Neural Stem Cell Therapy for Alzheimer’s Disease: A-State-of-the-Art Review
Abstract
:1. Introduction
2. Promise in Other Neurodegenerative Diseases (NDDSs)
2.1. NSC for Parkinson’s Disease
2.2. NSC for Huntington’s Disease
2.3. NSC for Frontotemporal Dementia (FTD)
3. Methods and Progress of NSCs in NDDS
4. NSCs’ Effects on Neurogenesis and Synaptogenesis
5. Functional Recovery Post-NSC Transplantation and Clinical Prospects
6. Lab-to-Clinical Challenges in NSC-Based Therapy
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Prabha, S.; Sajad, M.; Hasan, G.M.; Islam, A.; Hassan, M.I.; Thakur, S. Recent advancement in understanding of Alzheimer’s disease: Risk factors, subtypes, and drug targets and potential therapeutics. Ageing Res. Rev. 2024, 101, 102476. [Google Scholar] [CrossRef] [PubMed]
- Nichols, E.; Steinmetz, J.D.; Vollset, S.E.; Fukutaki, K.; Chalek, J.; Abd-Allah, F.; Abdoli, A.; Abualhasan, A.; Abu-Gharbieh, E.; Akram, T. Estimation of the global prevalence of dementia in 2019 and forecasted prevalence in 2050: An analysis for the Global Burden of Disease Study 2019. Lancet Public Health 2022, 7, e105–e125. [Google Scholar] [CrossRef]
- Cummings, J.; Zhou, Y.; Lee, G.; Zhong, K.; Fonseca, J.; Cheng, F. Alzheimer’s disease drug development pipeline: 2023. Alzheimer’s Dement. Transl. Res. Clin. Interv. 2023, 9, e12385. [Google Scholar]
- Zhang, J.; Zhang, Y.; Wang, J.; Xia, Y.; Zhang, J.; Chen, L.; Therapy, T. Recent advances in Alzheimer’s disease: Mechanisms, clinical trials and new drug development strategies. Signal Transduct. Target. Ther. 2024, 9, 211. [Google Scholar] [CrossRef] [PubMed]
- Vaz, M.; Silvestre, S. Alzheimer’s disease: Recent treatment strategies. Eur. J. Pharmacol. 2020, 887, 173554. [Google Scholar] [CrossRef]
- Passeri, E.; Elkhoury, K.; Morsink, M.; Broersen, K.; Linder, M.; Tamayol, A.; Malaplate, C.; Yen, F.T.; Arab-Tehrany, E. Alzheimer’s disease: Treatment strategies and their limitations. Int. J. Mol. Sci. 2022, 23, 13954. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.; Barve, K.H.; Kumar, M. Recent advancements in pathogenesis, diagnostics and treatment of Alzheimer’s disease. Curr. Neuropharmacol. 2020, 18, 1106–1125. [Google Scholar] [CrossRef]
- Hayashi, Y.; Lin, H.-T.; Lee, C.-C.; Tsai, K.-J. Effects of neural stem cell transplantation in Alzheimer’s disease models. J. Biomed. Sci. 2020, 27, 29. [Google Scholar] [CrossRef]
- Campos, H.C.; Ribeiro, D.E.; Hashiguchi, D.; Hukuda, D.Y.; Gimenes, C.; Romariz, S.A.; Ye, Q.; Tang, Y.; Ulrich, H.; Longo, B.; et al. Distinct effects of the hippocampal transplantation of neural and mesenchymal stem cells in a transgenic model of Alzheimer’s disease. Stem Cell Rev. Rep. 2022, 18, 1–11. [Google Scholar] [CrossRef]
- Khan, M.I.; Jeong, E.S.; Khan, M.Z.; Shin, J.H.; Kim, J. Stem cells-derived exosomes alleviate neurodegeneration and Alzheimer’s pathogenesis by ameliorating neuroinflamation, and regulating the associated molecular pathways. Sci. Rep. 2023, 13, 15731. [Google Scholar] [CrossRef]
- Bagheri-Mohammadi, S.J.C.; Banking, T. Stem cell-based therapy as a promising approach in Alzheimer’s disease: Current perspectives on novel treatment. Cell Tissue Bank. 2021, 22, 339–353. [Google Scholar] [CrossRef] [PubMed]
- Mitra, S.; Gera, R.; Linderoth, B.; Lind, G.; Wahlberg, L.; Almqvist, P.; Behbahani, H.; Eriksdotter, M. A review of techniques for biodelivery of nerve growth factor (NGF) to the brain in relation to Alzheimer’s disease. In Recent Advances in NGF and Related Molecules; Springer: Cham, Switzerland, 2021; pp. 167–191. [Google Scholar]
- Chan, H.J.; Yanshree; Roy, J.; Tipoe, G.L.; Fung, M.-L.; Lim, L. Therapeutic potential of human stem cell implantation in alzheimer’s disease. Int. J. Mol. Sci. 2021, 22, 10151. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.M.; Islam, M.R.; Islam, M.T.; Harun-Or-Rashid, M.; Islam, M.; Abdullah, S.; Uddin, M.B.; Das, S.; Rahaman, M.S.; Ahmed, M. Stem cell transplantation therapy and neurological disorders: Current status and future perspectives. Biology 2022, 11, 147. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; Shi, B.; Xu, Y.; Zhang, J.; Liu, X.; Zhou, X.; Feng, B.; Ma, J.; Cui, H. Neural stem/progenitor cell therapy for Alzheimer disease in preclinical rodent models: A systematic review and meta-analysis. Stem Cell Res. Ther. 2023, 14, 3. [Google Scholar] [CrossRef] [PubMed]
- Chaplygina, A.; Zhdanova, D.; Kovalev, V.; Poltavtseva, R.; Medvinskaya, N.; Bobkova, N. Cell therapy as a way to correct impaired neurogenesis in the adult brain in a model of Alzheimer’s disease. J. Evol. Biochem. Physiol. 2022, 58, 117–137. [Google Scholar] [CrossRef]
