A Thermodynamical Selection-Based Discrete Differential Evolution for the 0-1 Knapsack Problem
Abstract
:1. Introduction
2. Differential Evolution
2.1. Mutation Operator
2.2. Crossover Operator
2.3. Selection Operator
2.4. Discrete Mutation Operator
2.5. Algorithmic Description of DE
3. Proposed Selection Operator for DE
3.1. Motivations
3.2. Energy
3.3. Entropy
3.4. Description of Thermodynamical Selection Operator for DE
Input: Temperature T, the parent population Pt and the offspring population Ot; |
Output: The next generation population Pt+1; |
1: Combine the parent population Pt with the offspring population Ot to constitute a temporary population ; |
2: Calculate the free energy of each individual in the temporary population according to Equation (15); |
3: Choose the top M individuals with maximal free energy; |
4: Remove the chosen M individuals from ; |
5: Create the next generation population Pt+1 by the remaining individuals in . |
4. Proposed TDDE
4.1. Population Initialization
4.2. Discrete Mutation Operator
4.3. Crossover Operator
4.4. Repair Operator
4.5. Procedure of TDDE
4.6. Runtime Complexity of TDDE
5. Numerical Experiments
5.1. Experimental Setup
5.2. Adjusting Parameter Settings
5.3. Comparison with Existing Algorithms
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Kosuch, S.; Lisser, A. Upper bounds for the 0-1 stochastic knapsack problem and a B&B algorithm. Ann. Oper. Res 2010, 176, 77–93. [Google Scholar]
- Bandyopadhyay, S.; Maulik, U.; Chakraborty, R. Incorporating ϵ-dominance in AMOSA: Application to multiobjective 0/1 knapsack problem and clustering gene expression data. Appl. Soft Comput 2013, 13, 2405–2411. [Google Scholar]
- Kumar, R.; Singh, P.K. Assessing solution quality of biobjective 0-1 knapsack problem using evolutionary and heuristic algorithms. Appl. Soft Comput 2010, 10, 711–718. [Google Scholar]
- Zou, D.; Gao, L.; Li, S.; Wu, J. Solving 0-1 knapsack problem by a novel global harmony search algorithm. Appl. Soft Comput 2011, 11, 1556–1564. [Google Scholar]
- Bansal, J.C.; Deep, K. A modified binary particle swarm optimization for knapsack problems. Appl. Math. Comput 2012, 218, 11042–11061. [Google Scholar]
- Truong, T.K.; Li, K.; Xu, Y. Chemical reaction optimization with greedy strategy for the 0-1 knapsack problem. Appl. Soft Comput 2013, 13, 1774–1780. [Google Scholar]
- Lee, J.H. Determination of optimal water quality monitoring points in sewer systems using entropy theory. Entropy 2013, 15, 3419–3434. [Google Scholar]
- Zhan, Z.H.; Li, J.; Cao, J.; Zhang, J.; Chung, H.H.; Shi, Y.H. Multiple populations for multiple objectives: A coevolutionary technique for solving multiobjective optimization problems. IEEE Trans. Cybern 2013, 43, 445–463. [Google Scholar]
- Yang, X.S.; Karamanoglu, M.; He, X. Flower pollination algorithm: A novel approach for multiobjective optimization. Eng. Optim 2014, 46, 1222–1237. [Google Scholar]
- Yang, X.S.; Deb, S.; Fong, S. Bat algorithm is better than intermittent search strategy. J. Mult.-Valued Log. Soft Comput 2014, 22, 223–237. [Google Scholar]
- Guillén, A.; García Arenas, M.I.; van Heeswijk, M.; Sovilj, D.; Lendasse, A.; Herrera, L.J.; Pomares, H.; Rojas, I. Fast feature selection in a GPU cluster using the Delta Test. Entropy 2014, 16, 854–869. [Google Scholar]
- Shi, H. Solution to 0/1 knapsack problem based on improved ant colony algorithm. Proceedings of 2006 International Conference on Information Acquisition, Weihai, China, 20–23 August 2006; pp. 1062–1066.
