Efficient Personalization in E-Commerce: Leveraging Universal Customer Representations with Embeddings
Abstract
:1. Introduction
2. Related Work
2.1. Universal Customer Representation Approaches
2.2. Task-Specific Customer Representation Approaches
3. Use Case and Datasets
3.1. Use Case
3.2. Datasets
4. Methodology
5. Experimental Setup
5.1. Data Preprocessing
5.2. Embedding Training
5.3. Model Training
5.4. Evaluation
5.5. Baseline Approaches
6. Results
7. Further Discussion and Analysis
8. Summary and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rahman, M.S.; Hossain, M.A.; Zaman, M.H.; Mannan, M. E-service quality and trust on customer’s patronage intention: Moderation effect of adoption of advanced technologies. J. Glob. Inf. Manag. (JGIM) 2020, 28, 39–55. [Google Scholar] [CrossRef]
- Fan, Z.; Ou, D.; Gu, Y.; Fu, B.; Li, X.; Bao, W.; Dai, X.Y.; Zeng, X.; Zhuang, T.; Liu, Q. Modeling Users’ Contextualized Page-Wise Feedback for Click-Through Rate Prediction in E-commerce Search. In Proceedings of the Fifteenth ACM International Conference on Web Search and Data Mining, Virtual Event, 21–25 February 2022; Association for Computing Machinery: New York, NY, USA, 2022; pp. 262–270. [Google Scholar] [CrossRef]
- Zhou, G.; Mou, N.; Fan, Y.; Pi, Q.; Bian, W.; Zhou, C.; Zhu, X.; Gai, K. Deep Interest Evolution Network for Click-Through Rate Prediction. Proc. AAAI Conf. Artif. Intell. 2019, 33, 5941–5948. [Google Scholar] [CrossRef]
- Ni, Y.; Ou, D.; Liu, S.; Li, X.; Ou, W.; Zeng, A.; Si, L. Perceive Your Users in Depth: Learning Universal User Representations from Multiple E-Commerce Tasks. In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, KDD ’18, London, UK, 19–23 August 2018; Association for Computing Machinery: New York, NY, USA, 2018; pp. 596–605. [Google Scholar] [CrossRef]
- Carmel, D.; Haramaty, E.; Lazerson, A.; Lewin-Eytan, L. Multi-Objective Ranking Optimization for Product Search Using Stochastic Label Aggregation. In Proceedings of the Web Conference 2020, WWW’20, Taipei, Taiwan, 20–24 April 2020; Association for Computing Machinery: New York, NY, USA, 2020; pp. 373–383. [Google Scholar] [CrossRef]
- Alves Gomes, M.; Meisen, T. A review on customer segmentation methods for personalized customer targeting in e-commerce use cases. Inf. Syst. E-Bus. Manag. 2023, 21, 527–570. [Google Scholar] [CrossRef]
- Hong, T.; Kim, E. Segmenting customers in online stores based on factors that affect the customer’s intention to purchase. Expert Syst. Appl. 2012, 39, 2127–2131. [Google Scholar] [CrossRef]
- Lin, W.; Milic-Frayling, N.; Zhou, K.; Ch’ng, E. Predicting Outcomes of Active Sessions Using Multi-action Motifs. In Proceedings of the IEEE/WIC/ACM International Conference on Web Intelligence, Thessaloniki, Greece, 14–17 October 2019; Association for Computing Machinery: New York, NY, USA, 2019; pp. 9–17. [Google Scholar] [CrossRef]
- Martínez, A.; Schmuck, C.; Pereverzyev, S.; Pirker, C.; Haltmeier, M. A machine learning framework for customer purchase prediction in the non-contractual setting. Eur. J. Oper. Res. 2020, 281, 588–596. [Google Scholar] [CrossRef]
- Esmeli, R.; Bader-El-Den, M.; Abdullahi, H. Towards early purchase intention prediction in online session based retailing systems. Electron. Mark. 2021, 31, 697–715. [Google Scholar] [CrossRef]
- Yang, B.; Liu, K.; Xu, X.; Xu, R.; Liu, H.; Xu, H. Learning Universal User Representations via Self-Supervised Lifelong Behaviors Modeling. 2021. Available online: https://openreview.net/forum?id=YTtMaJUN_uc (accessed on 10 September 2024).