- Zheng, J.; Medicine, E. Hippocampal neurogenesis and pro-neurogenic therapies for Alzheimer’s disease. Anim. Models Exp. Med. 2022, 5, 3–14. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, S.; Ahmad, R.; Khare, S. Alzheimer’s disease and its treatment by different approaches: A review. Eur. J. Med. Chem. 2021, 216, 113320. [Google Scholar] [CrossRef]
- Sivandzade, F.; Cucullo, L. Regenerative stem cell therapy for neurodegenerative diseases: An overview. Int. J. Mol. Sci. 2021, 22, 2153. [Google Scholar] [CrossRef]
- Fayazi, N.; Sheykhhasan, M.; Soleimani Asl, S.; Najafi, R. Stem cell-derived exosomes: A new strategy of neurodegenerative disease treatment. Mol. Neurobiol. 2021, 58, 3494–3514. [Google Scholar] [CrossRef]
- Oz, T.; Kaushik, A.; Kujawska, M. Neural stem cells for Parkinson’s disease management: Challenges, nanobased support, and prospects. World J. Stem Cells 2023, 15, 687. [Google Scholar] [CrossRef]
- Zhang, L.; Yang, H. Research progress of neural stem cells as a source of dopaminergic neurons for cell therapy in Parkinson’s disease. Mol. Biol. Rep. 2024, 51, 347. [Google Scholar] [CrossRef]
- Rosser, A.E.; Busse, M.E.; Gray, W.P.; Badin, R.A.; Perrier, A.L.; Wheelock, V.; Cozzi, E.; Martin, U.P.; Salado-Manzano, C.; Mills, L.J.J.B. Translating cell therapies for neurodegenerative diseases: Huntington’s disease as a model disorder. Brain 2022, 145, 1584–1597. [Google Scholar] [CrossRef] [PubMed]
- Kim, A.; Lalonde, K.; Truesdell, A.; Gomes Welter, P.; Brocardo, P.S.; Rosenstock, T.R.; Gil-Mohapel, J. New avenues for the treatment of Huntington’s disease. Int. J. Mol. Sci. 2021, 22, 8363. [Google Scholar] [CrossRef] [PubMed]
- Beatriz, M.; Lopes, C.; Ribeiro, A.C.S.; Rego, A. Revisiting cell and gene therapies in Huntington’s disease. J. Neurosci. Res. 2021, 99, 1744–1762. [Google Scholar] [CrossRef] [PubMed]
- Beatriz, M.; Vilaça, R.; Anjo, S.I.; Manadas, B.; Januário, C.; Rego, A.C.; Lopes, C. Defective mitochondrial-lysosomal axis promotes extracellular vesicles release of mitochondrial components in Huntington’s Disease. bioRxiv 2022, 2013, 480262. [Google Scholar] [CrossRef]
- Luzuriaga, J.; Polo, Y.; Pastor-Alonso, O.; Pardo-Rodríguez, B.; Larrañaga, A.; Unda, F.; Sarasua, J.-R.; Pineda, J.R.; Ibarretxe, G. Advances and perspectives in dental pulp stem cell based neuroregeneration therapies. Int. J. Mol. Sci. 2021, 22, 3546. [Google Scholar] [CrossRef]
- Brown, D.G.; Shorter, J.; Wobst, H.; Letters, M.C. Emerging small-molecule therapeutic approaches for amyotrophic lateral sclerosis and frontotemporal dementia. Bioorganic Med. Chem. Lett. 2020, 30, 126942. [Google Scholar] [CrossRef]
- Budkova, K.; Novakova, T.; Vodicka, P.; Kepkova, K.V. A40 Human induced pluripotent stem cell as a model system for Huntington’s disease. In Proceedings of the EHDN 2022 Plenary Meeting, Bologna, Italy, 16–18 September 2022. [Google Scholar]
- Merkle, F.T.; Alvarez-Buylla, A. Neural stem cells in mammalian development. Curr. Opin. Cell Biol. 2006, 18, 704–709. [Google Scholar] [CrossRef]
- Guo, W.; Patzlaff, N.E.; Jobe, E.M.; Zhao, X. Isolation of multipotent neural stem or progenitor cells from both the dentate gyrus and subventricular zone of a single adult mouse. Nat. Protoc. 2012, 7, 2005–2012. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.P.; McKercher, S.; Muller, F.J.; Snyder, E. Neural stem cell transplantation in mouse brain. Curr. Protoc. Neurosci. 2008, 42, 3.10.11–13.10.23. [Google Scholar] [CrossRef]
- Shahbazi, E.; Mirakhori, F.; Ezzatizadeh, V.; Baharvand, H. Reprogramming of somatic cells to induced neural stem cells. Methods 2018, 133, 21–28. [Google Scholar] [CrossRef] [PubMed]
- Tuazon, J.P.; Castelli, V.; Lee, J.-Y.; Desideri, G.B.; Stuppia, L.; Cimini, A.M.; Borlongan, C. Neural stem cells. Adv. Exp. Med. Biol. 2019, 1201, 79–91. [Google Scholar] [PubMed]
- Song, C.-G.; Zhang, Y.-Z.; Wu, H.-N.; Cao, X.-L.; Guo, C.-J.; Li, Y.-Q.; Zheng, M.-H.; Han, H. Stem cells: A promising candidate to treat neurological disorders. Neural Regen. Res. 2018, 13, 1294–1304. [Google Scholar]
- Chang, J.; Li, Y.; Shan, X.; Chen, X.; Yan, X.; Liu, J.; Zhao, L. Neural stem cells promote neuroplasticity: A promising therapeutic strategy for the treatment of Alzheimer’s disease. Neural Regen. Res. 2024, 19, 619–628. [Google Scholar] [CrossRef] [PubMed]
