An Entropy-Based Damage Characterization
Abstract
:1. Introduction
2. Review of Relevant Works
3. Thermodynamic Treatment of Materials Damage
3.1. Fundamentals of Irreversible Thermodynamics
3.2. Microscopic Origin of Materials Damage
3.3. Fatigue Damage
3.4. Corrosion Damage
3.5. Wear Damage
3.6. Radiation Damage
3.7. Creep Damage
3.8. Synergistic Effect
3.9. Structural Reliability and Health Assessment
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Woo, C.W.; Li, D.L. A universal physically consistent definition of material damage. Int. J. Solids Struct 1993, 30, 2097–2108. [Google Scholar]
- Sih, G.C. Multiscale Fatigue Crack Initiation and Propagation of Engineering Materials: Structural Integrity and Microstructural Worthiness; Springer: Berlin, Germany, 2008. [Google Scholar]
- Sangid, M.D. The physics of crack initiation. Int. J. Fatigue 2013, 57, 58–72. [Google Scholar]
- Singpurwalla, N.D. A new perspective on damage accumulation, marker processes, and Weibull’s distribution. In Advances in Degradation Modeling: Applications to Reliability, Survival Analysis, and Finance; Nikulin, M.S., Limnios, N., Balakrishnan, N., Kahle, W., Huber-Carol, C., Eds.; Birkhäuser: Boston, NY, USA, 2010; pp. 241–249. [Google Scholar]
- Arson, C.F. Poromechanics of Damage and Healing: A Philosophy of the Mesoscale; ASCE Engineering Mechanics Institute: Cambridge, MA, USA, 6; December 2012. [Google Scholar]
- Lemaitre, J.; Chaboche, J.L. Mechanics of Solid Materials, 3rd ed.; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar]
- Onsager, L. Reciprocal relations in irreversible processes. Phys. Rev 1931, 38, 2265–2279. [Google Scholar]
- Gutman, E.M. Mechanochemistry of Materials; Cambridge International Science Publishing: Cambridge, UK, 1998. [Google Scholar]
- Kondepudi, D.; Prigogine, I. Modern Thermodynamics: From Heat Engines to Dissipative Structures; Wiley: New York, NY, USA, 1998. [Google Scholar]
- Lu, B.T.; Luo, J.L. Synergism of electrochemical and mechanical factors in erosion-corrosion. J. Phys. Chem. B 2006, 110, 4217–4231. [Google Scholar]
- Martyushev, L.M.; Seleznev, V.D. Maximum entropy production principle in physics, chemistry and biology. Phys. Rep 2006, 426, 1–45. [Google Scholar]
- Klamecki, B.E. Wear—An entropy production model. Wear 1980, 58, 325–330. [Google Scholar]
- Klamecki, B.E. Energy dissipation in sliding. Wear 1982, 77, 115–128. [Google Scholar]
- Klamecki, B.E. Wear—An entropy based model of plastic deformation energy dissipation in sliding. Wear 1984, 96, 319–329. [Google Scholar]
- Zmitrowicz, A. A thermodynamical model of contact, friction and wear: I Governing Equations. Wear 1987, 114, 135–168. [Google Scholar]
- Zmitrowicz, A. A thermodynamical model of contact, friction and wear: II Constitutive Equations for materials and linearized theories. Wear 1987, 114, 169–197. [Google Scholar]
- Zmitrowicz, A. A thermodynamical model of contact, friction and wear: III Constitutive equations for friction, wear and frictional heat. Wear 1987, 114, 199–221. [Google Scholar]
- Doelling, K.L.; Ling, F.F.; Bryant, M.D.; Heilman, B.P. An experimental study of the correlation between wear and entropy flow in machinery components. J. Appl. Phys 2000, 88, 2999–3003. [Google Scholar]
- Bryant, M.D. Unification of friction and wear. In Recent Developments in Wear Prevention, Friction, and Lubrication; Nikas, G.K., Ed.; Research Signpost: Kerala, India, 2010; Volume Chapter 4, pp. 159–196. [Google Scholar]
- Nosonovsky, M.; Bhushan, B. Thermodynamics of surface degradation, self-organization, and self-healing for biomimetic surfaces. Philos. Trans. A 2009, 367, 1607–1627. [Google Scholar]
- Abdel-Aal, H.A. On the interdependence between kinetics of friction-released thermal energy and the transition in wear mechanisms during sliding of metallic pairs. Wear 2003, 254, 884–900. [Google Scholar]
- Abdel-Aal, H.A. Efficiency of thermal energy dissipation in dry rubbing. Wear 2003, 255, 348–364. [Google Scholar]
- Abdel-Aal, H.A. On the role of intrinsic material response in failure of tribo systems. Wear 2005, 259, 1372–1381. [Google Scholar]
- Abdel-Aal, H.A. The relation between wear and irreversible entropy generation in the dry sliding of metals. Presented in Leeds-Lyon Symposium on Tribology, Lyon, France, 7–9 September 2005.