- Sun, F.; Liu, J.; Wu, J.; Pei, C.; Lin, X.; Ou, W.; Jiang, P. BERT4Rec: Sequential Recommendation with Bidirectional Encoder Representations from Transformer. In Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM’19, Beijing, China, 3–7 November 2019; Association for Computing Machinery: New York, NY, USA, 2019; pp. 1441–1450. [Google Scholar] [CrossRef]
- U.S. Department of Justice. Electronic Communications Privacy Act of 1986 (ECPA). 1986. Available online: https://bja.ojp.gov/program/it/privacy-civil-liberties/authorities/statutes/1285 (accessed on 1 October 2024).
- State of California Department of Justice. California Consumer Privacy Act (CCPA). 2018. Available online: https://oag.ca.gov/privacy/ccpa (accessed on 1 October 2024).
- European-Parliament. Regulation (EU) 2016/679 of the European Parliament and of the Council. 2016. Available online: https://www.legislation.gov.uk/eur/2016/679/article/1 (accessed on 1 October 2024).
- Gu, J.; Wang, F.; Sun, Q.; Ye, Z.; Xu, X.; Chen, J.; Zhang, J. Exploiting behavioral consistence for universal user representation. In Proceedings of the AAAI Conference on Artificial Intelligence, Virtually, 2–9 February 2021; Volume 35, pp. 4063–4071. [Google Scholar]
- Wu, C.; Wu, F.; Qi, T.; Lian, J.; Huang, Y.; Xie, X. Ptum: Pre-training user model from unlabeled user behaviors via self-supervision. arXiv 2020, arXiv:2010.01494. [Google Scholar]
- Bertrand, J.H.; Gargano, J.P.; Mombaerts, L.; Taws, J. Autoencoder-based General Purpose Representation Learning for Customer Embedding. arXiv 2024, arXiv:2402.18164. [Google Scholar]
- Romov, P.; Sokolov, E. RecSys Challenge 2015: Ensemble Learning with Categorical Features. In Proceedings of the 2015 International ACM Recommender Systems Challenge, RecSys’15 Challenge, Vienna, Austria, 16–20 September 2015; Association for Computing Machinery: New York, NY, USA, 2015. [Google Scholar] [CrossRef]
- Park, C.; Kim, D.; Oh, J.; Yu, H. Predicting User Purchase in E-Commerce by Comprehensive Feature Engineering and Decision Boundary Focused Under-Sampling. In Proceedings of the 2015 International ACM Recommender Systems Challenge, RecSys’15 Challenge, Vienna, Austria, 16–20 September 2015; Association for Computing Machinery: New York, NY, USA, 2015. [Google Scholar] [CrossRef]
- Li, Q.; Gu, M.; Zhou, K.; Sun, X. Multi-classes feature engineering with sliding window for purchase prediction in mobile commerce. In Proceedings of the 2015 IEEE International Conference on Data Mining Workshop (ICDMW), Atlantic City, NJ, USA, 14–17 November 2015; IEEE: New York, NY, USA, 2015; pp. 1048–1054. [Google Scholar]
- Mokryn, O.; Bogina, V.; Kuflik, T. Will this session end with a purchase? Inferring current purchase intent of anonymous visitors. Electron. Commer. Res. Appl. 2019, 34, 100836. [Google Scholar] [CrossRef]
- Balyemah, A.J.; Weamie, S.J.; Bin, J.; Janda, K.V.; Joshua, F.J. Predicting Purchasing Behavior on E-Commerce Platforms: A Regression Model Approach for Understanding User Features that Lead to Purchasing. Int. J. Commun. Netw. Syst. Sci. 2024, 17, 81–103. [Google Scholar] [CrossRef]