- McGinley, L.M.; Kashlan, O.N.; Bruno, E.S.; Chen, K.S.; Hayes, J.M.; Kashlan, S.R.; Raykin, J.; Johe, K.; Murphy, G.G.; Feldman, E. Human neural stem cell transplantation improves cognition in a murine model of Alzheimer’s disease. Sci. Rep. 2018, 8, 14776. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Wang, P.-J.; Sha, H.-y.; Ni, J.; Li, M.-h.; Gu, G.-J. Neural stem cell transplants improve cognitive function without altering amyloid pathology in an APP/PS1 double transgenic model of Alzheimer’s disease. Mol. Neurobiol. 2014, 50, 423–437. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Wu, H.; Wang, Y.; Gu, G.; Zhang, W.; Xia, R. Neural stem cell transplantation decreases neuroinflammation in a transgenic mouse model of Alzheimer’s disease. J. Neurochem. 2016, 136, 815–825. [Google Scholar] [CrossRef] [PubMed]
- El Aidy, S.; Dinan, T.G.; Cryan, J. Gut microbiota: The conductor in the orchestra of immune–neuroendocrine communication. Clin. Ther. 2015, 37, 954–967. [Google Scholar] [CrossRef] [PubMed]
- Ager, R.R.; Davis, J.L.; Agazaryan, A.; Benavente, F.; Poon, W.W.; LaFerla, F.M.; Blurton-Jones, M. Human neural stem cells improve cognition and promote synaptic growth in two complementary transgenic models of Alzheimer’s disease and neuronal loss. Hippocampus 2015, 25, 813–826. [Google Scholar] [CrossRef]
- Blurton-Jones, M.; Spencer, B.; Michael, S.; Castello, N.A.; Agazaryan, A.A.; Davis, J.L.; Müller, F.-J.; Loring, J.F.; Masliah, E.; LaFerla, F.; et al. Neural stem cells genetically-modified to express neprilysin reduce pathology in Alzheimer transgenic models. Stem Cell Res. Ther. 2014, 5, 1–14. [Google Scholar] [CrossRef]
- Blurton-Jones, M.; Kitazawa, M.; Martinez-Coria, H.; Castello, N.A.; Müller, F.-J.; Loring, J.F.; Yamasaki, T.R.; Poon, W.W.; Green, K.N.; LaFerla, F. Neural stem cells improve cognition via BDNF in a transgenic model of Alzheimer disease. Proc. Natl. Acad. Sci. USA 2009, 106, 13594–13599. [Google Scholar] [CrossRef]
- Chen, S.-Q.; Cai, Q.; Shen, Y.-Y.; Wang, P.-Y.; Li, M.-H.; Teng, G.-Y. Neural stem cell transplantation improves spatial learning and memory via neuronal regeneration in amyloid-β precursor protein/presenilin 1/tau triple transgenic mice. Am. J. Alzheimer’s Dis. Other Dement. 2014, 29, 142–149. [Google Scholar] [CrossRef] [PubMed]
- Lilja, A.M.; Malmsten, L.; Röjdner, J.; Voytenko, L.; Verkhratsky, A.; Ögren, S.O.; Nordberg, A.; Marutle, A. Neural stem cell transplant-induced effect on neurogenesis and cognition in Alzheimer Tg2576 mice is inhibited by concomitant treatment with amyloid-lowering or cholinergic 7 nicotinic receptor drugs. Neural Plast. 2015, 2015, 370432. [Google Scholar] [CrossRef] [PubMed]
- Marsh, S.E.; Yeung, S.T.; Torres, M.; Lau, L.; Davis, J.L.; Monuki, E.S.; Poon, W.W.; Blurton-Jones, M. HuCNS-SC human NSCs fail to differentiate, form ectopic clusters, and provide no cognitive benefits in a transgenic model of Alzheimer’s disease. Stem Cell Rep. 2017, 8, 235–248. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Ke, W.; Zhou, X.; Qian, Y.; Feng, S.; Wang, R.; Cui, G.; Tao, R.; Guo, W.; Duan, Y. Human neural stem cells reinforce hippocampal synaptic network and rescue cognitive deficits in a mouse model of Alzheimer’s disease. Stem Cell Rep. 2019, 13, 1022–1037. [Google Scholar] [CrossRef] [PubMed]
- Moreno-Jiménez, E.P.; Flor-García, M.; Terreros-Roncal, J.; Rábano, A.; Cafini, F.; Pallas-Bazarra, N.; Ávila, J.; Llorens-Martín, M. Adult hippocampal neurogenesis is abundant in neurologically healthy subjects and drops sharply in patients with Alzheimer’s disease. Nat. Med. 2019, 25, 554–560. [Google Scholar] [CrossRef] [PubMed]
- Disouky, A.; Lazarov, O. Adult hippocampal neurogenesis in Alzheimer’s disease. Prog. Mol. Biol. Transl. Sci. 2021, 177, 137–156. [Google Scholar]
- Mir, R.H.; Shah, A.J.; Mohi-Ud-Din, R.; Pottoo, F.H.; Dar, M.A.; Jachak, S.M.; Masoodi, M.H. Natural Anti-inflammatory compounds as Drug candidates in Alzheimer’s disease. Curr. Med. Chem. 2021, 28, 4799–4825. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Jiang, S.; Wang, R.; Bao, X.; Li, Y. Neural stem cells in the treatment of Alzheimer’s disease: Current status, challenges, and future prospects. J. Alzheimer’s Dis. 2023, 94, S173–S186. [Google Scholar] [CrossRef]
- Ali, M.; Wani, S.U.; Manjula, S.N.; Mruthunjaya, K.; Shakeel, F.; Bharathi, D.R.; Sridhar, S.B.; Mohiuddin, I.; Mir, R.H.; Dey, T. Divine noni’s protective impact on Swiss albino mice’s short-term memory impairment caused by cyclophosphamide: A behavioral and biochemical approach. Heliyon 2024, 10, e37557. [Google Scholar] [CrossRef] [PubMed]
- Boldrini, M.; Fulmore, C.A.; Tartt, A.N.; Simeon, L.R.; Pavlova, I.; Poposka, V.; Rosoklija, G.B.; Stankov, A.; Arango, V.; Dwork, A. Human hippocampal neurogenesis persists throughout aging. Cell Stem Cell 2018, 22, 589–599.e585. [Google Scholar] [CrossRef]