- Neoh, S.C.; Morad, N.; Lim, C.P.; Aziz, Z.A. A GA-PSO layered encoding evolutionary approach to 0/1 knapsack optimization. Int. J. Innov. Comput. Inf. Control 2010, 6, 3489–3505. [Google Scholar]
- Shang, R.; Jiao, L.; Li, Y.; Wu, J. Quantum immune clonal selection algorithm for multi-objective 0/1 knapsack problems. Chin. Phys. Lett 2010, 27, 010308. [Google Scholar]
- Layeb, A. A novel quantum inspired cuckoo search for knapsack problems. Int. J. Bio-Inspired Comput 2011, 3, 297–305. [Google Scholar]
- Chiu, C.H.; Yang, Y.J.; Chou, Y.H. Quantum-inspired tabu search algorithm for solving 0/1 knapsack problems. Proceedings of the 13th Annual Conference Companion on Genetic and Evolutionary Computation, Dublin, Ireland, 12–16 July 2011; pp. 55–56.
- Sabet, S.; Farokhi, F.; Shokouhifar, M. A novel artificial bee colony algorithm for the knapsack problem. Proceedings of 2012 International Symposium on Innovations in Intelligent Systems and Applications (INISTA), Trabzon, Turkey, 2–4 July 2012; pp. 1–5.
- Gherboudj, A.; Layeb, A.; Chikhi, S. Solving 0-1 knapsack problems by a discrete binary version of cuckoo search algorithm. Int. J. Bio-Inspired Comput 2012, 4, 229–236. [Google Scholar]
- Layeb, A. A hybrid quantum inspired harmony search algorithm for 0-1 optimization problems. J. Comput. Appl. Math 2013, 253, 14–25. [Google Scholar]
- Lu, T.; Yu, G. An adaptive population multi-objective quantum-inspired evolutionary algorithm for multi-objective 0/1 knapsack problems. Inf. Sci 2013, 243, 39–56. [Google Scholar]
- Deng, C.; Zhao, B.; Yang, Y.; Zhang, H. Binary encoding differential evolution with application to combinatorial optimization problem. Proceedings of 2013 Chinese Intelligent Automation Conference, Yangzhou, China, 23–25 August 2013; pp. 77–84.
- Zhang, X.; Huang, S.; Hu, Y.; Zhang, Y.; Mahadevan, S.; Deng, Y. Solving 0-1 knapsack problems based on amoeboid organism algorithm. Appl. Math. Comput 2013, 219, 9959–9970. [Google Scholar]
- Storn, R.; Price, K. Differential evolution—A simple and efficient heuristic for global optimization over continuous spaces. J. Glob. Optim 1997, 11, 341–359. [Google Scholar]
- Brest, J.; Greiner, S.; Boskovic, B.; Mernik, M.; Zumer, V. Self-adapting control parameters in differential evolution: A comparative study on numerical benchmark problems. IEEE Trans. Evol. Comput 2006, 10, 646–657. [Google Scholar]
- Neri, F.; Tirronen, V. Recent advances in differential evolution: A survey and experimental analysis. Artif. Intell. Rev 2010, 33, 61–106. [Google Scholar]
- Das, S.; Suganthan, P.N. Differential evolution: A survey of the state-of-the-art. IEEE Trans. Evol. Comput 2011, 15, 4–31. [Google Scholar]
- Qin, A.K.; Huang, V.L.; Suganthan, P.N. Differential evolution algorithm with strategy adaptation for global numerical optimization. IEEE Trans. Evol. Comput 2009, 13, 398–417. [Google Scholar]
- Zhang, J.; Sanderson, A.C. JADE: Adaptive differential evolution with optional external archive. IEEE Trans. Evol. Comput 2009, 13, 945–958. [Google Scholar]
- Pan, Q.K.; Suganthan, P.N.; Wang, L.; Gao, L.; Mallipeddi, R. A differential evolution algorithm with self-adapting strategy and control parameters. Comput. Oper. Res 2011, 38, 394–408. [Google Scholar]