- Malik, V.; Mittal, R.; Chaudhry, R.; Yadav, S.A. Predicting Purchases and Personalizing the Customer Journey with Artificial Intelligence. In Proceedings of the 2024 11th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions) (ICRITO), Noida, India, 14–15 March 2024; IEEE: Piscataway, NJ, USA, 2024; pp. 1–5. [Google Scholar]
- Sudirman, I.D.; Sharif, O.O.; Rahmatillah, I.; Dewi, C.K. Customer Purchase Prediction Using Optimized Decision Tree with Particle Swarm Optimization. In Proceedings of the 2024 International Conference on Data Science and Its Applications (ICoDSA), Kuta, Bali, Indonesia, 10–11 July 2024; pp. 58–63. [Google Scholar] [CrossRef]
- Sheil, H.; Rana, O.; Reilly, R. Predicting purchasing intent: Automatic feature learning using recurrent neural networks. arXiv 2018, arXiv:1807.08207. [Google Scholar]
- Alves Gomes, M.; Meyes, R.; Meisen, P.; Meisen, T. Will This Online Shopping Session Succeed? Predicting Customer’s Purchase Intention Using Embeddings. In Proceedings of the 31st ACM International Conference on Information and Knowledge Management, CIKM’22, Atlanta, GA, USA, 17–21 October 2022; Association for Computing Machinery: New York, NY, USA, 2022; pp. 3707–3716. [Google Scholar] [CrossRef]
- Pfeifer, P.E. The optimal ratio of acquisition and retention costs. J. Target. Meas. Anal. Mark. 2005, 13, 179–188. [Google Scholar] [CrossRef]
- Rachid, A.D.; Abdellah, A.; Belaid, B.; Rachid, L. Clustering prediction techniques in defining and predicting customers defection: The case of e-commerce context. Int. J. Electr. Comput. Eng. 2018, 8, 2367. [Google Scholar] [CrossRef]
- Berger, P.; Kompan, M. User Modeling for Churn Prediction in E-Commerce. IEEE Intell. Syst. 2019, 34, 44–52. [Google Scholar] [CrossRef]
- Fridrich, M.; Dostál, P. User Churn Model in E-Commerce Retail. Sci. Pap. Univ. Pardubic. Ser. D Fac. Econ. Adm. 2022, 30, 1478. [Google Scholar] [CrossRef]
- Perišić, A.; Pahor, M. RFM-LIR Feature Framework for Churn Prediction in the Mobile Games Market. IEEE Trans. Games 2022, 14, 126–137. [Google Scholar] [CrossRef]
- Xiahou, X.; Harada, Y. B2C E-Commerce Customer Churn Prediction Based on K-Means and SVM. J. Theor. Appl. Electron. Commer. Res. 2022, 17, 458–475. [Google Scholar] [CrossRef]
- Ehsani, F.; Hosseini, M. Customer churn prediction using a novel meta-classifier: An investigation on transaction, Telecommunication and customer churn datasets. J. Comb. Optim. 2024, 48, 1–31. [Google Scholar] [CrossRef]
- Hughes, A.M. Strategic database marketing: The masterplan for starting and managing a profitable. In Customer-Based Marketing Program; Irwin Professional Publishing: Burr Ridge, IL, USA, 1994. [Google Scholar]
- Gulhane, P.R.; Kumar, T.S.P. TensorFlow Based Website Click through Rate (CTR) Prediction Using Heat maps. In Proceedings of the 2018 International Conference on Recent Trends in Advance Computing (ICRTAC), Chennai, India, 10–11 September 2018; pp. 97–102. [Google Scholar] [CrossRef]
- Huang, G.; Chen, Q.; Deng, C. A New Click-Through Rates Prediction Model Based on Deep & Cross Network. Algorithms 2020, 13, 342. [Google Scholar] [CrossRef]
