Cosmology of F(T) Gravity and k-Essence
Abstract
:1. Introduction
2. General Aspects of Gravity
3. The FRW Space-Time
4. Specific Models of Gravity in FRW Universe
4.1. Example 1: The M-Model
4.2. Example 2: The M-Model
4.3. Example 3: The M-Model
4.4. Example 4: The M-Model
5. Noether Symmetry in Gravity
6. The Torsion–Scalar Model
6.1. Example 1:
6.2. Example 2:
6.3. Example 3:
7. The k-Essence
8. Models of k-Essence for FRW Universe
8.1. Example 1: The M-Model
8.2. Example 2: The M-Model
8.3. Example 3: The M-Model
9. The Relation between -Gravity and k-Essence in the FRW Universe
9.1. General Case
9.1.1. Version-I
9.1.2. Version-II
9.2. Specific Case:
10. Gravity
10.1. The M-Model
10.2. The M-Model
11. Conclusions
References
- Perlmutter, S.; Aldering, G.; Goldhaber, G.; Knop, R.A.; Nugent, P.; Castro, P.G.; Deustua, S.; Fabbro, S.; Goobar, A.; Groom, D.E.; et al. Measurements of Ω and Λ from 42 high-redshift supernovae. Astrophys. J. 1999, 517, 565–586. [Google Scholar] [CrossRef]
- Nojiri, S.; Odintsov, S.D. Introduction to modified gravity and gravitational alternative for dark energy. Int. J. Geom. Meth. Mod. Phys. 2007, 4, 115. [Google Scholar] [CrossRef]
- Nojiri, S.; Odintsov, S.D. Modified gravity and its reconstruction from the universe expansion history. J. Phys. Conf. Ser. 2007, 66, 012005. [Google Scholar] [CrossRef]
- Nojiri, S.; Odintsov, S.D. Modified f(R) gravity consistent with realistic cosmology: From matter dominated epoch to dark energy universe. Phys. Rev. D. 2006, 74, 086005. [Google Scholar] [CrossRef]
- Capozziello, S.; Nojiri, S.; Odintsov, S.D. Unified phantom cosmology: Inflation, dark energy and dark matter under the same standard. Phys. Lett. B 2006, 632, 597. [Google Scholar] [CrossRef]
- Nojiri, S.; Odintsov, S.D. Unifying phantom inflation with late-time acceleration: Scalar phantom-non-phantom transition model and generalized holographic dark energy. arXiv, 2005; arXiv:hep-th/0506212. [Google Scholar]
- Elizalde, E.; Nojiri, S.; Odintsov, S.D.; Saez-Gomez, D.; Faraoni, V. Reconstructing the universe history, from inflation to acceleration, with phantom and canonical scalar fields. Phys. Rev. D 2008, 77, 106005. [Google Scholar] [CrossRef]
- Elizalde, E.; Myrzakulov, R.; Obukhov, V.V.; Saez-Gomez, D. ΛCDM epoch reconstruction from F(R,G) and modified Gauss–Bonnet gravities. Class. Quantum Grav. 2010, 27, 095007. [Google Scholar] [CrossRef]
- Myrzakulov, R.; Saez-Gomez, D.; Tureanu, A. On the ΛCDM Universe in f(G) gravity. Gen. Rel. Grav. 2011, 43, 1671–1684. [Google Scholar] [CrossRef]
- Sotiriou, T.P.; Faraoni, V. f(R) Theories of gravity. Rev. Mod. Phys. 2010, 82, 451–497. [Google Scholar] [CrossRef]
- Durrer, R.; Maartens, R. Dark energy and modified gravity. In Dark Energy: Observational and Theoretical Approaches; Cambridge University Press: Cambridge, UK, 2010; pp. 48–91. [Google Scholar]