- Gillotin, S.; Sahni, V.; Lepko, T.; Hanspal, M.A.; Swartz, J.E.; Alexopoulou, Z.; Marshall, F.H.J.A.R.R. Targeting impaired adult hippocampal neurogenesis in ageing by leveraging intrinsic mechanisms regulating neural stem cell activity. Ageing Res. Rev. 2021, 71, 101447. [Google Scholar] [CrossRef] [PubMed]
- Boese, A.C.; Hamblin, M.H.; Lee, J.-P. Neural stem cell therapy for neurovascular injury in Alzheimer’s disease. Exp. Neurol. 2020, 324, 113112. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Gu, G.J.; Zhang, Q.; Liu, J.H.; Zhang, B.; Guo, Y.; Wang, M.Y.; Gong, Q.Y.; Xu, J. NSCs promote hippocampal neurogenesis, metabolic changes and synaptogenesis in APP/PS1 transgenic mice. Hippocampus 2017, 27, 1250–1263. [Google Scholar] [CrossRef]
- Yamasaki, T.R.; Blurton-Jones, M.; Morrissette, D.A.; Kitazawa, M.; Oddo, S.; LaFerla, F. Neural stem cells improve memory in an inducible mouse model of neuronal loss. J. Neurosci. 2007, 27, 11925–11933. [Google Scholar] [CrossRef]
- Kim, J.; Ha, S.; Shin, K.; Kim, S.; Lee, K.; Chong, Y.; Chang, K.; Suh, Y. Neural stem cell transplantation at critical period improves learning and memory through restoring synaptic impairment in Alzheimer’s disease mouse model. Cell Death Dis. 2015, 6, e1789. [Google Scholar] [CrossRef]
- Lilja, A.M. Stimulating Neuroprotective and Regenerative Mechanisms in Alzheimer Disease; Karolinska Institute: Solna, Sweden, 2013. [Google Scholar]
- Hampton, D.W.; Webber, D.J.; Bilican, B.; Goedert, M.; Spillantini, M.G.; Chandran, S. Cell-mediated neuroprotection in a mouse model of human tauopathy. J. Neurosci. 2010, 30, 9973–9983. [Google Scholar] [CrossRef]
- Russo, V.; Gluckman, P.; Feldman, E.; Werther, G. The insulin-like growth factor system and its pleiotropic functions in brain. Endocr. Rev. 2005, 26, 916–943. [Google Scholar] [CrossRef] [PubMed]
- McGinley, L.M.; Sims, E.; Lunn, J.S.; Kashlan, O.N.; Chen, K.S.; Bruno, E.S.; Pacut, C.M.; Hazel, T.; Johe, K.; Sakowski, S. Human cortical neural stem cells expressing insulin-like growth factor-I: A novel cellular therapy for Alzheimer’s disease. Stem Cells Transl. Med. 2016, 5, 379–391. [Google Scholar] [CrossRef]
- Moghadam, F.H.; Alaie, H.; Karbalaie, K.; Tanhaei, S.; Esfahani, M.; Baharvand, H. Transplantation of primed or unprimed mouse embryonic stem cell-derived neural precursor cells improves cognitive function in Alzheimerian rats. Differentiation 2009, 78, 59–68. [Google Scholar] [CrossRef]
- Wang, Q.; Matsumoto, Y.; Shindo, T.; Miyake, K.; Shindo, A.; Kawanishi, M.; Kawai, N.; Tamiya, T.; Nagao, S. Neural stem cells transplantation in cortex in a mouse model of Alzheimer’s disease. J. Med. Investig. 2006, 53, 61–69. [Google Scholar] [CrossRef]
- Nagahara, A.H.; Merrill, D.A.; Coppola, G.; Tsukada, S.; Schroeder, B.E.; Shaked, G.M.; Wang, L.; Blesch, A.; Kim, A.; Conner, J. Neuroprotective effects of brain-derived neurotrophic factor in rodent and primate models of Alzheimer’s disease. Nat. Med. 2009, 15, 331–337. [Google Scholar] [CrossRef] [PubMed]
- Nagahara, A.H.; Mateling, M.; Kovacs, I.; Wang, L.; Eggert, S.; Rockenstein, E.; Koo, E.H.; Masliah, E.; Tuszynski, M. Early BDNF treatment ameliorates cell loss in the entorhinal cortex of APP transgenic mice. J. Neurosci. 2013, 33, 15596–15602. [Google Scholar] [CrossRef] [PubMed]
- Yue, W.; Li, Y.; Zhang, T.; Jiang, M.; Qian, Y.; Zhang, M.; Sheng, N.; Feng, S.; Tang, K.; Yu, X. ESC-derived basal forebrain cholinergic neurons ameliorate the cognitive symptoms associated with Alzheimer’s disease in mouse models. Stem Cell Rep. 2015, 5, 776–790. [Google Scholar] [CrossRef]
- Liu, Y.; Weick, J.P.; Liu, H.; Krencik, R.; Zhang, X.; Ma, L.; Zhou, G.-M.; Ayala, M.; Zhang, S.-C. Medial ganglionic eminence–like cells derived from human embryonic stem cells correct learning and memory deficits. Nat. Biotechnol. 2013, 31, 440–447. [Google Scholar] [CrossRef]
- Fujiwara, N.; Shimizu, J.; Takai, K.; Arimitsu, N.; Saito, A.; Kono, T.; Umehara, T.; Ueda, Y.; Wakisaka, S.; Suzuki, T. Restoration of spatial memory dysfunction of human APP transgenic mice by transplantation of neuronal precursors derived from human iPS cells. Neurosci. Lett. 2013, 557, 129–134. [Google Scholar] [CrossRef] [PubMed]
- Hemmer, K.; Zhang, M.; van Wüllen, T.; Sakalem, M.; Tapia, N.; Baumuratov, A.; Kaltschmidt, C.; Kaltschmidt, B.; Schöler, H.R.; Zhang, W. Induced neural stem cells achieve long-term survival and functional integration in the adult mouse brain. Stem Cell Rep. 2014, 3, 423–431. [Google Scholar] [CrossRef]