- Chen, C.; Chen, H.; Zhao, K.; Zhou, J.; He, L.; Deng, H.; Xu, J.; Zheng, B.; Zhang, Y.; Xing, C. EXTR: Click-Through Rate Prediction with Externalities in E-Commerce Sponsored Search. In Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, Washington, DC, USA, 14–18 August 2022; Association for Computing Machinery: New York, NY, USA, 2022; pp. 2732–2740. [Google Scholar] [CrossRef]
- Ge, T.; Zhao, L.; Zhou, G.; Chen, K.; Liu, S.; Yi, H.; Hu, Z.; Liu, B.; Sun, P.; Liu, H.; et al. Image Matters: Visually Modeling User Behaviors Using Advanced Model Server. In Proceedings of the 27th ACM International Conference on Information and Knowledge Management, Torino, Italy, 22–26 October 2018; Association for Computing Machinery: New York, NY, USA, 2018; pp. 2087–2095. [Google Scholar] [CrossRef]
- Li, F.; Chen, Z.; Wang, P.; Ren, Y.; Zhang, D.; Zhu, X. Graph Intention Network for Click-through Rate Prediction in Sponsored Search. In Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval, Paris, France, 21–25 July 2019; Association for Computing Machinery: New York, NY, USA, 2019; pp. 961–964. [Google Scholar] [CrossRef]
- Wang, F.; Zhao, L. A Hybrid Model for Commercial Brand Marketing Prediction Based on Multiple Features with Image Processing. Secur. Commun. Netw. 2022, 2022, 1–10. [Google Scholar] [CrossRef]
- Zhou, G.; Zhu, X.; Song, C.; Fan, Y.; Zhu, H.; Ma, X.; Yan, Y.; Jin, J.; Li, H.; Gai, K. Deep Interest Network for Click-Through Rate Prediction. In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, KDD ’18, London, UK, 19–23 August 2018; Association for Computing Machinery: New York, NY, USA, 2018; pp. 1059–1068. [Google Scholar] [CrossRef]
- Li, X.; Wang, C.; Tong, B.; Tan, J.; Zeng, X.; Zhuang, T. Deep Time-Aware Item Evolution Network for Click-Through Rate Prediction. In Proceedings of the 29th ACM International Conference on Information & Knowledge Management, Virtual Event, Ireland, 19–23 October 2020; Association for Computing Machinery: New York, NY, USA, 2020; pp. 785–794. [Google Scholar] [CrossRef]
- Li, X.; Wang, C.; Tan, J.; Zeng, X.; Ou, D.; Zheng, B. Adversarial Multimodal Representation Learning for Click-Through Rate Prediction. In Proceedings of the Web Conference 2020, WWW’20, Taipei, Taiwan, 20–24 April 2020; Association for Computing Machinery: New York, NY, USA, 2020; pp. 827–836. [Google Scholar] [CrossRef]
- Sang, L.; Li, H.; Zhang, Y.; Zhang, Y.; Yang, Y. AdaGIN: Adaptive Graph Interaction Network for Click-Through Rate Prediction. ACM Trans. Inf. Syst. 2024, 43, 1–31. [Google Scholar] [CrossRef]
- Wang, Y.; Piao, H.; Dong, D.; Yao, Q.; Zhou, J. Warming Up Cold-Start CTR Prediction by Learning Item-Specific Feature Interactions. arXiv 2024, arXiv:2407.10112. [Google Scholar]
- Lee, S.; Hwang, S. Context-aware cross feature attentive network for click-through rate predictions. Appl. Intell. 2024, 54, 9330–9344. [Google Scholar] [CrossRef]
- Huan, Z.; Ding, K.; Li, A.; Zhang, X.; Min, X.; He, Y.; Zhang, L.; Zhou, J.; Mo, L.; Gu, J.; et al. Exploring Multi-Scenario Multi-Modal CTR Prediction with a Large Scale Dataset. In Proceedings of the 47th International ACM SIGIR Conference on Research and Development in Information Retrieval, Washington, DC, USA, 14–18 July 2024; pp. 1232–1241. [Google Scholar]
