Effect of Wheat Dextrin Fiber on the Fecal Microbiome and Short-Chain Fatty Acid Concentrations in Dogs: Randomized, Single-Blinded, Parallel-Group Clinical Trial †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Quantitative PCR Analysis and Calculation of Dysbiosis Index
2.2. Fecal Short-Chain Fatty Acid Measurement
2.3. Fecal Metagenomics
2.4. Statistical Analysis
3. Results
3.1. Dogs
3.2. Clinical Scores and Adverse Effects
3.3. Fecal Short-Chain Fatty Acid Concentrations
3.4. Fecal qPCR and Dysbiosis Index
3.5. Fecal Shallow-Sequence Metagenomic Analysis
3.5.1. Evaluation of Fecal Microbiota
3.5.2. Alpha Diversity
3.5.3. Beta Diversity
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sung, C.H.; Pilla, R.; Chen, C.C.; Ishii, P.E.; Toresson, L.; Allenspach-Jorn, K.; Jergens, A.E.; Summers, S.; Swanson, K.S.; Volk, H.; et al. Correlation between Targeted qPCR assays and untargeted DNA shotgun metagenomic sequencing for assessing the fecal microbiota in dogs. Animals 2023, 13, 2597. [Google Scholar] [CrossRef] [PubMed]
- Minamoto, Y.; Minamoto, T.; Isaiah, A.; Sattasathuchana, P.; Buono, A.; Rangachari, V.; McNeely, I.H.; Lidbury, J.; Steiner, J.M.; Suchodolski, J.S.S. Fecal short-chain fatty acid concentrations and dysbiosis in dogs with chronic enteropathy. J. Vet. Intern. Med. 2019, 33, 1608–1618. [Google Scholar] [CrossRef]
- Minamoto, Y.; Otoni, C.C.; Steelman, S.M.; Buyukleblebici, O.; Steiner, J.M.; Jergens, A.E.; Suchodolski, J.S.S. Alteration of the fecal microbiota and serum metabolite profiles in dogs with idiopathic inflammatory bowel disease. Gut Microbes 2015, 6, 33–47. [Google Scholar] [CrossRef] [PubMed]
- Suchodolski, J.S.S.; Markel, M.E.; Garcia-Mazcorro, J.F.; Unterer, S.; Heilmann, R.M.; Dowd, S.E.; Kachroo, P.; Ivanov, I.; Minamoto, Y.; Dillman, E.M.; et al. The fecal microbiome in dogs with acute diarrhea and idiopathic inflammatory bowel disease. PLoS ONE 2012, 7, e51907. [Google Scholar] [CrossRef]
- Higueras, C.; Sainz, Á.; García-Sancho, M.; Rodriguez-Franco, F.; Rey, A.I. Faecal short-chain, long-chain, and branched-chain fatty acids as markers of different chronic inflammatory enteropathies in dogs. Animals 2024, 14, 1825. [Google Scholar] [CrossRef]
- Higueras, C.; Rey, A.I.; Escudero, R.; Diaz-Reganon, D.; Rodriguez-Franco, F.; Garcia-Sancho, M.; Agulla, B.; Sainz, A. Short-chain and total fatty acid profile of faeces or plasma as predictors of food-responsive enteropathy in dogs: A preliminary study. Animals 2021, 12, 89. [Google Scholar] [CrossRef] [PubMed]
- McRorie, J.W.; McKeown, N.M. Understanding the physics of functional fibers in the gastrointestinal tract: An evidence-based approach to resolving enduring misconceptions about insoluble and soluble fiber. J. Acad. Nutr. Diet. 2017, 117, 251–264. [Google Scholar] [CrossRef] [PubMed]
- Martinez, T.M.; Meyer, R.K.; Duca, F.A. Therapeutic potential of various plant-based fibers to improve energy homeostasis via the gut microbiota. Nutrients 2021, 13, 3470. [Google Scholar] [CrossRef]