- Wang, Y.; Cai, Z.; Zhang, Q. Differential evolution with composite trial vector generation strategies and control parameters. IEEE Trans. Evol. Comput 2011, 15, 55–66. [Google Scholar]
- Mallipeddi, R.; Suganthan, P.N.; Pan, Q.K.; Tasgetiren, M.F. Differential evolution algorithm with ensemble of parameters and mutation strategies. Appl. Soft Comput 2011, 11, 1679–1696. [Google Scholar]
- Wang, H.; Rahnamayan, S.; Sun, H.; Omran, M.G. Gaussian bare-bones differential evolution. IEEE Trans. Cybern 2013, 43, 634–647. [Google Scholar]
- Gong, W.; Cai, Z.; Ling, C.X.; Li, C. Enhanced differential evolution with adaptive strategies for numerical optimization. IEEE Trans. Syst. Man. Cybern. B 2011, 41, 397–413. [Google Scholar]
- Wang, L.; Pan, Q.K.; Suganthan, P.N.; Wang, W.H.; Wang, Y.M. A novel hybrid discrete differential evolution algorithm for blocking flow shop scheduling problems. Comput. Oper. Res 2010, 37, 509–520. [Google Scholar]
- Zhan, Z.H.; Zhang, J.; Li, Y.; Shi, Y.H. Orthogonal learning particle swarm optimization. IEEE Trans. Evol. Comput 2011, 15, 832–847. [Google Scholar]
- Cui, Z.; Fan, S.; Shi, Z. Social emotional optimization algorithm with Gaussian distribution for optimal coverage problem. Sens. Lett 2013, 11, 259–263. [Google Scholar]
- Pires, E.J.S.; Machado, J.A.T.; de Moura Oliveira, P.B. Entropy diversity in multi-objective particle swarm optimization. Entropy 2013, 15, 5475–5491. [Google Scholar]
- Yang, X.; Deb, S. Multiobjective cuckoo search for design optimization. Comput. Oper. Res 2013, 40, 1616–1624. [Google Scholar]
- Guo, Z.; Wu, Z.; Dong, X.; Zhang, K.; Wang, S.; Li, Y. Component thermodynamical selection based gene expression programming for function finding. Math. Probl. Eng 2014, 2014. [Google Scholar] [CrossRef]
- Mori, N.; Yoshida, J.; Tamaki, H.; Nishikawa, H. A thermodynamical selection rule for the genetic algorithm. Proceedings of IEEE Congress on Evolutionary Computation (CEC1995), Perth, Australia, 29 November–1 December 1995; pp. 188–192.
- Ying, W.; Li, Y.; Peng, S.; Wang, W. A steep thermodynamical selection rule for evolutionary algorithms. Proceedings of the 7th International Conference on Computational Science—ICCS 2007, Beijing, China, 27–30 May 2007; pp. 997–1004.
- Ying, W.Q.; Li, Y.X.; Sheu, P.C.Y. Improving the computational efficiency of thermodynamical genetic algorithms. Chin. J. Softw 2008, 19, 1613–1622. [Google Scholar]
- Yu, F.; Li, Y.; Ying, W. An improved thermodynamics evolutionary algorithm based on the minimal free energy. Proceedings of the First International Conference on Advances in Swarm Intelligence (ICSI’10), Beijing, China, 12–15 June 2010; pp. 541–548.
- Das, S.; Abraham, A.; Chakraborty, U.K.; Konar, A. Differential evolution using a neighborhood-based mutation operator. IEEE Trans. Evol. Comput 2009, 13, 526–553. [Google Scholar]
- Garcıa, S.; Fernández, A.; Luengo, J.; Herrera, F. Advanced nonparametric tests for multiple comparisons in the design of experiments in computational intelligence and data mining: Experimental analysis of power. Inf. Sci 2010, 180, 2044–2064. [Google Scholar]
