Pre-Run | Post-Run | |||||||
IL-2, pg/mL | Initial | 10 ± 3.2 | 12 ± 2.7 | 8.5 ± 3.2 | 7.8 ± 2.7 | 8.0 ± 3.2 | 9.9 ± 2.8 | 0.10 | 0.33 | 0.66 | 0.35 | 0.07 |
Final | 8.3 ± 31 | 9.7 ± 53 | 61 ± 31 | 99 ± 53 | 1.8 ± 31 | 4.6 ± 53 | ||||||
IL-6, pg/mL | Initial | 5.7 ± 2.0 | 7.0 ± 2.0 | 3.9 ± 2.0 | 5.0 ± 2.1 | 4.4 ± 2.0 | 4.5 ± 2.0 | 0.78 | - | 0.62 | 0.55 | 0.92 |
Final | ND | ND | ND | ND | ND | ND | ||||||
IL-8, pg/mL | Initial | 747 ± 37 | 633 ± 37 | 690 ± 37 | 706 ± 37 | 728 ± 37 | 647 ± 37 | 0.05 | - | 0.98 | 0.01 | 0.03 |
Final | 624 ± 37 | 689 ± 37 | 622 ± 37 | 731 ± 37 | 658 ± 37 | 696 ± 37 | 0.09 | - | 0.82 | <0.01 | 0.18 | |
IL-10, pg/mL | 2.4 ± 0.46 | 2.8 ± 0.61 | 2.0 ± 0.46 | 2.3 ± 0.61 | 1.5 ± 0.46 | 1.5 ± 0.61 | ||||||
1.9 ± 0.25 | 2.1 ± 0.32 | 1.6 ± 0.25 | 1.8 ± 0.32 | 1.2 ± 0.25 | 1.4 ± 0.32 | |||||||
Male | Initial | 1.8 ± 0.32 | 1.4 ± 0.26 | 2.0 ± 0.32 | 1.7 ± 0.27 | 1.2 ± 0.32 | 1.7 ± 0.26 | - | 0.63 | 0.02 | 0.11 | 0.04 |
Final | 1.4 ± 0.15 | 1.5 ± 0.20 | 1.9 ± 0.15 | 2.1 ± 0.21 | 1.2 ± 0.15 | 1.4 ± 0.20 | ||||||
Female | Initial | 2.9 ± 0.65 | 3.9 ± 1.09 | 2.0 ± 0.65 | 2.9 ± 1.08 | 1.9 ± 0.65 | 1.6 ± 1.08 | - | 0.01 | 0.06 | <0.01 | 0.63 |
Final | 2.1 ± 0.32 | 2.5 ± 0.40 | 1.2 ± 0.32 | 1.5 ± 0.40 | 1.4 ± 0.32 | 1.6 ± 0.40 | ||||||
IL-12/IL-23p40, pg/mL | Initial | 62 ± 13 | 56 ± 7.2 | 67 ± 13 | 65 ± 7.3 | 52 ± 13 | 61 ± 7.5 | <0.01 | 0.82 | 0.36 | 0.45 | 0.08 |
Final | 59 ± 37 | 60 ± 64 | 137 ± 37 | 189 ± 64 | 31 ± 37 | 39 ± 64 | ||||||
NGFβ, pg/mL | Initial | 1.7 ± 0.34 | 1.5 ± 0.45 | 1.3 ± 0.34 | 1.4 ± 0.45 | 1.2 ± 0.34 | 0.9 ± 0.45 | 0.15 | 0.50 | 0.32 | <0.01 | 0.27 |
Final | 1.8 ± 0.29 | 1.1 ± 0.13 | 1.2 ± 0.29 | 0.96 ± 0.13 | 1.4 ± 0.29 | 0.87 ± 0.13 | ||||||
IFNγ, pg/mL | Initial | 4.8 ± 1.1 | 10. ± 5.0 | 6.2 ± 1.1 | 7.7 ± 5.0 | 4.8 ± 1.1 | 4.9 ± 5.0 | 0.06 | 0.09 | 0.92 | 0.32 | 0.95 |
Final | 3.9 ± 0.35 | 3.8 ± 0.41 | 4.1 ± 0.35 | 3.9 ± 0.41 | 4.2 ± 0.36 | 4.0 ± 0.42 | ||||||
TNFα, pg/mL | Initial | 3.2 ± 0.59 | 5.8 ± 2.0 | 3.2 ± 0.59 | 3.6 ± 2.0 | 2.5 ± 0.59 | 2.1 ± 2.0 | 0.19 | 0.01 | 0.50 | 0.82 | 0.92 |
Final | 3.1 ± 0.79 | 2.1 ± 0.13 | 1.9 ± 0.79 | 2.1 ± 0.13 | 1.5 ± 0.79 | 1.7 ± 0.13 | ||||||
MCP-1, pg/mL | Initial | 18 ± 2.5 | 22 ± 3.0 | 22 ± 2.5 | 22 ± 3.0 | 16 ± 2.5 | 16 ± 3.0 | 0.02 | 0.54 | 0.01 | 0.41 | 0.86 |
Final | 17 ± 3.4 | 17 ± 1.7 | 24 ± 3.4 | 24 ± 1.7 | 15 ± 3.4 | 15 ± 1.7 | ||||||
VEGFA, pg/mL | Initial | 5.0 ± 0.78 | 6.6 ± 2.5 | 4.8 ± 0.78 | 6.2 ± 2.5 | 4.2 ± 0.78 | 4.7 ± 2.5 | 0.26 | <0.01 | 0.15 | <0.01 | 0.87 |
Final | 3.7 ± 0.24 | 5.2 ± 0.41 | 3.2 ± 0.24 | 4.6 ± 0.41 | 3.0 ± 0.25 | 4.3 ± 0.41 | ||||||