- Lindvall, O.; Kokaia, Z. Stem cell therapy for human brain disorders. Kidney Int. 2005, 68, 1937–1939. [Google Scholar] [CrossRef]
- Uchida, N.; Buck, D.W.; He, D.; Reitsma, M.J.; Masek, M.; Phan, T.V.; Tsukamoto, A.S.; Gage, F.H.; Weissman, I. Direct isolation of human central nervous system stem cells. Proc. Natl. Acad. Sci. USA 2000, 97, 14720–14725. [Google Scholar] [CrossRef] [PubMed]
- Dowey, S.N.; Huang, X.; Chou, B.-K.; Ye, Z.; Cheng, L. Generation of integration-free human induced pluripotent stem cells from postnatal blood mononuclear cells by plasmid vector expression. Nat. Protoc. 2012, 7, 2013–2021. [Google Scholar] [CrossRef]
- Li, X.; Zhu, H.; Sun, X.; Zuo, F.; Lei, J.; Wang, Z.; Bao, X.; Wang, R. Human neural stem cell transplantation rescues cognitive defects in APP/PS1 model of Alzheimer’s disease by enhancing neuronal connectivity and metabolic activity. Front. Aging Neurosci. 2016, 8, 282. [Google Scholar] [CrossRef]
- Danielyan, L.; Beer-Hammer, S.; Stolzing, A.; Schäfer, R.; Siegel, G.; Fabian, C.; Kahle, P.; Biedermann, T.; Lourhmati, A.; Buadze, M. Intranasal delivery of bone marrow-derived mesenchymal stem cells, macrophages, and microglia to the brain in mouse models of Alzheimer’s and Parkinson’s disease. Cell Transplant. 2014, 23, 123–139. [Google Scholar] [CrossRef] [PubMed]
- Van Velthoven, C.T.; Kavelaars, A.; Van Bel, F.; Heijnen, C.J. Mesenchymal stem cell transplantation changes the gene expression profile of the neonatal ischemic brain. Brain Behav. Immun. 2011, 25, 1342–1348. [Google Scholar] [CrossRef] [PubMed]
- Van Velthoven, C.T.; Kavelaars, A.; Van Bel, F.; Heijnen, C.J. Nasal administration of stem cells: A promising novel route to treat neonatal ischemic brain damage. Pediatr. Res. 2010, 68, 419–422. [Google Scholar] [CrossRef] [PubMed]
- Drummond, E.; Wisniewski, T. Alzheimer’s disease: Experimental models and reality. Acta Neuropathol. 2017, 133, 155–175. [Google Scholar] [CrossRef]
- Sharma, P.; Kumari, P.; Sharma, M.; Sharma, R.; Paliwal, A.; Srivastava, S.; Ashique, S.; Bhowmick, M.; Adnan, M.; Mir, R.H. Therapeutic potential of Aloe vera-coated curcumin encapsulated nanoparticles in an Alzheimer-induced mice model: Behavioural, biochemical and histopathological evidence. J. Microencapsul. 2024, 41, 403–418. [Google Scholar] [CrossRef] [PubMed]
- Kikuchi, T.; Morizane, A.; Doi, D.; Magotani, H.; Onoe, H.; Hayashi, T.; Mizuma, H.; Takara, S.; Takahashi, R.; Inoue, H. Human iPS cell-derived dopaminergic neurons function in a primate Parkinson’s disease model. Nature 2017, 548, 592–596. [Google Scholar] [CrossRef]
- Morizane, A.; Doi, D.; Kikuchi, T.; Okita, K.; Hotta, A.; Kawasaki, T.; Hayashi, T.; Onoe, H.; Shiina, T.; Yamanaka, S. Direct comparison of autologous and allogeneic transplantation of iPSC-derived neural cells in the brain of a nonhuman primate. Stem Cell Rep. 2013, 1, 283–292. [Google Scholar] [CrossRef]
- Schweitzer, J.S.; Song, B.; Herrington, T.M.; Park, T.-Y.; Lee, N.; Ko, S.; Jeon, J.; Cha, Y.; Kim, K.; Li, Q. Personalized iPSC-derived dopamine progenitor cells for Parkinson’s disease. N. Engl. J. Med. 2020, 382, 1926–1932. [Google Scholar] [CrossRef] [PubMed]
- Beckman, D.; Ott, S.; Donis-Cox, K.; Janssen, W.G.; Bliss-Moreau, E.; Rudebeck, P.H.; Baxter, M.G.; Morrison, J. Oligomeric Aβ in the monkey brain impacts synaptic integrity and induces accelerated cortical aging. Proc. Natl. Acad. Sci. USA 2019, 116, 26239–26246. [Google Scholar] [CrossRef]
- Forny-Germano, L.; e Silva, N.M.L.; Batista, A.F.; Brito-Moreira, J.; Gralle, M.; Boehnke, S.E.; Coe, B.C.; Lablans, A.; Marques, S.A.; Martinez, A. Alzheimer’s disease-like pathology induced by amyloid-β oligomers in nonhuman primates. J. Neurosci. 2014, 34, 13629–13643. [Google Scholar] [CrossRef]
- Yue, F.; Feng, S.; Lu, C.; Zhang, T.; Tao, G.; Liu, J.; Yue, C.; Jing, N. Synthetic amyloid-β oligomers drive early pathological progression of Alzheimer’s disease in nonhuman primates. iScience 2021, 24, 103207. [Google Scholar] [CrossRef] [PubMed]
- Yue, C.; Feng, S.; Chen, Y.; Jing, N. The therapeutic prospects and challenges of human neural stem cells for the treatment of Alzheimer’s Disease. Cell Regen. 2022, 11, 28. [Google Scholar] [CrossRef] [PubMed]
- Vishwakarma, S.K.; Bardia, A.; Tiwari, S.K.; Paspala, S.A.B.; Khan, A.A. Current concept in neural regeneration research: NSCs isolation, characterization and transplantation in various neurodegenerative diseases and stroke: A review. J. Adv. Res. 2014, 5, 277–294. [Google Scholar] [CrossRef]