- Garcıa, S.; Herrera, F. An extension on Statistical comparisons of classifiers over multiple data sets for all pairwise comparisons. J. Mach. Learn. Res 2008, 9, 2677–2694. [Google Scholar]
- Wang, H.; Sun, H.; Li, C.; Rahnamayan, S.; Pan, J.-S. Diversity enhanced particle swarm optimization with neighborhood search. Inf. Sci 2013, 223, 119–135. [Google Scholar]
- Wang, H.; Wu, Z.; Rahnamayan, S.; Liu, Y.; Ventresca, M. Enhancing particle swarm optimization using generalized opposition-based learning. Inf. Sci 2011, 181, 4699–4714. [Google Scholar]
- Wang, Y.; Cai, Z.; Zhang, Q. Enhancing the search ability of differential evolution through orthogonal crossover. Inf. Sci 2012, 185, 153–177. [Google Scholar]
- Yao, X.; Liu, Y.; Lin, G. Evolutionary programming made faster. IEEE Trans. Evol. Comput 1999, 3, 82–102. [Google Scholar]
- Wolpert, D.H.; Macready, W.G. No free lunch theorems for optimization. IEEE Trans. Evol. Comput 1997, 1, 67–82. [Google Scholar]
- Demšar, J. Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn. Res 2006, 7, 1–30. [Google Scholar]
- Garcıa, S.; Molina, D.; Lozano, M.; Herrera, F. A study on the use of non-parametric tests for analyzing the evolutionary algorithms behaviour: A case study on the CEC2005 special session on real parameter optimization. J. Heuristics 2009, 15, 617–644. [Google Scholar]
- Wang, H.; Wu, Z.; Rahnamayan, S.; Sun, H.; Liu, Y.; Pan, J.-S. Multi-strategy ensemble artificial bee colony algorithm. Inf. Sci 2014, 279, 587–603. [Google Scholar]
Instance | D |
---|---|
B1 | 500 |
B2 | 500 |
B3 | 500 |
B4 | 500 |
B5 | 500 |
B6 | 1000 |
B7 | 1000 |
B8 | 1000 |
B9 | 1000 |
B10 | 1000 |
B11 | 1500 |
B12 | 1500 |
B13 | 1500 |
B14 | 1500 |
B15 | 1500 |
B16 | 2000 |
B17 | 2000 |
B18 | 2000 |
B19 | 2000 |
B20 | 2000 |
Instance | K = 0.1 × NP Mean ± SD | K = 0.2 × NP Mean ± SD | K = 0.3 × NP Mean ± SD | K = 0.4 × NP Mean ± SD | K = 0.5 × NP Mean ± SD |
---|---|---|---|---|---|
B1 | 31,462.00±000.00 | 31,462.00±000.00 | 31,462.00±000.00 | 31,454.33±010.84 | 31,460.67±001.89 |
B2 | 31,548.00±001.41 | 31,546.67±003.30 | 31,549.00±000.00 | 31,547.00±001.63 | 31,549.00±000.00 |
B3 | 31,551.00±007.07 | 31,556.00±000.00 | 31,556.00±000.00 | 31,555.67±000.47 | 31,555.67±000.47 |
B4 | 32,065.00±000.00 | 32,065.00±000.00 | 32,065.00±000.00 | 32,064.33±000.94 | 32,065.00±000.00 |
B5 | 31,826.33±024.98 | 31,842.67±000.94 | 31,843.67±000.47 | 31,844.00±000.82 | 31,843.00±000.82 |
B6 | 63,352.67±035.26 | 63,396.00±004.32 | 63,365.67±024.85 | 63,352.33±031.90 | 63,394.33±017.93 |
B7 | 64,832.33±047.44 | 64,855.00±020.83 | 64,854.67±010.21 | 64,836.00±035.19 | 64,847.67±024.50 |
B8 | 64,288.67±036.54 | 64,258.00±025.57 | 64,257.00±041.09 | 64,267.33±009.98 | 64,240.67±051.88 |
B9 | 63,105.67±033.16 | 63,041.00±063.89 | 63,089.33±021.67 | 63,058.67±044.78 | 63,084.67±016.44 |
B10 | 62,792.67±004.64 | 62,827.00±058.90 | 62,874.67±008.58 | 62,815.00±058.09 | 62,804.67±072.67 |
B11 | 95,047.00±121.99 | 95,141.33±070.28 | 95,069.67±098.85 | 95,121.00±086.56 | 95,004.67±068.56 |
B12 | 95,198.00±078.69 | 95,262.00±058.38 | 95,119.67±054.38 | 95,172.00±125.32 | 95,067.67±202.71 |