- Amiri, M.; Khonsari, M.M.; Brahmeshwarkar, S. On the relationship between wear and thermal response in sliding systems. Tribol. Lett 2010, 38, 147–154. [Google Scholar]
- Amiri, M.; Khonsari, M.M. On the thermodynamics of friction and wear―A review. Entropy 2010, 12, 1021–1049. [Google Scholar]
- Amiri, M.; Khonsari, M.M.; Berahmeshwarkar, S. An application of dimensional analysis to entropy-wear relationship. ASME J. Tribol 2012, 134, 011604. [Google Scholar]
- Dai, Z. An irreversible thermodynamics theory for friction and wear. In Advanced Tribology; Luo, J., Meng, Y., Shao, T., Zhao, Q., Eds.; Springer: Berlin/Heidelberg, Germany, 2010; pp. 576–578. [Google Scholar]
- Whaley, P.W. A thermodynamic approach to metal fatigue. Proceedings of ASME International Conference on Advances in Life Prediction Methods, Albany, NY, USA, 16–18 April 1983.
- Whaley, P.W.; Pao, Y.C.; Lin, K.N. Numerical simulation of material fatigue by a thermodynamic approach. Proceedings of 24th AIAA/ASME/ASCE/AHS Structure, Structural Dynamic and Materials Conference, Lake Tahoe, NV, USA, 2–4 May 1983; pp. 544–551.
- Whaley, P.W.; Chen, P.S.; Smith, G.M. Continuous measurement of material damping during fatigue tests. Exp. Mech 1984, 24, 342–348. [Google Scholar]
- Whaley, P.W. Entropy Production during Fatigue as a Criterion for Failure. The Critical Entropy Threshold: A Mathematical Model for Fatigue; ONR Technical Report No. 1, Accession Number: ADA151289; DTIC: Lincoln, NE, USA, 15 August 1983. [Google Scholar]
- Whaley, P.W. Entropy Production during Fatigue as a Criterion for Failure. A Local Theory of Fracture in Engineering Materials; ONR Technical Report No. 2, Accession Number: ADA151289; DTIC: Lincoln, NE, USA, 15 December 1984. [Google Scholar]
- Bhattacharya, B.; Ellingwood, B. Continuum damage mechanics analysis of fatigue crack initiation. Int. J. Fatigue 1998, 20, 631–639. [Google Scholar]
- Bhattacharya, B.; Ellingwood, B. A new CDM based approach to structural deterioration. Int. J. Solids Struct 1999, 36, 1757–1779. [Google Scholar]
- Basaran, C.; Yan, C.Y. A thermodynamic framework for damage mechanics of solder joints. J. Electron. Packag 1998, 120, 379–384. [Google Scholar]
- Basaran, C.; Tang, H. Implementation of a thermodynamic framework for damage mechanics of solder interconnects in microelectronic packaging. Int. J. Damage Mech 2002, 11, 87–108. [Google Scholar]
- Basaran, C.; Lin, M.; Ye, H. A thermodynamic model for electrical current induced damage. Int. J. Solids Struct 2003, 40, 7315–7327. [Google Scholar]
- Basaran, C.; Nie, S. An irreversible thermodynamic theory for damage mechanics of solids. Int. J. Damage Mach 2004, 13, 205–223. [Google Scholar]
- Basaran, C.; Nie, S. A thermodynamics based damage mechanics model for particulate composites. Int. J. Solids Struct 2007, 44, 1099–1114. [Google Scholar]
- Tang, H.; Basaran, C. A damage mechanics based fatigue life prediction model. J. Electron. Packag 2003, 125, 120–125. [Google Scholar]
- Naderi, M.; Amiri, M.; Khonsari, M.M. On the thermodynamic entropy of fatigue fracture. Proc. R. Soc. A 2010, 466, 423–438. [Google Scholar]
- Tucker, J.P.; Chan, D.K.; Subbarayan, G.; Handwerker, C.A. Maximum entropy fracture model and its use for predicting cyclic hysteresis in solder alloys. Proceedings of 2012 13th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems, 30 May–1 June 2012; pp. 207–215.