SCF, pg/mL | Initial | 10. ± 1.6 | 10. ± 1.3 | 9.4 ± 1.6 | 10. ± 1.3 | 8.9 ± 1.6 | 8.6 ± 1.2 | 0.10 | 0.87 | 0.34 | 0.48 | 0.87 |
Final | 9.4 ± 1.8 | 9.5 ± 3.3 | 13 ± 1.8 | 15 ± 3.3 | 7.0 ± 1.8 | 7.4 ± 3.3 |
Item | Treatment | p-Value | |||||||
---|---|---|---|---|---|---|---|---|---|
Baseline | SEM | Control | Low | High | SEM | Day | Sex | Trt × Day | |
IgA, mg/g | 1.18 | 0.24 | 0.96 | 0.88 | 1.14 | 0.29 | 0.38 | 0.88 | 0.80 |
Calprotectin, ng/g | 187.5 | 22.2 | 160.9 | 179.6 | 223.2 | 38.4 | 0.99 | 0.96 | 0.52 |
S100A12, ng/g | 407 | 28 | 525 | 502 | 501 | 39 | 0.01 | 0.69 | 0.89 |
α1-PI, ng/g | 4.6 | 0.57 | 4.0 | 3.8 | 4.9 | 0.76 | 0.53 | 0.97 | 0.52 |
Item | Treatment 1 | p-Value | |||||||
---|---|---|---|---|---|---|---|---|---|
Baseline | SEM | Control | Low | High | SEM | Day | Sex | Trt × Day | |
Dysbiosis Index Score | −1.6 | 0.21 | −1.5 | −1.5 | −1.7 | 0.3 | 0.82 | 0.09 | 0.88 |
Faecalibacterium | 6.5 | 0.10 | 6.5 | 6.4 | 6.3 | 0.14 | 0.60 | 0.05 | 0.44 |
Turicibacter | 8.2 | 0.08 | 8.2 | 8.3 | 8.2 | 0.08 | 0.62 | 0.37 | 0.33 |
Streptococcus | 7.4 | 0.2 | 7.5 | 7.4 | 7.3 | 0.2 | 0.87 | 0.19 | 0.72 |
E. coli | 5.1 | 0.17 | 4.7 | 4.9 | 4.9 | 0.3 | 0.27 | 0.21 | 0.88 |
Blautia | 10.3 a | 0.02 | 10.2 ab | 10.2 ab | 10.0 b | 0.06 | <0.01 | 0.04 | 0.04 |
Fusobacterium | 9.2 xy | 0.07 | 9.3 x | 9.8 x | 9.0 y | 0.11 | 0.94 | 0.19 | 0.07 |
Clostridium hiranonis | 6.9 x | 0.03 | 6.7 y | 6.8 x | 6.7 xy | 0.05 | <0.01 | 0.03 | 0.07 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Timlin, C.L.; Mccracken, F.B.; Dickerson, S.M.; Skaggs, P.M.; Fowler, J.W.; Jalukar, S.; Coon, C.N. Effects of a Saccharomyces cerevisiae-Derived Postbiotic in Adult Labrador Retrievers Undergoing Exercise and Transport Stress. Pets 2024, 1, 350-371. https://doi.org/10.3390/pets1030025
Timlin CL, Mccracken FB, Dickerson SM, Skaggs PM, Fowler JW, Jalukar S, Coon CN. Effects of a Saccharomyces cerevisiae-Derived Postbiotic in Adult Labrador Retrievers Undergoing Exercise and Transport Stress. Pets. 2024; 1(3):350-371. https://doi.org/10.3390/pets1030025
Chicago/Turabian StyleTimlin, Claire L., Fiona B. Mccracken, Sarah M. Dickerson, Patrick M. Skaggs, Jason W. Fowler, Sangita Jalukar, and Craig N. Coon. 2024. "Effects of a Saccharomyces cerevisiae-Derived Postbiotic in Adult Labrador Retrievers Undergoing Exercise and Transport Stress" Pets 1, no. 3: 350-371. https://doi.org/10.3390/pets1030025
APA StyleTimlin, C. L., Mccracken, F. B., Dickerson, S. M., Skaggs, P. M., Fowler, J. W., Jalukar, S., & Coon, C. N. (2024). Effects of a Saccharomyces cerevisiae-Derived Postbiotic in Adult Labrador Retrievers Undergoing Exercise and Transport Stress. Pets, 1(3), 350-371. https://doi.org/10.3390/pets1030025