- Genchi, A.; Brambilla, E.; Sangalli, F.; Radaelli, M.; Bacigaluppi, M.; Furlan, R.; Andolfo, A.; Drago, D.; Magagnotti, C.; Scotti, G.M. Neural stem cell transplantation in patients with progressive multiple sclerosis: An open-label, phase 1 study. Nat. Med. 2023, 29, 75–85. [Google Scholar] [CrossRef] [PubMed]
- Lv, Z.; Li, Y.; Wang, Y.; Cong, F.; Li, X.; Cui, W.; Han, C.; Wei, Y.; Hong, X.; Liu, Y. Safety and efficacy outcomes after intranasal administration of neural stem cells in cerebral palsy: A randomized phase 1/2 controlled trial. Stem Cell Res. Ther. 2023, 14, 23. [Google Scholar] [CrossRef] [PubMed]
- Fauser, M.; Loewenbrück, K.F.; Rangnick, J.; Brandt, M.D.; Hermann, A.; Storch, A. Adult neural stem cells from midbrain periventricular regions show limited neurogenic potential after transplantation into the hippocampal neurogenic niche. Cells 2021, 10, 3021. [Google Scholar] [CrossRef]
- Pereira, I.M.; Marote, A.; Salgado, A.J.; Silva, N.A. Filling the gap: Neural stem cells as a promising therapy for spinal cord injury. Pharmaceuticals 2019, 12, 65. [Google Scholar] [CrossRef]
- Moradi, S.; Mahdizadeh, H.; Šarić, T.; Kim, J.; Harati, J.; Shahsavarani, H.; Greber, B.; Moore, J.B. Research and therapy with induced pluripotent stem cells (iPSCs): Social, legal, and ethical considerations. Stem Cell Res. Ther. 2019, 10, 1–13. [Google Scholar] [CrossRef]
- Li, C.; Luo, Y.; Li, S. The roles of neural stem cells in myelin regeneration and repair therapy after spinal cord injury. Stem Cell Res. Ther. 2024, 15, 20409875. [Google Scholar] [CrossRef]
- Zeng, C.-W. Advancing spinal cord injury treatment through stem cell therapy: A comprehensive review of cell types, challenges, and emerging technologies in regenerative medicine. Int. J. Mol. Sci. 2023, 24, 14349. [Google Scholar] [CrossRef]
- Borhani-Haghighi, M.; Mohamadi, Y. The protective effects of neural stem cells and neural stem cells-conditioned medium against inflammation-induced prenatal brain injury. J. Neuroimmunol. 2021, 360, 577707. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Narayanan, K.; Chaudhary, R.K.; Mishra, S.; Kumar, S.; Vinoth, K.J.; Padmanabhan, P.; Gulyás, B. Current perspective of stem cell therapy in neurodegenerative and metabolic diseases. Mol. Neurobiol. 2017, 54, 7276–7296. [Google Scholar] [CrossRef] [PubMed]
- Li, H.-C.; Stoicov, C.; Rogers, A.B.; Houghton, J. Stem cells and cancer: Evidence for bone marrow stem cells in epithelial cancers. World J. Gastroenterol. 2006, 12, 363. [Google Scholar] [CrossRef] [PubMed]
- Amariglio, N.; Hirshberg, A.; Scheithauer, B.W.; Cohen, Y.; Loewenthal, R.; Trakhtenbrot, L.; Paz, N.; Koren-Michowitz, M.; Waldman, D.; Leider-Trejo, L. Donor-derived brain tumor following neural stem cell transplantation in an ataxia telangiectasia patient. PLoS Med. 2009, 6, e1000029. [Google Scholar] [CrossRef] [PubMed]
- Shih, C.-C.; Forman, S.J.; Chu, P.; Slovak, M. Human embryonic stem cells are prone to generate primitive, undifferentiated tumors in engrafted human fetal tissues in severe combined immunodeficient mice. Stem Cells Dev. 2007, 16, 893–902. [Google Scholar] [CrossRef] [PubMed]
- Hong, S.G.; Dunbar, C.E.; Winkler, T. Assessing the risks of genotoxicity in the therapeutic development of induced pluripotent stem cells. Mol. Ther. 2013, 21, 272–281. [Google Scholar] [CrossRef]
- Lazennec, G.; Jorgensen, C. Concise review: Adult multipotent stromal cells and cancer: Risk or benefit? Stem Cells 2008, 26, 1387–1394. [Google Scholar] [CrossRef]
- Mohib, K.; Allan, D.; Wang, L. Human embryonic stem cell-extracts inhibit the differentiation and function of monocyte-derived dendritic cells. Stem Cell Rev. Rep. 2010, 6, 611–621. [Google Scholar] [CrossRef] [PubMed]
- Herberts, C.A.; Kwa, M.S.; Hermsen, H. Risk factors in the development of stem cell therapy. J. Transl. Med. 2011, 9, 1–14. [Google Scholar] [CrossRef]
- Thomson, J.A.; Itskovitz-Eldor, J.; Shapiro, S.S.; Waknitz, M.A.; Swiergiel, J.J.; Marshall, V.S.; Jones, J. Embryonic stem cell lines derived from human blastocysts. Science 1998, 282, 1145–1147. [Google Scholar] [CrossRef] [PubMed]
- Löser, P.; Schirm, J.; Guhr, A.; Wobus, A.M.; Kurtz, A. Human embryonic stem cell lines and their use in international research. Stem Cells 2010, 28, 240–246. [Google Scholar] [CrossRef] [PubMed]
- Strelchenko, N.; Verlinsky, O.; Kukharenko, V.; Verlinsky, Y. Morula-derived hu-man embryonic stem cells. Reprod. Biomed. Online 2004, 9, 623–629. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Stojkovic, P.; Przyborski, S.; Cooke, M.; Armstrong, L.; Lako, M.; Stojkovic, M. Derivation of human embryonic stem cells from developing and arrested embryos. Stem Cells 2006, 24, 2669–2676. [Google Scholar] [CrossRef] [PubMed]