- Tucker, J.P.; Chan, D.K.; Subbarayan, G.; Handwerker, C.A. Maximum entropy fracture model and fatigue fracture of mixed SnPb/Sn3.0Ag0.5Cu solder alloys. Proceedings of 13th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems, May 30–June 1, 2012; pp. 870–879.
- Khonsari, M.M.; Amiri, M. An Introduction to Thermodynamics of Mechanical Fatigue; CRC Press: Boca Raton, FL, USA, 2012. [Google Scholar]
- Weertman, J.; Weertman, J.R. Elementary dislocation theory; Oxford University Press: New York, NY, USA, 1992. [Google Scholar]
- Maugis, D. Contact, Adhesion, and Rupture of Elastic Solids; Springer: Berlin, Germany, 2000. [Google Scholar]
- Knott, J.F. Fundamentals of Fracture Mechanics; Wiley: New York, NY, USA, 1973. [Google Scholar]
- Uhlig, H.H.; Revie, R.W. Corrosion and Corrosion Control, 3rd ed.; Wiley: New York, NY, USA, 1985. [Google Scholar]
- Li, S.; Basaran, C. A. Computational damage mechanics model for thermomigration. Mech. Mater 2009, 41, 271–278. [Google Scholar]
- Li, S.; Basaran, C. Computational damage mechanics of electromigration and thermomigration. J. Appl. Phys 2013, 114, 103708. [Google Scholar]
- Feinberg, A.A.; Widom, A. Connecting parametric aging to catastrophic failure through thermodynamics. IEEE Trans. Reliab 1996, 45, 28–33. [Google Scholar]
- Feinberg, A.A.; Widom, A. On thermodynamic reliability engineering. IEEE Trans. Reliab 2000, 49, 136–146. [Google Scholar]
- Ital’yantsev, Y.F. Thermodynamic state of deformed solids. Report 1. Determination of local function of state. Strength Mater 1984, 16, 238–241. [Google Scholar]
- Ital’yantsev, Y.F. Thermodynamic state of deformed solids. Report 2. Entropy failure criteria and their application for simple tensile loading problems. Strength Mater 1984, 16, 242–247. [Google Scholar]
- Ontiveros, V.; Amiri, M.; Modarres, M. Fatigue crack initiation assessment based on thermodynamic entropy generation. In Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci; 2014; submitted for publication. [Google Scholar]
- Brahmeshwarkar, S. A. Thermodynamic Model for Wear in Sliding Contact. Master’s Thesis, Louisiana State University, Baton Rouge, LA, USA, 2006. [Google Scholar]
- Bryant, M.D.; Khonsari, M.M.; Ling, F.F. On the thermodynamics of degradation. Proc. R. Soc. A 2008, 464, 2001–2014. [Google Scholar]
- Ziegler, H. An Introduction to Thermomechanics; North Holland: Amsterdam, The Netherlands, 1983. [Google Scholar]
- Ziegler, H. Chemical reactions and the principle of maximal rate of entropy production. Zeitschrift für angewandte Mathematik und Physik ZAMP 1983, 34, 832–844. [Google Scholar]
- Glansdorff, P.; Prigogine, I. Thermodynamic Theory of Structure, Stability, and Fluctuations; Wiley: London, UK, 1971. [Google Scholar]
- De Groot, S.R.; Mazur, P. Non-Equilibrium Thermodynamics; Dover Publications: Mineola, NY, USA, 1984. [Google Scholar]
- Lebon, G.; Jou, D.; Casas-Vázquez, J. Understanding Non-equilibrium Thermodynamics; Springer: Berlin, Germany, 2008. [Google Scholar]
- Martyushev, L.M. The maximum entropy production principle: two basic questions. Philos. Trans. B 2010, 365, 1333–1334. [Google Scholar]
- Martyushev, L.M.; Seleznev, V.D. Maximum entropy production principle (MEPP). Comment about restrictions and typical misconceptions of critics of MEPP 2013, arXiv, 1311.2068v1. [Google Scholar]
- Martyushev, L.M. Entropy and entropy production: Old misconceptions and new breakthroughs. Entropy 2013, 15, 1152–1170. [Google Scholar]