- De Felice, A.; Tsujikawa, S. f(R) theories. Living Rev. Rel. 2010, 13, 3. [Google Scholar] [CrossRef]
- Copeland, E.J.; Sami, M.; Tsujikawa, S. Dynamics of dark energy. Int. J. Mod. Phys. D. 2006, 15, 1753–1936. [Google Scholar]
- Harko, T.; Lobo, F.S.N.; Nojiri, S.; Odintsov, S.D. f(R,T) gravity. Phys. Rev. D. 2011, 84, 024020. [Google Scholar] [CrossRef]
- Jamil, M.; Momeni, D.; Raza, M.; Myrzakulov, R. Reconstruction of some cosmological models in f(R,T) gravity. Eur. Phys. J. C 2012, 72, 1999. [Google Scholar] [CrossRef]
- Jamil, M.; Momeni, D.; Myrzakulov, R. Violation of first law of thermodynamics in f(R,T) gravity. Chin. Phys. Lett. 2012, 29, 109801. [Google Scholar] [CrossRef]
- Bengochea, G.R.; Ferraro, R. Dark torsion as the cosmic speed-up. Phys. Rev. D 2009, 79, 124019. [Google Scholar] [CrossRef]
- Linder, E.V. Einstein’s other gravity and the acceleration of the universe. Phys. Rev. D 2010, 81, 127301. [Google Scholar] [CrossRef]
- Einstein, A. On the formal relations of Riemannian curvature tensor to the field equations of gravitation. Ann. Phys. Math. 1927, 97, 99–103. [Google Scholar] [CrossRef]
- Maluf, J. W.; Faria, F. F. Conformally invariant teleparallel theories of gravity. Phys. Rev. D. 2012, 85, 027502. [Google Scholar] [CrossRef]
- Hayashi, K.; Shirafuji, T. New general relativity. Phys. Rev. D 1979, 19, 3524–3553. [Google Scholar] [CrossRef]
- Maluf, J.W. Hamiltonian formulation of the teleparallel description of general relativity. J. Math. Phys. 1994, 35, 335. [Google Scholar] [CrossRef]
- Arcos, H.; Pereira, J. Torsion gravity: A reappraisal. Int. J. Mod. Phys. D 2004, 13, 2193–2240. [Google Scholar] [CrossRef]
- Ferraro, R.; Fiorini, F. Modified teleparallel gravity: Inflation without inflaton. Phys. Rev. D 2007, 75, 084031. [Google Scholar] [CrossRef]
- Ferraro, R.; Fiorini, F. On Born–Infeld gravity in Weitzenbock spacetime. Phys. Rev. D 2008, 78, 124019. [Google Scholar] [CrossRef]
- Myrzakulov, R. Accelerating universe from F(T) gravity. Eur. Phys. J. C 2011, 71, 1752. [Google Scholar] [CrossRef]
- Yerzhanov, K.K.; Myrzakul, Sh.R.; Kulnazarov, I.I.; Myrzakulov, R. Accelerating cosmology in F(T) gravity with scalar field. arXiv 2010. [Google Scholar]
- Wu, P.; Yu, H. Observational constraints on f(T) theory. Phys. Lett. B 2010, 693, 415–420. [Google Scholar] [CrossRef]
- Wu, P.; Yu, H. The dynamical behavior of f(T) theory. Phys. Lett. B 2010, 692, 176–179. [Google Scholar] [CrossRef]
- Yang, R.-J. New types of f(T) gravity. Eur. Phys. J. C 2011, 71, 1797. [Google Scholar] [CrossRef]
- Tsyba, P.Yu.; Kulnazarov, I.I.; Yerzhanov, K.K.; Myrzakulov, R. Pure kinetic k-essence as the cosmic speed-up. Int. J. Theor. Phys. 2011, 50, 1876–1886. [Google Scholar] [CrossRef]
- Chen, S.H.; Dent, J.B.; Dutta, S.; Saridakis, E.N. Cosmological perturbations in f(T) gravity. Phys. Rev. D 2011, 83, 023508. [Google Scholar] [CrossRef]
- Bengochea, G.R. Observational information for f(T) theories and Dark Torsion. Phys. Lett. B 2011, 695, 405–411. [Google Scholar] [CrossRef]