- Hung, T.V.; Suzuki, T. Short-chain fatty acids suppress inflammatory reactions in caco-2 cells and mouse colons. J. Agric. Food Chem. 2018, 66, 108–117. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.X.; Lee, J.S.S.; Campbell, E.L.; Colgan, S.P. Microbiota-derived butyrate dynamically regulates intestinal homeostasis through regulation of actin-associated protein synaptopodin. Proc. Natl. Acad. Sci. USA 2020, 117, 11648–11657. [Google Scholar] [CrossRef]
- Sun, Y.; O’Riordan, M.X. Regulation of bacterial pathogenesis by intestinal short-chain fatty acids. Adv. Appl. Microbiol. 2013, 85, 93–118. [Google Scholar] [PubMed]
- Panasevich, M.R.; Kerr, K.R.; Dilger, R.N.; Fahey, G.C.; Guerin-Deremaux, L.; Lynch, G.L.; Wils, D.; Suchodolski, J.S.S.; Steer, J.M.; Dowd, S.E.; et al. Modulation of the faecal microbiome of healthy adult dogs by inclusion of potato fibre in the diet. Br. J. Nutr. 2015, 113, 125–133. [Google Scholar] [CrossRef]
- Myint, H.; Iwahashi, Y.; Koike, S.; Kobayashi, Y. Effect of soybean husk supplementation on the fecal fermentation metabolites and microbiota of dogs. Anim. Sci. J. 2017, 88, 1730–1736. [Google Scholar] [CrossRef] [PubMed]
- Alexander, C.; Cross, T.L.; Devendran, S.; Neumer, F.; Theis, S.; Ridlon, J.M.; Suchodolski, J.S.S.; de Godoy, M.R.; Swanson, K.S. Effects of prebiotic inulin-type fructans on blood metabolite and hormone concentrations and faecal microbiota and metabolites in overweight dogs. Br. J. Nutr. 2018, 120, 711–720. [Google Scholar] [CrossRef]
- Middelbos, I.S.; Vester Boler, B.M.; Qu, A.; White, B.A.; Swanson, K.S.; Fahey, G.C. Phylogenetic characterization of fecal microbial communities of dogs fed diets with or without supplemental dietary fiber using 454 pyrosequencing. PLoS ONE 2010, 5, e9768. [Google Scholar] [CrossRef]
- Lin, C.Y.; Jha, A.R.; Oba, P.M.; Yotis, S.M.; Shmalberg, J.; Honaker, R.W.; Swanson, K.S. Longitudinal fecal microbiome and metabolite data demonstrate rapid shifts and subsequent stabilization after an abrupt dietary change in healthy adult dogs. Anim. Microbiome 2022, 4, 46. [Google Scholar] [CrossRef] [PubMed]
- Fahey, G.C., Jr.; Merchen, N.R.; Corbin, J.E.; Hamilton, A.K.; Serbe, K.A.; Lewis, S.M.; Hirakawa, D.A. Dietary fiber for dogs: I. Effects of graded levels of dietary beet pulp on nutrient intake, digestibility, metabolizable energy and digesta mean retention time. J. Anim. Sci. 1990, 68, 4221–4228. [Google Scholar] [CrossRef] [PubMed]
- Leib, M.S. Treatment of chronic idiopathic large-bowel diarrhea in dogs with a highly digestible diet and soluble fiber: A retrospective review of 37 cases. J. Vet. Intern. Med. 2000, 14, 27–32. [Google Scholar]
- Alves, J.C.; Santos, A.; Jorge, P.; Pitaes, A. The use of soluble fibre for the management of chronic idiopathic large-bowel diarrhoea in police working dogs. BMC Vet. Res. 2021, 17, 100. [Google Scholar] [CrossRef]
- Swanson, K.S.; Grieshop, C.M.; Flickinger, E.A.; Bauer, L.L.; Healy, H.P.; Dawson, K.A.; Merchen, N.R.; Fahey, G.C. Supplemental fructooligosaccharides and mannanoligosaccharides influence immune function, ileal and total tract nutrient digestibilities, microbial populations and concentrations of protein catabolites in the large bowel of dogs. J. Nutr. 2002, 132, 980–989. [Google Scholar] [CrossRef] [PubMed]