- Klimanskaya, I.; Chung, Y.; Becker, S.; Lu, S.-J.; Lanza, R. Derivation of human embryonic stem cells from single blastomeres. Nat. Protoc. 2007, 2, 1963–1972. [Google Scholar] [CrossRef] [PubMed]
- Feki, A.; Hovatta, O.; Jaconi, M. Derivation of human embryonic stem cell lines from single cells of 4-cell stage embryos: Be aware of the risks. Hum. Reprod. 2008, 23, 2874. [Google Scholar] [CrossRef] [PubMed]
- Geens, M.; Mateizel, I.; Sermon, K.; De Rycke, M.; Spits, C.; Cauffman, G.; Devroey, P.; Tournaye, H.; Liebaers, I.; Van de Velde, H. Human embryonic stem cell lines derived from single blastomeres of two 4-cell stage embryos. Hum. Reprod. 2009, 24, 2709–2717. [Google Scholar] [CrossRef] [PubMed]
- Bernal, G.M.; Peterson, D. Neural stem cells as therapeutic agents for age-related brain repair. Aging Cell 2004, 3, 345–351. [Google Scholar] [CrossRef] [PubMed]
- Steindler, D.A.; Pincus, D. Stem cells and neuropoiesis in the adult human brain. Lancet 2002, 359, 1047–1054. [Google Scholar] [CrossRef]
- Limke, T.L.; Rao, M.; Research, S.C. Neural stem cell therapy in the aging brain: Pitfalls and possibilities. J. Hematotherapy Stem Cell Res. 2003, 12, 615–623. [Google Scholar] [CrossRef]
- Sugaya, K.; Brannen, C. Stem cell strategies for neuroreplacement therapy in Alz-heimer’s disease. Med. Hypotheses 2001, 57, 697–700. [Google Scholar] [CrossRef]
- Feng, Z.; Zhao, G.; Yu, L.; Dementias, O. Neural stem cells and Alzheimer’s disease: Challenges and hope. Am. J. Alzheimer’s Dis. Other Dementiasr 2009, 24, 52–57. [Google Scholar] [CrossRef]
- Shalaby, N. In Vivo Multi-Modal Imaging Approaches for Cancer, Stem and Immune Cells. Ph.D. Thesis, The University of Western Ontario (Canada), London, ON, Canada, 2023; pp. 1–200. [Google Scholar]
- Feldman, E.L.; Boulis, N.M.; Hur, J.; Johe, K.; Rutkove, S.B.; Federici, T.; Polak, M.; Bordeau, J.; Sakowski, S.A.; Glass, J.D. Intraspinal neural stem cell injections in ALS subjects: Phase I trial outcomes. Ann. Neurol. 2014, 75, 363–373. [Google Scholar] [CrossRef] [PubMed]
- Moviglia, G.A.; Moviglia-Brandolino, M.T.; Varela, G.S.; Albanese, G.; Piccone, S.; Echegaray, G.; Martinez, G.; Blasseti, N.; Farias, J.; Farina, P. Feasibility, safety, and preliminary proof of principles of autologous neural stem cell treatment combined with T-cell vaccination for ALS patients. Cell Transplant. 2012, 21, 57–63. [Google Scholar] [CrossRef] [PubMed]
- Mazzini, L.; Gelati, M.; Profico, D.C.; Sorarù, G.; Ferrari, D.; Copetti, M.; Muzi, G.; Ricciolini, C.; Carletti, S.; Giorgi, C. Results from phase I clinical trial with intraspinal injection of neural stem cells in amyotrophic lateral sclerosis: A long-term outcome. Stem Cells Transl Med. 2019, 8, 887–897. [Google Scholar] [CrossRef] [PubMed]
- Madrazo, I.; Kopyov, O.; Ávila-Rodríguez, M.A.; Ostrosky, F.; Carrasco, H.; Kopyov, A.; Avendaño-Estrada, A.; Jiménez, F.; Magallón, E.; Zamorano, C. Transplantation of human neural progenitor cells (NPC) into putamina of parkinsonian patients: A case series study, safety and efficacy four years after surgery. Cell Transplant. 2019, 28, 269–285. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Chen, L.; Moviglia, G.; Sharma, A.; Al Zoubi, Z.M.; He, X.; Chen, D. Advances and prospects of cell therapy for spinal cord injury patients. J. Neurorestoratol. 2022, 10, 13–30. [Google Scholar] [CrossRef]
- Kim, Y.-S.; Kim, J.-Y.; Huh, J.W.; Lee, S.W.; Choi, S.J.; Oh, Y.-M. The therapeutic effects of optimal dose of mesenchymal stem cells in a murine model of an elastase induced-emphysema. Tuberc. Respir. Dis. 2015, 78, 239–245. [Google Scholar] [CrossRef]
- Hernández, R.; Jiménez-Luna, C.; Perales-Adán, J.; Perazzoli, G.; Melguizo, C.; Prados, J. Differentiation of human mesenchymal stem cells towards neuronal lineage: Clinical trials in nervous system disorders. Biomol. Ther. 2019, 28, 34–45. [Google Scholar] [CrossRef]
- Kim, H.J.; Seo, S.W.; Chang, J.W.; Lee, J.I.; Kim, C.H.; Chin, J.; Choi, S.J.; Kwon, H.; Yun, H.J.; Lee, J.M. Stereotactic brain injection of human umbilical cord blood mesenchymal stem cells in patients with Alzheimer’s disease dementia: A phase 1 clinical trial. Alzheimer’s Dement. Transl. Res. Clin. Interv. 2015, 1, 95–102. [Google Scholar] [CrossRef]
