On a Local Fractional Wave Equation under Fixed Entropy Arising in Fractal Hydrodynamics
Abstract
:1. Introduction
2. Local Fractional Vector Calculus
3. The Local Fractional Linear Wave Equation
4. The Local Fractional Nonlinear Wave Equation
5. Conclusions
Acknowledgments
Author Contributions
Conflict of Interest
References
- Whitham, G.B. Linear and Nonlinear Waves; Wiley: New York, NY, USA, 2011. [Google Scholar]
- Garcia-Vidal, F.J. Collimation of sound assisted by acoustic surface waves. Nat. Phys. 2007, 3, 851–852. [Google Scholar]
- Tourin, A.; Derode, A.; Roux, P.; van Tiggelen, B.A.; Fink, M. Time-dependent coherent backscattering of acoustic waves. Phys. Rev. Lett. 1997, 79. http://dx.doi.org/10.1103/PhysRevLett.79.3637. [Google Scholar]
- Ross, J.; Müller, S. C.; Vidal, C. Chemical waves. Science 1988, 240, 460–465. [Google Scholar]
- Neu, J.C. Chemical waves and the diffusive coupling of limit cycle oscillators. SIAM J. Appl. Math. 1979, 36, 509–515. [Google Scholar]
- Rice, S.O. Reflection of electromagnetic waves from slightly rough surfaces. Comm. Pure Appl. Math. 1951, 4, 351–378. [Google Scholar]
- Smith, D.R.; Schurig, D.; Pendry, J.B. Negative refraction of modulated electromagnetic waves. Appl. Phys. Lett. 2002, 81, 2713–2715. [Google Scholar]
- Bondi, H.; van der Burg, M.G.J.; Metzner, A.W.K. Gravitational waves in general relativity. VII. Waves from axi-symmetric isolated systems. Proc. R. Soc. A 1962, 269, 21–52. [Google Scholar]
- Kiritsis, E.; Pioline, B. Strings in homogeneous gravitational waves and null holography. J. High Energy Phys. 2002, 2002. [Google Scholar] [CrossRef]
- Larose, E.; Margerin, L.; van Tiggelen, B.A.; Campillo, M. Weak localization of seismic waves. Phys. Rev. Lett. 2004, 93, 048501. [Google Scholar]
- Elkhoury, J.E.; Brodsky, E.E.; Agnew, D.C. Seismic waves increase permeability. Nature 2006, 441, 1135–1138. [Google Scholar]
- Lighthill, M.J.; Whitham, G.B. On kinematic waves. II. A theory of traffic flow on long crowded roads. Proc. R. Soc. A 1955, 229, 317–345. [Google Scholar]
- Newell, G.F. A simplified theory of kinematic waves in highway traffic, part I: General theory. Transp. Res. Part B 1993, 27, 281–287. [Google Scholar]
- Nagatani, T. Density waves in traffic flow. Phys. Rev. E 2000, 61. http://dx.doi.org/10.1103/PhysRevE.61.3564. [Google Scholar]
- Green, A.E.; Naghdi, P.M. A derivation of equations for wave propagation in water of variable depth. J. Fluid Mech. 1976, 78, 237–246. [Google Scholar]
- Clarkson, P.A.; Mansfield, E.L. On a shallow water wave equation. Nonlinearity 1994, 7, 975–1000. [Google Scholar]
- Constantin, A.; Escher, J. Particle trajectories in solitary water waves. Bull. Am. Math. Soc. 2007, 44, 423–431. [Google Scholar]
- Tarasov, V. Fractional Dynamics: Applications of Fractional Calculus to Dynamics of Particles, Fields and Media; Springer: New York, NY, USA, 2010. [Google Scholar]
- Baleanu, D.; Diethelm, K.; Scalas, E.; Trujillo, J.J. Fractional Calculus: Models and Numerical Methods; World Scientific: Singapore, 2012; Volume 3. [Google Scholar]
- Schneider, W.R.; Wyss, W. Fractional diffusion and wave equations. J. Math. Phys. 1989, 30, 134–144. [Google Scholar]
- Sandev, T.; Tomovski, Z. The general time fractional wave equation for a vibrating string. J. Phys. A 2010, 43, 055204. [Google Scholar]
- Mbodje, B.; Montseny, G. Boundary fractional derivative control of the wave equation. IEEE Trans. Autom. Control. 1995, 40, 378–382. [Google Scholar]
- Sweilam, N.H.; Khader, M.M.; Nagy, A.M. Numerical solution of two-sided space-fractional wave equation using finite difference method. J. Comput. Appl. Math. 2011, 235, 2832–2841. [Google Scholar]
- Sapora, A.; Cornetti, P.; Carpinteri, A. Wave propagation in nonlocal elastic continua modelled by a fractional calculus approach. Comm. Nonlinear Sci. Numer. Simul. 2013, 18, 63–74. [Google Scholar]
- Tarasov, V.E. Fractional hydrodynamic equations for fractal media. Ann. Phys. 2005, 318, 286–307. [Google Scholar]
- Tarasov, V.E. Electromagnetic field of fractal distribution of charged particles. Phys. Plasmas. 2005, 12, 082106. [Google Scholar] [Green Version]
- Tarasov, V.E. Magnetohydrodynamics of fractal media. Phys. Plasmas. 2006, 13, 052107. [Google Scholar]