- Mackei, M.; Talabér, R.; Müller, L.; Sterczer, A.; Febel, H.; Neogrady, Z.; Matis, G. Altered intestinal production of volatile fatty acids in dogs triggered by lactulose and psyllium treatment. Vet. Sci. 2022, 9, 206. [Google Scholar] [CrossRef]
- Timm, D.A.; Stewart, M.L.; Hospattankar, A.; Slavin, J.L. Wheat dextrin, psyllium, and inulin produce distinct fermentation patterns, gas volumes, and short-chain fatty acid profiles in vitro. J. Med. Food 2010, 13, 961–966. [Google Scholar] [CrossRef]
- Gamage, H.; Tetu, S.G.; Chong, R.W.W.; Bucio-Noble, D.; Rosewarne, C.P.; Kautto, L.; Ball, M.S.; Molloy, M.P.; Packer, N.H.; Paulsen, I.T. Fiber supplements derived from sugarcane stem, wheat dextrin and psyllium husk have different in vitro effects on the human gut microbiota. Front. Microbiol. 2018, 9, 1618. [Google Scholar] [CrossRef] [PubMed]
- Carlson, J.; Hospattankar, A.; Deng, P.; Swanson, K.; Slavin, J. Prebiotic effects and fermentation kinetics of wheat dextrin and partially hydrolyzed guar gum in an in vitro batch fermentation system. Foods 2015, 4, 349–358. [Google Scholar] [CrossRef] [PubMed]
- Sasaki, D.; Sasaki, K.; Ikuta, N.; Yasuda, T.; Fukuda, I.; Kondo, A.; Osawa, R. Low amounts of dietary fibre increase in vitro production of short-chain fatty acids without changing human colonic microbiota structure. Sci. Rep. 2018, 8, 435. [Google Scholar] [CrossRef] [PubMed]
- Jergens, A.E.; Schreiner, C.A.; Frank, D.E.; Niyo, Y.; Ahrens, F.; Eckersell, P.D.; Benson, T.J.; Evans, R. A scoring index for disease activity in canine inflammatory bowel disease. J. Vet. Intern. Med. 2003, 17, 291–297. [Google Scholar] [CrossRef] [PubMed]
- AlShawaqfeh, M.K.; Wajid, B.; Minamoto, Y. A dysbiosis index to assess microbial changes in fecal samples of dogs with chronic inflammatory enteropathy. FEMS Microbiol. Ecol. 2017, 93, fix136. [Google Scholar] [CrossRef]
- DeSantis, T.Z.; Hugenholtz, P.; Larsen, N.; Rojas, M.; Brodie, E.L.; Keller, K.; Huber, T.; Dalevi, D.; Hu, P.; Anderson, G.L. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl. Environ. Microbiol. 2006, 72, 5069–5072. [Google Scholar] [CrossRef] [PubMed]
- Chao, A. Nonparametric estimation of the number of classes in a population. Scand. J. Stat. 1984, 11, 265–270. [Google Scholar]
- Shannon, C.E. The mathematical theory of communication. MD Comput. 1997, 14, 306–317. [Google Scholar] [PubMed]
- Sorenson, T. A method of establishing groups of equal amplitude in plant sociology based on similarity of species content. K. Dan. Vidensk. Selsk. 1948, 5, 1–34. [Google Scholar]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Lawrence Erlbaum Associates: Mahwah, NJ, USA, 1988. [Google Scholar]
- McRorie, J.W.; Chey, W.D. Fermented fiber supplements are no better than placebo for a laxative effect. Dig. Dis. Sci. 2016, 61, 3140–3146. [Google Scholar] [CrossRef]