- Kim, D.H.; Lee, D.; Chang, E.H.; Kim, J.H.; Hwang, J.W.; Kim, J.-Y.; Kyung, J.W.; Kim, S.H.; Oh, J.S.; Shim, S.M. GDF-15 secreted from human umbilical cord blood mesenchymal stem cells delivered through the cerebrospinal fluid promotes hippocampal neurogenesis and synaptic activity in an Alzheimer’s disease model. Stem Cells Dev. 2015, 24, 2378–2390. [Google Scholar] [CrossRef]
- Igarashi, K.M. Entorhinal cortex dysfunction in Alzheimer’s disease. Trends Neurosci. 2023, 46, 124–136. [Google Scholar] [CrossRef]
- Pacheco-Herrero, M.; Soto-Rojas, L.O.; Reyes-Sabater, H.; Garcés-Ramirez, L.; de la Cruz López, F.; Villanueva-Fierro, I.; Luna-Muñoz, J. Current status and challenges of stem cell treatment for Alzheimer’s disease. J. Alzheimer’s Dis. 2021, 84, 917–935. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.-H.; Feng, L.; Zhang, G.-X.; Ma, C.-G. Intranasal delivery of stem cells as therapy for central nervous system disease. Exp. Mol. Pathol. 2015, 98, 145–151. [Google Scholar] [CrossRef]
Animal Model | Types of NSC | Sex/Age | Transplantation Surgery | Cerebral | Test/Duration | Mechanism | Observations | Pathological Alterations | Ref. |
---|---|---|---|---|---|---|---|---|---|
APP/PS1 Tg mice | hNSC | M/03 months | 1.8 × 105 cells/6 µL | Hippocampus | NOR, MWM/4 and 16 weeks | Amyloid phagocytosis, induced microglial activation | Improves cognition | Yes | [37] |
Mice embryos | Both/12 months | 1.0 × 105 cells/5 µL, 1 µL/min | Hippocampus | MWM/8 weeks | Synaptogenesis, ↑ long-term Potentiation, neuron expression protein, BDNF | ↑ cognition | NO | [38] | |
Mice embryo | Both male and female/12 months | 1.0 × 105 cells/3 µL, 1 µL/min | Hippocampus | MWM/10 weeks later | Decrease in inflammation-mediated TLR4-glial pathway | ↑ cognition | NO | [39] | |
GFP-NSCs | M/9 months | 1.0 × 105 cells/2 µL/5 min | Hippocampus | MWM/4 weeks later | ↑ ChAT activity ↑ Ach concentration | ↑ cognition | NO | [40] | |
3×Tg mice | hCNS-SCs | F/19 months | 1.0 × 105 cells/2 µL/injection, 1 µL/min | Hippocampus | MWM and NOR/1 month later | elevate synaptic growth, ↑ endogenous synaptogenesis | ↑ spatial learning, memory | No | [41] |
GFP-NSCs mice | NM | 1.0 × 105 cells/0.5 µL/min | Hippocampus | Histopathological changes | secrete neprilysin | ↑ synaptic density/↓ Aβ | Yes | [42] | |
GFP-NSCs mice | NM/18 months | 1.0 × 105 cells | Hippocampus | MWM and NOR/1 month later | ↑ BDN, ↑ synaptic density | ↑ memory, ↑ spatial learning | Yes | [43] | |
GFP-NSCs mice | M/12 months | 1.0 × 106 cells/µL, 2 µL/10 min | Hippocampus | MWM/2 months later | Neuronal regeneration | ↑ memory, ↑ spatial learning | NM | [44] | |
Tg2576 mice | hNSC | Both/6–9 months | 2.5 × 104 cells/hemisphere, 1 µL | Hippocampus | MWM/5 months later | ↑ α7 nAChR-expressing astrocytes | ↑ endogenous neurogenesis | No | [45] |
Mice embryo | Both/13 months | 1.0 × 105 cells/2 µL, 0.4 µL/min | Hippocampus dentate gyrus | Histological examination, MWM/2 months later | ↑ synapse formation, endogenous neurogenesis, ↓ inflammatory microglial activation, ↓ Aβ production, ↓ phosphorylated-tau, ↑ Aβ clearance | ↑ cognition | Yes | [37] | |
5 × FAD mice | hCNS-SCs | Both/2 months | 1.0 × 105 cells/hemisphere/2 µL/2 min | Hippocampus | MWM and NOR/5 months later | Neuronal regeneration and differentiation | No significant changes in BDNF and cognition | No | [46] |
hiNPCs | M/4 months | 1.0 × 105 cells/2 µL/hemisphere, 0.4 µL/min | Hippocampus DG | Y-maze and Barnes maze/5–6 months later | ↑ synaptic density, ↑ BDNF, ↑ neuronal regeneration | Improved synaptic network, cognition | Yes | [47] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shah, A.J.; Dar, M.Y.; Jan, B.; Qadir, I.; Mir, R.H.; Uppal, J.; Ahmad, N.Z.; Masoodi, M.H. Neural Stem Cell Therapy for Alzheimer’s Disease: A-State-of-the-Art Review. J. Dement. Alzheimer's Dis. 2024, 1, 109-125. https://doi.org/10.3390/jdad1020008
Shah AJ, Dar MY, Jan B, Qadir I, Mir RH, Uppal J, Ahmad NZ, Masoodi MH. Neural Stem Cell Therapy for Alzheimer’s Disease: A-State-of-the-Art Review. Journal of Dementia and Alzheimer's Disease. 2024; 1(2):109-125. https://doi.org/10.3390/jdad1020008
Chicago/Turabian StyleShah, Abdul Jalil, Mohammad Younis Dar, Bisma Jan, Insha Qadir, Reyaz Hassan Mir, Jasreen Uppal, Noor Zaheer Ahmad, and Mubashir Hussain Masoodi. 2024. "Neural Stem Cell Therapy for Alzheimer’s Disease: A-State-of-the-Art Review" Journal of Dementia and Alzheimer's Disease 1, no. 2: 109-125. https://doi.org/10.3390/jdad1020008
APA StyleShah, A. J., Dar, M. Y., Jan, B., Qadir, I., Mir, R. H., Uppal, J., Ahmad, N. Z., & Masoodi, M. H. (2024). Neural Stem Cell Therapy for Alzheimer’s Disease: A-State-of-the-Art Review. Journal of Dementia and Alzheimer's Disease, 1(2), 109-125. https://doi.org/10.3390/jdad1020008