B13 | 95,204.00±074.57 | 95,090.00±109.24 | 95,104.33±055.80 | 95,079.00±121.69 | 95,205.00±031.97 |
B14 | 95,406.00±102.60 | 95,225.33±100.69 | 95,351.33±065.73 | 95,293.67±069.28 | 95,207.00±091.88 |
B15 | 95,206.33±056.25 | 95,186.67±031.14 | 95,178.33±117.24 | 95,266.33±018.26 | 95,023.33±091.27 |
B16 | 126,582.00±182.78 | 126,898.33±045.47 | 126,528.67±213.34 | 126,629.67±155.39 | 126,502.67±264.36 |
B17 | 127,524.33±125.49 | 127,548.33±141.44 | 127,467.67±158.69 | 127,619.67±041.25 | 127,574.67±133.35 |
B18 | 126,411.33±292.01 | 126,885.33±039.16 | 126,232.67±246.37 | 126,450.00±102.54 | 126,360.00±167.51 |
B19 | 126,659.67±098.80 | 126,532.33±105.85 | 126,457.33±198.15 | 126,519.33±155.84 | 126,476.00±234.06 |
B20 | 127,236.33±170.00 | 127,501.67±012.97 | 127,264.33±058.22 | 127,248.00±075.98 | 127,119.33±106.58 |
Values of K | Ranking |
---|---|
K = 0.2 × NP | 3.60 |
K = 0.3 × NP | 3.08 |
K = 0.1 × NP | 3.03 |
K = 0.4 × NP | 2.93 |
K = 0.5 × NP | 2.38 |
Instance | M = 0.1 × NP Mean ± SD | M = 0.2 × NP Mean ± SD | M = 0.3 × NP Mean ± SD | M = 0.4 × NP Mean ± SD | M = 0.5 × NP Mean ± SD |
---|---|---|---|---|---|
B1 | 31,462.00±000.00 | 31,462.00±000.00 | 31,462.00±000.00 | 31,462.00±000.00 | 31,451.67±014.61 |
B2 | 31,549.00±000.00 | 31,546.67±003.30 | 31,549.00±000.00 | 31,549.00±000.00 | 31,549.00±000.00 |
B3 | 31,556.00±000.00 | 31,556.00±000.00 | 31,556.00±000.00 | 31,547.00±012.73 | 31,555.00±001.41 |
B4 | 32,055.67±013.20 | 32,065.00±000.00 | 32,065.00±000.00 | 32,065.00±000.00 | 32,065.00±000.00 |
B5 | 31,834.33±000.94 | 31,842.67±000.94 | 31,844.00±000.00 | 31,835.67±011.09 | 31,842.33±002.05 |
B6 | 63,380.67±032.05 | 63,396.00±004.32 | 63,366.67±029.33 | 63,381.00±033.95 | 63,360.33±033.72 |
B7 | 64,812.00±025.02 | 64,855.00±020.83 | 64,819.00±051.66 | 64,678.33±097.82 | 64,789.67±039.33 |
B8 | 64,257.33±046.29 | 64,258.00±025.57 | 64,287.67±019.60 | 64,237.00±055.16 | 64,257.33±008.58 |
B9 | 63,106.00±039.60 | 63,041.00±063.89 | 63,084.00±057.04 | 63,100.33±022.37 | 63,102.67±019.60 |
B10 | 62,817.33±040.71 | 62,827.00±058.90 | 62,812.67±108.64 | 62,823.00±036.85 | 62,815.33±015.69 |
B11 | 95,095.00±102.10 | 95,141.33±070.28 | 95,083.00±085.64 | 94,994.67±104.21 | 95,065.67±086.77 |
B12 | 95,194.67±077.71 | 95,262.00±058.38 | 95,287.67±079.33 | 95,112.00±143.97 | 95,291.67±065.60 |
B13 | 95,202.67±054.90 | 95,090.00±109.24 | 95,196.33±019.57 | 95,166.67±094.41 | 95,109.33±009.88 |
B14 | 95,295.67±092.67 | 95,225.33±100.69 | 95,305.33±079.48 | 95,300.00±041.86 | 95,400.00±046.73 |
B15 | 95,188.67±059.23 | 95,186.67±031.14 | 95,191.67±095.16 | 95,115.33±118.52 | 95,150.67±069.00 |
B16 | 126,661.33±139.66 | 126,898.33±045.47 | 126,605.33±149.14 | 126,609.00±092.22 | 126,747.67±107.25 |
B17 | 127,552.00±153.08 | 127,548.33±141.44 | 127,471.33±180.70 | 127,643.33±063.88 | 127,597.33±087.01 |
B18 | 126,620.00±198.44 | 126,885.33±039.16 | 126,464.00±281.26 | 126,378.33±133.23 | 126,437.67±128.61 |
B19 | 126,659.00±084.58 | 126,532.33±105.85 | 126,644.33±098.15 | 126,645.00±249.43 | 126,642.00±105.11 |
B20 | 127,323.33±142.60 | 127,501.67±012.97 | 127,243.33±107.85 | 127,075.00±177.79 | 127,342.33±152.07 |