- Salonen, A.; Lahti, L.; Salojarvi, J.; Holtrop, G.; Korpela, K.; Duncan, S.H.; Date, P.; Farquharson, F.; Johnstone, A.M.; Lobley, G.E.; et al. Impact of diet and individual variation on intestinal microbiota composition and fermentation products in obese men. ISME J. 2014, 8, 2218–2230. [Google Scholar] [CrossRef]
- Holmes, Z.C.; Villa, M.M.; Durand, H.K.; Jiang, S.; Dallow, E.P.; Petrone, B.L.; Silverman, J.D.; Lin, P.H.; David, L.A. Microbiota responses to different prebiotics are conserved within individuals and associated with habitual fiber intake. Microbiome 2022, 10, 114. [Google Scholar] [CrossRef]
- Bouhnik, Y.; Raskine, L.; Simoneau, G.; Vicaut, E.; Neut, C.; Flourie, B.; Brouns, F.; Bornet, F.R. The capacity of nondigestible carbohydrates to stimulate fecal bifidobacteria in healthy humans: A double-blind, randomized, placebo-controlled, parallel-group, dose-response relation study. Am. J. Clin. Nutr. 2004, 80, 1658–1664. [Google Scholar] [CrossRef]
- Calame, W.; Weseler, A.R.; Viebke, C.; Flynn, C.; Siemensma, A.D. Gum arabic establishes prebiotic functionality in healthy human volunteers in a dose-dependent manner. Br. J. Nutr. 2008, 100, 1269–1275. [Google Scholar] [CrossRef] [PubMed]
- Jie, Z.; Bang-Yao, L.; Ming-Jie, X.; Hai-Wei, L.; Zu-Hang, Z.; Ting-Song, W.; Craig, S.A. Studies on the effects of polydextrose intake on physiologic functions in Chinese people. Am. J. Clin. Nutr. 2000, 72, 1503–1509. [Google Scholar] [CrossRef] [PubMed]
- Almutairi, R.; Basson, A.R.; Wearsh, P.; Cominelli, F.; Rodriguez-Palacios, A. Validity of food additive maltodextrin as placebo and effects on human gut physiology: Systematic review of placebo-controlled clinical trials. Eur. J. Nutr. 2022, 61, 2853–2871. [Google Scholar] [CrossRef]
- Drakoularakou, A.; Tzortzis, G.; Rastall, R.A.; Gibson, G.R. A double-blind, placebo-controlled, randomized human study assessing the capacity of a novel galacto-oligosaccharide mixture in reducing travellers’ diarrhoea. Eur. J. Clin. Nutr. 2010, 64, 146–152. [Google Scholar] [CrossRef] [PubMed]
- Parnell, J.A.; Reimer, R.A. Weight loss during oligofructose supplementation is associated with decreased ghrelin and increased peptide YY in overweight and obese adults. Am. J. Clin. Nutr. 2009, 89, 1751–1759. [Google Scholar] [CrossRef]
- Rose, L.; Rose, J.; Gosling, S.; Holmes, M. Efficacy of a probiotic-prebiotic supplement on incidence of diarrhea in a dog shelter: A randomized, double-blind, placebo-controlled trial. J. Vet. Intern. Med. 2017, 31, 377–382. [Google Scholar] [CrossRef] [PubMed]
- Singh, P.; Sanchez-Fernandez, L.L.; Ramiro-Cortijo, D.; Orchoa-Allemant, P.; Perides, G.; Liu, Y.; Medina-Morales, E.; Yaka, W.; Freedman, S.D.; Martin, C.R. Maltodextrin-induced intestinal injury in a neonatal mouse model. Dis. Models Mech. 2020, 13, dmm044776. [Google Scholar] [CrossRef] [PubMed]
- Laudisi, F.; Di Fusco, D.; Dinallo, V.; Stolfi, C.; Di Grazia, A.; Marafina, I.; Colantoni, A.; Ortenzi, A.; Alteri, C.; Guerrieri, F.; et al. The food additive maltodextrin promotes endoplasmic reticulum stress-driven mucus depletion and exacerbates intestinal inflammation. Cell. Mol. Gastroenterol. Hepatol. 2019, 7, 457–473. [Google Scholar] [CrossRef] [PubMed]