- Tarasov, V.E. Flow of fractal fluid in pipes: Non-integer dimensional space approach. Chaos Solitons Fractals 2014, 67, 26–37. [Google Scholar]
- Balankin, A.S.; Elizarraraz, B.E. Hydrodynamics of fractal continuum flow. Phys. Rev. E 2012, 85, 025302. [Google Scholar]
- Balankin, A.S.; Elizarraraz, B.E. Map of fluid flow in fractal porous medium into fractal continuum flow. Phys. Rev. E 2012, 85, 056314. [Google Scholar]
- Li, J.; Ostoja-Starzewski, M. Comment on “Hydrodynamics of fractal continuum flow” and “Map of fluid flow in fractal porous medium into fractal continuum flow”. Phys. Rev. E 2013, 88, 057001. [Google Scholar]
- Carpinteri, A.; Sapora, A. Diffusion problems in fractal media defined on Cantor sets. Zeitschrift für Angewandte Mathematik und Mechanik 2010, 90, 203–210. [Google Scholar]
- Carpinteri, A.; Cornetti, P.; Sapora, A. Static-kinematic fractional operators for fractal and non-local solids. Zeitschrift für Angewandte Mathematik und Mechanik 2009, 89, 207–217. [Google Scholar]
- Zhao, Y.; Baleanu, D.; Cattani, C.; Cheng, D.F.; Yang, X.J. Maxwell’s equations on Cantor sets: A local fractional approach. Adv. High Energy Phys. 2013, 2013, 686371. [Google Scholar]
- Hao, Y.J.; Srivastava, H.M.; Jafari, H.; Yang, X.J. Helmholtz and diffusion equations associated with local fractional derivative operators involving the Cantorian and Cantor-type cylindrical coordinates. Adv. Math. Phys. 2013, 2013, 754248. [Google Scholar]
- Yang, X.J. Advanced Local Fractional Calculus and Its Applications; World Science: New York, NY, USA, 2012. [Google Scholar]
- Yang, X.J.; Baleanu, D. Tenreiro Machado, J.A. Systems of Navier-Stokes equations on Cantor sets. Math. Probl. Eng. 2013, 2013, 769724. [Google Scholar]
- Yang, X.J. Local Fractional Functional Analysis & Its Applications; Asian Academic: Hong Kong, China, 2011. [Google Scholar]
- De Oliveira, E.C. Tenreiro Machado, J.A. A Review of Definitions for Fractional Derivatives and Integrals. Math. Probl. Eng. 2014, 2014, 238459. [Google Scholar]
- Zhang, Y. Solving initial-boundary value problems for local fractional differential equation by local fractional Fourier series method. Abstr. Appl. Anal. 2014, 2014, 912464. [Google Scholar]
- Yang, X.J.; Baleanu, D.; Zhong, W.P. Approximate solutions for diffusion equations on cantor space-time. Proc. Rom. Acad. Ser. A 2013, 14, 127–133. [Google Scholar]
- Yang, X.J.; Srivastava, H.M.; He, J.H.; Baleanu, D. Cantor-type cylindrical-coordinate method for differential equations with local fractional derivatives. Phys. Lett. A 2013, 377, 1696–1700. [Google Scholar]
- Su, W.H.; Baleanu, D.; Yang, X.J. Damped wave equation and dissipative wave equation in fractal strings within the local fractional variational iteration method. Fixed Point Theor. Appl. 2013, 2013. [Google Scholar] [CrossRef]
- Yang, X.J.; Baleanu, D.; Khan, Y.; Mohyud-Din, S.T. Local fractional variational iteration method for diffusion and wave equations on Cantor sets. Rom. J. Phys. 2014, 59, 36–48. [Google Scholar]
- Yang, X.J.; Hristov, J.; Srivastava, H.M.; Ahmad, B. Modelling fractal waves on shallow water surfaces via local fractional Korteweg-de Vries equation. Abstr. Appl. Anal. 2014, 2014, 278672. [Google Scholar]
- Jensen, F.B.; Kuperman, W.A.; Porter, M.B.; Schmidt, H. Computational Ocean Acoustics.; Springer: New York, NY, USA, 2011. [Google Scholar]
© 2014 by the authors; licensee MDPI, Basel, Switzerland This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Baleanu, D.; Yang, X. On a Local Fractional Wave Equation under Fixed Entropy Arising in Fractal Hydrodynamics. Entropy 2014, 16, 6254-6262. https://doi.org/10.3390/e16126254
Zhang Y, Baleanu D, Yang X. On a Local Fractional Wave Equation under Fixed Entropy Arising in Fractal Hydrodynamics. Entropy. 2014; 16(12):6254-6262. https://doi.org/10.3390/e16126254
Chicago/Turabian StyleZhang, Yu, Dumitru Baleanu, and Xiaojun Yang. 2014. "On a Local Fractional Wave Equation under Fixed Entropy Arising in Fractal Hydrodynamics" Entropy 16, no. 12: 6254-6262. https://doi.org/10.3390/e16126254
APA StyleZhang, Y., Baleanu, D., & Yang, X. (2014). On a Local Fractional Wave Equation under Fixed Entropy Arising in Fractal Hydrodynamics. Entropy, 16(12), 6254-6262. https://doi.org/10.3390/e16126254