- Lu, J.; Long, Y.; Li, X.; Shen, Y.; Wang, X. Hybrid Model Integration of LightGBM, DeepFM, and DIN for Enhanced Purchase Prediction on the Elo Dataset. In Proceedings of the 2024 IEEE 7th International Conference on Information Systems and Computer Aided Education (ICISCAE), Dalian, China, 27–29 September 2024; pp. 16–20. [Google Scholar] [CrossRef]
- Geng, B.; Huan, Z.; Zhang, X.; He, Y.; Zhang, L.; Yuan, F.; Zhou, J.; Mo, L. Breaking the Length Barrier: LLM-Enhanced CTR Prediction in Long Textual User Behaviors. In Proceedings of the 47th International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR ’24, Washington, DC, USA, 14–18 July 2024; Association for Computing Machinery: New York, NY, USA, 2024; pp. 2311–2315. [Google Scholar] [CrossRef]
- Burri, M.; Schär, R. The reform of the EU data protection framework: Outlining key changes and assessing their fitness for a data-driven economy. J. Inf. Policy 2016, 6, 479–511. [Google Scholar]
- Miller, R.B. Response Time in Man-Computer Conversational Transactions. In Proceedings of the Fall Joint Computer Conference, Part I, San Francisco CA, USA, 9–11 December 1968; Association for Computing Machinery: New York, NY, USA, 1968; pp. 267–277. [Google Scholar] [CrossRef]
- Card, S.K.; Robertson, G.G.; Mackinlay, J.D. The Information Visualizer, an Information Workspace. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI ’91, Montréal, QC, Canada, 22–27 April 2006; Association for Computing Machinery: New York, NY, USA, 1991; pp. 181–186. [Google Scholar] [CrossRef]
- Alves Gomes, M.; Wönkhaus, M.; Meisen, P.; Meisen, T. TEE: Real-Time Purchase Prediction Using Time Extended Embeddings for Representing Customer Behavior. J. Theor. Appl. Electron. Commer. Res. 2023, 18, 1404–1418. [Google Scholar] [CrossRef]
- Zeng, J.; Chen, Y.; Zhu, H.; Tian, F.; Miao, K.; Liu, Y.; Zheng, Q. User Sequential Behavior Classification for Click-Through Rate Prediction. In Database Systems for Advanced Applications. DASFAA 2020 International Workshops; Springer: Berlin/Heidelberg, Germany, 2020; pp. 267–280. [Google Scholar] [CrossRef]
- Mikolov, T.; Sutskever, I.; Chen, K.; Corrado, G.; Dean, J. Distributed Representations of Words and Phrases and Their Compositionality. In Proceedings of the 26th International Conference on Neural Information Processing Systems-Volume 2, NIPS’13, Lake Tahoe, NV, USA, 5–10 December 2013; Curran Associates Inc.: Red Hook, NY, USA, 2013; pp. 3111–3119. [Google Scholar]
- Hochreiter, S.; Schmidhuber, J. Long Short-Term Memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef] [PubMed]
- Van Rossum, G.; Drake, F.L., Jr. Python Reference Manual; Centrum voor Wiskunde en Informatica: Amsterdam, The Netherlands, 1995. [Google Scholar]
- Harris, C.R.; Millman, K.J.; van der Walt, S.J.; Gommers, R.; Virtanen, P.; Cournapeau, D.; Wieser, E.; Taylor, J.; Berg, S.; Smith, N.J.; et al. Array programming with NumPy. Nature 2020, 585, 357–362. [Google Scholar] [CrossRef] [PubMed]
- Wes McKinney. Data Structures for Statistical Computing in Python. In Proceedings of the 9th Python in Science Conference, Austin, TX, USA, 28 June–3 July 2010; van der Walt, S., Millman, J., Eds.; pp. 56–61. [Google Scholar] [CrossRef]
- Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.; Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L.; et al. PyTorch: An Imperative Style, High-Performance Deep Learning Library. In Advances in Neural Information Processing Systems; Curran Associates, Inc.: Red Hook, NY, USA, 2019; Volume 32, pp. 8024–8035. [Google Scholar]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Buitinck, L.; Louppe, G.; Blondel, M.; Pedregosa, F.; Mueller, A.; Grisel, O.; Niculae, V.; Prettenhofer, P.; Gramfort, A.; Grobler, J.; et al. API design for machine learning software: Experiences from the scikit-learn project. In Proceedings of the ECML PKDD Workshop: Languages for Data Mining and Machine Learning, Prague, Czech Republic, 23–27 September 2013; pp. 108–122. [Google Scholar]
- Akiba, T.; Sano, S.; Yanase, T.; Ohta, T.; Koyama, M. Optuna: A Next-generation Hyperparameter Optimization Framework. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Anchorage, AK, USA, 4–8 August 2019. [Google Scholar]
- Chou, Y.C.; Chuang, H.H.C. A predictive investigation of first-time customer retention in online reservation services. Serv. Bus. 2018, 12, 685–699. [Google Scholar] [CrossRef]
- Li, X.; Li, Z. A Hybrid Prediction Model for E-Commerce Customer Churn Based on Logistic Regression and Extreme Gradient Boosting Algorithm. Ing. Syst. d’Inform. 2019, 24, 525–530. [Google Scholar] [CrossRef]
- de la Llave Montiel, M.A.; López, F. Spatial models for online retail churn: Evidence from an online grocery delivery service in Madrid. Pap. Reg. Sci. 2020, 99, 1643–1665. [Google Scholar] [CrossRef]
- Zhou, C.; Bai, J.; Song, J.; Liu, X.; Zhao, Z.; Chen, X.; Gao, J. ATRank: An Attention-Based User Behavior Modeling Framework for Recommendation. Proc. AAAI Conf. Artif. Intell. 2018, 32. [Google Scholar] [CrossRef]
- Ren, K.; Zhang, W.; Rong, Y.; Zhang, H.; Yu, Y.; Wang, J. User Response Learning for Directly Optimizing Campaign Performance in Display Advertising. In Proceedings of the 25th ACM International on Conference on Information and Knowledge Management, Indianapolis, IN, USA, 24–28 October 2016; Association for Computing Machinery: New York, NY, USA, 2016; pp. 679–688. [Google Scholar] [CrossRef]
- Sutskever, I.; Vinyals, O.; Le, Q.V. Sequence to Sequence Learning with Neural Networks. In Proceedings of the 27th International Conference on Neural Information Processing Systems-Volume 2, NIPS’14, Montreal, QC, Canada, 8–13 December 2014; MIT Press: Cambridge, MA, USA, 2014; pp. 3104–3112. [Google Scholar]
- Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980. [Google Scholar]
- Grave, É.; Joulin, A.; Cissé, M.; Grangier, D.; Jégou, H. Efficient softmax approximation for GPUs. In Proceedings of the 34th International Conference on Machine Learning, PMLR, Sydney, Australia, 6–11 August 2017; Precup, D., Teh, Y.W., Eds.; Proceedings of Machine Learning Research. Volume 70, pp. 1302–1310. [Google Scholar]
- Chawla, N.V.; Bowyer, K.W.; Hall, L.O.; Kegelmeyer, W.P. SMOTE: Synthetic minority over-sampling technique. J. Artif. Intell. Res. 2002, 16, 321–357. [Google Scholar] [CrossRef]
- Shen, W. DeepCTR: Easy-to-Use, Modular and Extendible Package of Deep-Learning Based CTR Models. 2017. Available online: https://github.com/shenweichen/deepctr (accessed on 1 October 2024).