- Nickerson, K.P.; Homer, C.R.; Kessler, S.P.; Dixon, L.J.; Krabi, A.; Gordon, I.O.; Johnson, E.E.; de la Motte, C.; McDonald, C. The dietary polysaccharide maltodextrin promotes Salmonella survival and mucosal colonization in mice. PLoS ONE 2014, 9, e101789. [Google Scholar] [CrossRef]
Placebo Group (n = 8) | Wheat Dextrin Group (n = 9) | |||
---|---|---|---|---|
Baseline | Day 28 | Baseline | Day 28 | |
CIBDAI | 3.5 (0–5) a | 2 (0–3) b | 3.0 (0–4) | 3.0 (0–4) |
Alpha Diversity | ||||
OTU | 269 (201–412) | 344 (273–419) | 352 (183–433) | 316 (193–382) |
Chao1 | 341 (258–494) | 420 (304–574) | 439 (354–567) | 383 (214–478) |
Shannon | 3.7 (2.8–4.6) | 3.7 (2.6–4.5) | 4.3 (3.4–4.8) | 4.2 (3.6–4.9) |
Fecal Short-Chain Fatty Acids (μmol/g of fecal dry matter) | ||||
Total SCFAs | 213 (11–541) | 180 (33–470) | 358 (106–402) | 283 (198–467) |
Acetate | 130 (7.2–373) | 121 (21–267) | 172 (56–278) | 148 (118–252) |
Propionate | 59 (0–242) | 38 (0–131) | 95 (42–177) | 128 (50–141) |
Butyrate | 23 (1.2–71) | 18 (7.1–103) | 37 (8.0–75) | 23 (12–74) |
Fecal qPCR Abundance (Log DNA) | ||||
Faecalibacterium (RI: 3.4–8.0) | 5.3 (2.5–7.1) | 4.3 (2.4–6.9) | 6.4 (3.4–7.4) | 6.1 (3.2–7.0) |
Turicibacter (RI: 4.6–8.1) | 5.3 (4.0–6.6) | 5.2 (4.3–7.2) | 5.6 (4.5–6.9) | 5.4 (4.6–6.5) |
Blautia (RI: 9.5–11.0) | 9.9 (7.4–10.3) | 8.1 (6.9–9.3) | 10 (9.1–10.2) | 9.8 (9.3–10.1) |
Fusobacterium (RI: 7.0–10.3) | 8.1 (6.9–9.3) | 8.2 (7.1–9.9) | 8.7 (7.8–9.7) | 9.0 (7.5–9.2) |
Escherichia coli (RI: 0.9–8.0) | 5.3 (1.1–7.9) | 5.6 (1.0–7.2) | 4.0 (1.1–6.6) | 3.2 (0.9–6.3) |
Streptococcus (RI:1.9–8.0) | 4.2 (2.9–8.0) | 3.4 (1.3–7.6) | 4.5 (2.8–7.2) | 4.9 (2.9–6.9) |
Clostridium hiranonis (RI:5.1–7.1) | 3.4 (0.1–6.0) | 2.0 (0.1–6.1) | 5.9 (4.7–6.3) | 5.3 (3.9–6.1) |
Dysbiosis Index (normal < 0) | 1.0 (−4.9–8.0) | 0.4 (−6.0–7.5) | −3.6 (−6.0–2.0) | −2.5 (−5.9–1.0) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pan, M.; Sung, C.-H.; Pilla, R.; Suchodolski, J.S.; Summers, S.C. Effect of Wheat Dextrin Fiber on the Fecal Microbiome and Short-Chain Fatty Acid Concentrations in Dogs: Randomized, Single-Blinded, Parallel-Group Clinical Trial. Pets 2025, 2, 3. https://doi.org/10.3390/pets2010003
Pan M, Sung C-H, Pilla R, Suchodolski JS, Summers SC. Effect of Wheat Dextrin Fiber on the Fecal Microbiome and Short-Chain Fatty Acid Concentrations in Dogs: Randomized, Single-Blinded, Parallel-Group Clinical Trial. Pets. 2025; 2(1):3. https://doi.org/10.3390/pets2010003
Chicago/Turabian StylePan, Marianne, Chi-Hsuan Sung, Rachel Pilla, Jan S. Suchodolski, and Stacie C. Summers. 2025. "Effect of Wheat Dextrin Fiber on the Fecal Microbiome and Short-Chain Fatty Acid Concentrations in Dogs: Randomized, Single-Blinded, Parallel-Group Clinical Trial" Pets 2, no. 1: 3. https://doi.org/10.3390/pets2010003
APA StylePan, M., Sung, C.-H., Pilla, R., Suchodolski, J. S., & Summers, S. C. (2025). Effect of Wheat Dextrin Fiber on the Fecal Microbiome and Short-Chain Fatty Acid Concentrations in Dogs: Randomized, Single-Blinded, Parallel-Group Clinical Trial. Pets, 2(1), 3. https://doi.org/10.3390/pets2010003