Editor’s Choice Articles

Editor’s Choice articles are based on recommendations by the scientific editors of MDPI journals from around the world. Editors select a small number of articles recently published in the journal that they believe will be particularly interesting to readers, or important in the respective research area. The aim is to provide a snapshot of some of the most exciting work published in the various research areas of the journal.

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 1053 KiB  
Article
Neural Networks and Betting Strategies for Tennis
by Vincenzo Candila and Lucio Palazzo
Risks 2020, 8(3), 68; https://doi.org/10.3390/risks8030068 - 29 Jun 2020
Cited by 16 | Viewed by 6685
Abstract
Recently, the interest of the academic literature on sports statistics has increased enormously. In such a framework, two of the most significant challenges are developing a model able to beat the existing approaches and, within a betting market framework, guarantee superior returns than [...] Read more.
Recently, the interest of the academic literature on sports statistics has increased enormously. In such a framework, two of the most significant challenges are developing a model able to beat the existing approaches and, within a betting market framework, guarantee superior returns than the set of competing specifications considered. This contribution attempts to achieve both these results, in the context of male tennis. In tennis, several approaches to predict the winner are available, among which the regression-based, point-based and paired comparison of the competitors’ abilities play a significant role. Contrary to the existing approaches, this contribution employs artificial neural networks (ANNs) to forecast the probability of winning in tennis matches, starting from all the variables used in a large selection of the previous methods. From an out-of-sample perspective, the implemented ANN model outperforms four out of five competing models, independently of the considered period. For what concerns the betting perspective, we propose four different strategies. The resulting returns on investment obtained from the ANN appear to be more broad and robust than those obtained from the best competing model, irrespective of the betting strategy adopted. Full article
(This article belongs to the Special Issue Risks in Gambling)
Show Figures

Figure 1

21 pages, 2027 KiB  
Article
Heads and Tails of Earnings Management: Quantitative Analysis in Emerging Countries
by Pavol Durana, Katarina Valaskova, Darina Chlebikova, Vladislav Krastev and Irina Atanasova
Risks 2020, 8(2), 57; https://doi.org/10.3390/risks8020057 - 1 Jun 2020
Cited by 15 | Viewed by 4734
Abstract
Earnings management is a globally used tool for long-term profitable enterprises and for the apparatus of reduction of bankruptcy risk in developed countries. This phenomenon belongs to the integral and fundamental part of their business finance. However, this has still been lax in [...] Read more.
Earnings management is a globally used tool for long-term profitable enterprises and for the apparatus of reduction of bankruptcy risk in developed countries. This phenomenon belongs to the integral and fundamental part of their business finance. However, this has still been lax in emerging countries. The models of detections of the existence of earnings management are based on discretionary accrual. The goal of this article is to detect the existence of earnings management in emerging countries by times series analysis. This econometric investigation uses the observations of earnings before interest and taxes of 1089 Slovak enterprises and 1421 Bulgarian enterprises in financial modelling. Our findings confirm the significant existence of earnings management in both analyzed countries, based on a quantitative analysis of unit root and stationarity. The managerial activities are purposeful, which is proven by the existence of no stationarity in the time series and a clear occurrence of the unit root. In addition, the results highlight the year 2014 as a significant milestone of change in the development of earnings management in both countries, based on homogeneity analyses. These facts identify significant parallels between Slovak and Bulgarian economics and business finance. Full article
(This article belongs to the Special Issue Quantitative Methods in Economics and Finance)
Show Figures

Figure 1

16 pages, 499 KiB  
Article
Mean-Variance Optimization Is a Good Choice, But for Other Reasons than You Might Think
by Andrea Rigamonti
Risks 2020, 8(1), 29; https://doi.org/10.3390/risks8010029 - 14 Mar 2020
Cited by 11 | Viewed by 8190
Abstract
Mean-variance portfolio optimization is more popular than optimization procedures that employ downside risk measures such as the semivariance, despite the latter being more in line with the preferences of a rational investor. We describe strengths and weaknesses of semivariance and how to minimize [...] Read more.
Mean-variance portfolio optimization is more popular than optimization procedures that employ downside risk measures such as the semivariance, despite the latter being more in line with the preferences of a rational investor. We describe strengths and weaknesses of semivariance and how to minimize it for asset allocation decisions. We then apply this approach to a variety of simulated and real data and show that the traditional approach based on the variance generally outperforms it. The results hold even if the CVaR is used, because all downside risk measures are difficult to estimate. The popularity of variance as a measure of risk appears therefore to be rationally justified. Full article
Show Figures