- Wu, P.; Yu, H. f(T) models with phantom divide line crossing. Eur. Phys. J. C 2011, 71, 1552. [Google Scholar] [CrossRef]
- Bamba, K.; Geng, C.-Q.; Lee, C.-C. Comment on “Einstein’s other gravity and the acceleration of the universe”. arXiv, 2010; arXiv:1008.4036. [Google Scholar]
- Myrzakulov, R. F(T) gravity and k-essence. Gen. Rel. Grav. 2012. [Google Scholar] [CrossRef]
- Jamil, M.; Momeni, D.; Myrzakulov, R. Attractor solutions in f(T) cosmology. Eur. Phys. J. C 2012, 72, 1959. [Google Scholar] [CrossRef]
- Jamil, M.; Momeni, D.; Myrzakulov, R. Stability of a non-minimally conformally coupled scalar field in F(T) cosmology. Eur. Phys. J. C 2012, 72, 2075. [Google Scholar] [CrossRef]
- Jamil, M.; Yesmakhanova, K.; Momeni, D.; Myrzakulov, R. Phase space analysis of interacting dark energy in f(T) cosmology. Cent. Eur. J. Phys. 2012. [Google Scholar] [CrossRef]
- Jamil, M.; Momeni, D.; Myrzakulov, R. Resolution of dark matter problem in f(T) gravity. Eur. Phys. J. C 2012, 72, 2122. [Google Scholar] [CrossRef]
- Wei, H.; Guo, X.J.; Wang, L.F. Noether symmetry in f(T) theory. Phys. Lett. B 2012, 707, 298–304. [Google Scholar] [CrossRef]
- Armendariz-Picon, C.; Mukhanov, V.; Steinhardt, P.J. A Dynamical solution to the problem of a small cosmological constant and late-time cosmic acceleration. Phys. Rev. Lett. 2000, 85, 4438–4441. [Google Scholar] [CrossRef] [PubMed]
- Armendariz-Picon, C.; Damour, T.; Mukhanov, V. k-inflation. Phys. Lett. B 1999, 458, 209–218. [Google Scholar] [CrossRef]
- Garriga, J.; Mukhanov, V.F. Perturbations in k-inflation. Phys. Lett. B 1999, 458, 219–225. [Google Scholar] [CrossRef]
- Sur, S.; Das, S. Multiple kinetic k-essence, phantom barrier crossing and stability. J. Cosmol. Astropart. Phys. 2009, 0901, 007. [Google Scholar] [CrossRef] [PubMed]
- De Putter, R.; Linder, E.V. Kinetic k-essence and Quintessence. Astropart. Phys. 2007, 28, 263–272. [Google Scholar] [CrossRef]
- Myrzakulov, R. Knot universes in Bianchi type I cosmology. Adv. High Energ. Phys. 2012, 2012, 868203. [Google Scholar] [CrossRef]
- Yesmakhanova, K.R.; Myrzakulov, N.A.; Yerzhanov, K.K.; Nugmanova, G.N.; Serikbayaev, N.S.; Myrzakulov, R. Some models of cyclic and knot universes. arXiv, 2012; arXiv:1201.4360. [Google Scholar]
© 2012 by the author; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Myrzakulov, R. Cosmology of F(T) Gravity and k-Essence. Entropy 2012, 14, 1627-1651. https://doi.org/10.3390/e14091627
Myrzakulov R. Cosmology of F(T) Gravity and k-Essence. Entropy. 2012; 14(9):1627-1651. https://doi.org/10.3390/e14091627
Chicago/Turabian StyleMyrzakulov, Ratbay. 2012. "Cosmology of F(T) Gravity and k-Essence" Entropy 14, no. 9: 1627-1651. https://doi.org/10.3390/e14091627
APA StyleMyrzakulov, R. (2012). Cosmology of F(T) Gravity and k-Essence. Entropy, 14(9), 1627-1651. https://doi.org/10.3390/e14091627