- Ni, J.; Li, J.; McAuley, J. Justifying recommendations using distantly-labeled reviews and fine-grained aspects. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), Hong Kong, China, 3 November 2019; pp. 188–197. [Google Scholar]
- Devlin, J.; Chang, M.; Lee, K.; Toutanova, K. BERT: Pre-Training of Deep Bidirectional Transformers for Language Understanding. arXiv 2018, arXiv:1810.04805. [Google Scholar]
- Kazemi, S.M.; Goel, R.; Eghbali, S.; Ramanan, J.; Sahota, J.; Thakur, S.; Wu, S.; Smyth, C.; Poupart, P.; Brubaker, M. Time2vec: Learning a vector representation of time. arXiv 2019, arXiv:1907.05321. [Google Scholar]
Dataset | Num. Sessions | Purchase | Churn | Click | |
---|---|---|---|---|---|
YooChoose | train | 3,731,708 | 310,851 | ✗ | 1,865,854 |
(8.3%) | (50%) | ||||
test | 676,286 | 59,675 | ✗ | 338,143 | |
(8.8%) | (50%) | ||||
RetailRocket | train | 165,842 | 7818 | 149,810 | 82,921 |
(4.7%) | (90.3%) | (50%) | |||
test | 19,741 | 896 | 18,980 | 9870 | |
(4.5%) | (96.1%) | (50%) | |||
OpenCDP | train | 32,930,752 | 3,738,748 | 5,829,219 | 16,465,376 |
(11.3%) | (17.7%) | (50%) | |||
test | 6,121,525 | 674,628 | 2,604,572 | 3,060,762 | |
(11%) | (42.5%) | (50%) | |||
industrial | train | 1,288,795 | 82,710 | 1,212,607 | 17,632 |
(6.4%) | (94.1%) | (1.3%) | |||
test | 119,513 | 7594 | 117,119 | 1447 | |
(6.4%) | (97.8%) | (1.4%) |
Dataset | Num. Trigrams | Num. Activities | Unknown Activities |
---|---|---|---|
YooChoose | 1,719,739 | 27,016 | 2511 |
RetailRocket | 750,056 | 119,702 | 8071 |
OpenCDP | 103,881,685 | 509,286 | 69,770 |
industrial | 2,812,129 | 66,205 | 2771 |
YooChoose | RetailRocket | OpenCDP | Industrial | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Approach | Score | Purchase | Click | Purchase | Churn | Click | Purchase | Churn | Click | Purchase | Churn | Click |
Purchase Baseline | F1 | 0.657 | ✗ | 0.585 | 0.690 | ✗ | 0.779 | 0.556 | ✗ | 0.632 | 0.585 | 0.446 |
AUC | 0.690 | ✗ | 0.578 | 0.772 | ✗ | 0.836 | 0.508 | ✗ | 0.679 | 0.551 | 0.527 | |
Churn Baseline | F1 | 0.597 | ✗ | 0.643 | 0.902 | ✗ | 0.522 | 0.565 | ✗ | 0.491 | 0.662 | 0.469 |
AUC | 0.627 | ✗ | 0.629 | 0.928 | ✗ | 0.563 | 0.563 | ✗ | 0.596 | 0.629 | 0.498 | |
CTR Baseline | F1 | 0.612 | 0.733 | 0.663 | 0.575 | 0.661 | 0.874 | 0.528 | 0.891 | 0.748 | 0.625 | 0.933 |
AUC | 0.609 | 0.781 | 0.724 | 0.592 | 0.663 | 0.923 | 0.488 | 0.951 | 0.805 | 0.659 | 0.963 | |
UCR Baseline | F1 | 0.671 | 0.660 | 0.629 | 0.980 | 0.357 | 0.867 | 0.567 | 0.021 | 0.748 | 0.987 | 0.934 |
AUC | 0.679 | 0.705 | 0.637 | 0.667 | 0.496 | 0.916 | 0.537 | 0.499 | 0.807 | 0.713 | 0.971 | |
Our | F1 | 0.676 | 0.777 | 0.674 | 0.980 | 0.660 | 0.875 | 0.568 | 0.612 | 0.766 | 0.989 | 0.945 |