Values of M | Ranking |
---|---|
M = 0.2 × NP | 3.35 |
M = 0.1 × NP | 3.23 |
M = 0.3 × NP | 3.18 |
M = 0.5 × NP | 2.83 |
M = 0.4 × NP | 2.43 |
Instance | Mean ± SD
| |||
---|---|---|---|---|
TDGA | NGHS | W_DDE | TDDE | |
B1 | 31,356.00±023.28+ | 31,315.00±015.90+ | 31,462.00±000.00≈ | 31,462.00±000.00 |
B2 | 31,458.67±008.96+ | 31,399.33±009.43+ | 31,549.00±000.00− | 31,546.67±003.30 |
B3 | 31,424.33±006.65+ | 31,399.00±027.60+ | 31,555.33±000.94+ | 31,556.00±000.00 |
B4 | 31,975.00±025.35+ | 31,926.33±018.45+ | 32,065.00±000.00≈ | 32,065.00±000.00 |
B5 | 31,740.00±007.48+ | 31,734.00±026.17+ | 31,843.00±000.82− | 31,842.67±000.94 |
B6 | 61,893.00±115.52+ | 63,155.67±020.81+ | 63,282.33±067.24+ | 63,396.00±004.32 |
B7 | 63,223.00±084.40+ | 64,504.67±052.36+ | 64,820.67±026.55+ | 64,855.00±020.83 |
B8 | 62,772.00±036.85+ | 64,063.00±020.05+ | 64,224.00±029.44+ | 64,258.00±025.57 |
B9 | 61,697.00±107.26+ | 62,810.00±023.93+ | 63,020.00±050.62≈ | 63,041.00±063.89 |
B10 | 61,476.33±092.11+ | 62,661.33±029.78+ | 62,877.00±012.33− | 62,827.00±058.90 |
B11 | 91,259.00±253.15+ | 95,071.33±071.97+ | 95,101.67±036.61+ | 95,141.33±070.28 |
B12 | 91,537.00±246.98+ | 95,052.33±086.45+ | 95,208.00±076.46+ | 95,262.00±058.38 |
B13 | 91,398.67±129.50+ | 95,120.33±105.00≈ | 95,266.67±070.52− | 95,090.00±109.24 |
B14 | 91,352.33±136.79+ | 95,239.33±009.67≈ | 95,145.67±084.32+ | 95,225.33±100.69 |
B15 | 91,488.00±086.73+ | 95,061.00±007.35+ | 94,961.67±145.06+ | 95,186.67±031.14 |
B16 | 119,789.00±239.59+ | 126,804.33±047.26+ | 126,563.00±150.65+ | 126,898.33±045.47 |
B17 | 120,460.67±051.69+ | 127,829.33±063.47− | 127,433.67±143.84+ | 127,548.33±141.44 |
B18 | 119,701.67±130.91+ | 126,744.00±019.20+ | 126,518.33±054.36+ | 126,885.33±039.16 |
B19 | 119,645.67±220.88+ | 126,937.00±016.87− | 126,580.67±049.94− | 126,532.33±105.85 |
B20 | 120,389.33±186.34+ | 127,447.67±024.31+ | 127,038.00±071.16+ | 127,501.67±012.97 |
− | 0 | 2 | 5 | |
+ | 20 | 16 | 12 | |
≈ | 0 | 2 | 3 |
Algorithm | Ranking |
---|---|
TDDE | 3.50 |
W_DDE | 2.95 |
NGHS | 2.30 |
TDGA | 1.25 |
TDDE vs. | p-values |
---|---|
TDGA | 8.86 × 10−5 |
NGHS | 1.69 × 10−2 |
W_DDE | 2.79 × 10−2 |
© 2014 by the authors; licensee MDPI, Basel, Switzerland This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, Z.; Yue, X.; Zhang, K.; Wang, S.; Wu, Z. A Thermodynamical Selection-Based Discrete Differential Evolution for the 0-1 Knapsack Problem. Entropy 2014, 16, 6263-6285. https://doi.org/10.3390/e16126263
Guo Z, Yue X, Zhang K, Wang S, Wu Z. A Thermodynamical Selection-Based Discrete Differential Evolution for the 0-1 Knapsack Problem. Entropy. 2014; 16(12):6263-6285. https://doi.org/10.3390/e16126263
Chicago/Turabian StyleGuo, Zhaolu, Xuezhi Yue, Kejun Zhang, Shenwen Wang, and Zhijian Wu. 2014. "A Thermodynamical Selection-Based Discrete Differential Evolution for the 0-1 Knapsack Problem" Entropy 16, no. 12: 6263-6285. https://doi.org/10.3390/e16126263
APA StyleGuo, Z., Yue, X., Zhang, K., Wang, S., & Wu, Z. (2014). A Thermodynamical Selection-Based Discrete Differential Evolution for the 0-1 Knapsack Problem. Entropy, 16(12), 6263-6285. https://doi.org/10.3390/e16126263