Figure 1

18 pages, 452 KiB  
Article
Rational Savings Account Models for Backward-Looking Interest Rate Benchmarks
by Andrea Macrina and David Skovmand
Risks 2020, 8(1), 23; https://doi.org/10.3390/risks8010023 - 3 Mar 2020
Cited by 10 | Viewed by 3833
Abstract
Interest rate benchmarks are currently undergoing a major transition. The LIBOR benchmark is planned to be discontinued by the end of 2021 and superseded by what ISDA calls an adjusted risk-free rate (RFR). ISDA has recently announced that the LIBOR replacement will most [...] Read more.
Interest rate benchmarks are currently undergoing a major transition. The LIBOR benchmark is planned to be discontinued by the end of 2021 and superseded by what ISDA calls an adjusted risk-free rate (RFR). ISDA has recently announced that the LIBOR replacement will most likely be constructed from a compounded running average of RFR overnight rates over a period matching the LIBOR tenor. This new backward-looking benchmark is markedly different when compared with LIBOR. It is measurable only at the end of the term in contrast to the forward-looking LIBOR, which is measurable at the start of the term. The RFR provides a simplification because the cash flows and the discount factors may be derived from the same discounting curve, thus avoiding—on a superficial level—any multi-curve complications. We develop a new class of savings account models and derive a novel interest rate system specifically designed to facilitate a high degree of tractability for the pricing of RFR-based fixed-income instruments. The rational form of the savings account models under the risk-neutral measure enables the pricing in closed form of caplets, swaptions and futures written on the backward-looking interest rate benchmark. Full article
(This article belongs to the Special Issue Interest Rate Risk Modelling in Transformation)
27 pages, 2013 KiB  
Article
Prediction of Claims in Export Credit Finance: A Comparison of Four Machine Learning Techniques
by Mathias Bärtl and Simone Krummaker
Risks 2020, 8(1), 22; https://doi.org/10.3390/risks8010022 - 1 Mar 2020
Cited by 18 | Viewed by 10026
Abstract
This study evaluates four machine learning (ML) techniques (Decision Trees (DT), Random Forests (RF), Neural Networks (NN) and Probabilistic Neural Networks (PNN)) on their ability to accurately predict export credit insurance claims. Additionally, we compare the performance of the ML techniques against a [...] Read more.
This study evaluates four machine learning (ML) techniques (Decision Trees (DT), Random Forests (RF), Neural Networks (NN) and Probabilistic Neural Networks (PNN)) on their ability to accurately predict export credit insurance claims. Additionally, we compare the performance of the ML techniques against a simple benchmark (BM) heuristic. The analysis is based on the utilisation of a dataset provided by the Berne Union, which is the most comprehensive collection of export credit insurance data and has been used in only two scientific studies so far. All ML techniques performed relatively well in predicting whether or not claims would be incurred, and, with limitations, in predicting the order of magnitude of the claims. No satisfactory results were achieved predicting actual claim ratios. RF performed significantly better than DT, NN and PNN against all prediction tasks, and most reliably carried their validation performance forward to test performance. Full article
(This article belongs to the Special Issue Machine Learning in Insurance)
Show Figures

Figure 1

79 pages, 1797 KiB  
Article
Machine Learning in Least-Squares Monte Carlo Proxy Modeling of Life Insurance Companies
by Anne-Sophie Krah, Zoran Nikolić and Ralf Korn
Risks 2020, 8(1), 21; https://doi.org/10.3390/risks8010021 - 21 Feb 2020
Cited by 12 | Viewed by 6430
Abstract
Under the Solvency II regime, life insurance companies are asked to derive their solvency capital requirements from the full loss distributions over the coming year. Since the industry is currently far from being endowed with sufficient computational capacities to fully simulate these distributions, [...] Read more.
Under the Solvency II regime, life insurance companies are asked to derive their solvency capital requirements from the full loss distributions over the coming year. Since the industry is currently far from being endowed with sufficient computational capacities to fully simulate these distributions, the insurers have to rely on suitable approximation techniques such as the least-squares Monte Carlo (LSMC) method. The key idea of LSMC is to run only a few wisely selected simulations and to process their output further to obtain a risk-dependent proxy function of the loss. In this paper, we present and analyze various adaptive machine learning approaches that can take over the proxy modeling task. The studied approaches range from ordinary and generalized least-squares regression variants over generalized linear model (GLM) and generalized additive model (GAM) methods to multivariate adaptive regression splines (MARS) and kernel regression routines. We justify the combinability of their regression ingredients in a theoretical discourse. Further, we illustrate the approaches in slightly disguised real-world experiments and perform comprehensive out-of-sample tests. Full article
(This article belongs to the Special Issue Machine Learning in Insurance)
Show Figures

Figure 1

Back to TopTop