AUC | 0.683 | 0.890 | 0.707 | 0.706 | 0.659 | 0.922 | 0.567 | 0.549 | 0.821 | 0.731 | 0.981 |
Approach | Number of Predictions in 0.1 s | |
---|---|---|
Purchase Baseline | 170 | −194% |
Churn Baseline | 30 | −199% |
CTR Baseline | 7000 | −52% |
UCR Baseline | 10,000 | −18% |
Our | 12,000 | +0% |
Approach | Performance | Flexibility | Data Protection | Real-Time |
---|---|---|---|---|
Purchase Baseline | ✓ | |||
Churn Baseline | ✓ | |||
CTR Baseline | ✓ | ✓ | ✓ | ✓ |
UCR Baseline | ✓ | ✓ | ✓ | ✓ |
Our | ✓ | ✓ | ✓ | ✓ |
YooChoose | RetailRocket | OpenCDP | Industrial | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Approach | Score | Purchase | Click | Purchase | Churn | Click | Purchase | Churn | Click | Purchase | Churn | Click |
LSTM | F1 | 0.676 | 0.777 | 0.674 | 0.980 | 0.660 | 0.875 | 0.568 | 0.612 | 0.766 | 0.989 | 0.945 |
AUC | 0.683 | 0.890 | 0.707 | 0.706 | 0.659 | 0.922 | 0.567 | 0.549 | 0.821 | 0.731 | 0.981 | |
Transformer-1 | F1 | 0.651 | 0.641 | 0.635 | 0.616 | 0.346 | 0.827 | 0.497 | 0.027 | 0.754 | 0.663 | 0.666 |
AUC | 0.652 | 0.625 | 0.647 | 0.579 | 0.497 | 0.874 | 0.550 | 0.499 | 0.810 | 0.701 | 0.494 | |
Transformer-3 | F1 | 0.628 | 0.646 | 0.633 | 0.624 | 0.323 | 0.845 | 0.550 | 0.022 | 0.753 | 0.661 | 0.605 |
AUC | 0.663 | 0.652 | 0.634 | 0.588 | 0.495 | 0.896 | 0.554 | 0.499 | 0.809 | 0.706 | 0.487 | |
Transformer-6 | F1 | 0.592 | 0.646 | 0.628 | 0.626 | 0.322 | 0.847 | 0.564 | 0.101 | 0.758 | 0.661 | 0.597 |
AUC | 0.643 | 0.634 | 0.632 | 0.603 | 0.492 | 0.906 | 0.557 | 0.500 | 0.812 | 0.704 | 0.496 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alves Gomes, M.; Meisen, P.; Meisen, T. Efficient Personalization in E-Commerce: Leveraging Universal Customer Representations with Embeddings. J. Theor. Appl. Electron. Commer. Res. 2025, 20, 12. https://doi.org/10.3390/jtaer20010012
Alves Gomes M, Meisen P, Meisen T. Efficient Personalization in E-Commerce: Leveraging Universal Customer Representations with Embeddings. Journal of Theoretical and Applied Electronic Commerce Research. 2025; 20(1):12. https://doi.org/10.3390/jtaer20010012
Chicago/Turabian StyleAlves Gomes, Miguel, Philipp Meisen, and Tobias Meisen. 2025. "Efficient Personalization in E-Commerce: Leveraging Universal Customer Representations with Embeddings" Journal of Theoretical and Applied Electronic Commerce Research 20, no. 1: 12. https://doi.org/10.3390/jtaer20010012
APA StyleAlves Gomes, M., Meisen, P., & Meisen, T. (2025). Efficient Personalization in E-Commerce: Leveraging Universal Customer Representations with Embeddings. Journal of Theoretical and Applied Electronic Commerce Research, 20(1), 12. https://doi.org/10.3390/jtaer20010012