- Andresen, B.; Zimmermann, E.C.; Ross, J. Objections to a proposal on the rate of entropy production in systems far from equilibrium. J. Chem. Phys 1984, 81, 4676–4677. [Google Scholar]
- Vellela, M.; Qian, H. Stochastic dynamics and non-equilibrium thermodynamics of a bistable chemical system: the Schlögl model revisited. J. R. Soc. Interface 2009, 6, 925–940. [Google Scholar]
- Meysman, F.J.R.; Bruers, S. Ecosystem functioning and maximum entropy production: a quantitative test of hypotheses. Philos. Trans. B 2010, 365, 1405–1416. [Google Scholar]
- Ross, J.; Corlan, A.D.; Müller, S.C. Proposed principle of maximum local entropy production. J. Phys. Chem. B 2012, 116, 7858–7865. [Google Scholar]
- Polettini, M. Fact-checking Ziegler’s maximum entropy production principle beyond the linear regime and towards steady states. Entropy 2013, 15, 2570–2584. [Google Scholar]
- Davis, J.R. Corrosion: Understanding the Basics, 3rd ed.; ASM International: Materials Park, OH, USA, 2000. [Google Scholar]
- Eshelly, J.D. Dislocations as a cause of mechanical damping in metals. Proc. R. Soc. A 1949, 197, 396–416. [Google Scholar]
- Zener, C. Elasticity and Anelastically of Metals; The University of Chicago Press: Chicago, IL, USA, 1948. [Google Scholar]
- Mughrabi, H. Cyclic slip irreversibilities and the evolution of fatigue damage. Metall. Mater. Trans. A 2009, 40, 1257–1279. [Google Scholar]
- McDowell, D.L.; Dunne, F.P.E. Microstructure-sensitive computational modeling of fatigue crack formation. Int. J. Fatigue 2010, 32, 1521–1542. [Google Scholar]
- Gomez, J.; Basaran, C. A thermodynamics based damage mechanics constitutive model for low cycle fatigue analysis of microelectronics solder joints incorporating size effect. Int. J. Solid Struct 2005, 42, 3744–3772. [Google Scholar]
- Gomez, J.; Basaran, C. Damage mechanics constitutive model for Pb/Sn solder joints incorporating nonlinear kinematic hardening and rate dependent effects using a return mapping integration algorithm. Mech. Mater 2006, 38, 585–598. [Google Scholar]
- Kim, J.; Yi, J.; Kim, J.; Zi, G.; Kong, J.S. Fatigue life prediction methodology using entropy index of stress interaction and crack severity index of effective stress. Int. J. Damage Mech 2013, 22, 375–392. [Google Scholar]
- Rejovitzky, E.; Altus, E. On single damage variable models for fatigue. Int. J. Damage Mech 2013, 22, 268–284. [Google Scholar]
- Mashayekhi, M.; Taghipour, A.; Askari, A.; Farzin, M. Continuum damage mechanics application in low-cycle thermal fatigue. Int. J. Damage Mech 2013, 22, 285–300. [Google Scholar]
- Kwofie, S.; Rahbar, N. A fatigue driving stress approach to damage and life prediction under variable amplitude loading. Int. J. Damage Mech 2013, 22, 393–404. [Google Scholar]
- Miao, Z.; Qingchun, M.; Weiping, H.; Xing, Z. Study on anisotropic fatigue damage model of metal component. Int. J. Damage Mech 2012, 21, 599–620. [Google Scholar]
- Orowan, E. Problems of plastic gliding. Proc. Phys. Soc 1940, 52, 8–22. [Google Scholar]
- Kelly, J.M.; Gillis, P.P. Continuum descriptions of dislocations under stress reversals. J. Appl. Phys 1974, 45, 1091–1096. [Google Scholar]
- Ramberg, W.; Osgood, W.R. Description of Stress-strain Curves by Three Parameters; Technical Note No. 902; National Advisory Committee for Aeronautics: Washington, DC, USA, 1943. [Google Scholar]
- Jones, D.A. Principles and prevention of corrosion; Prentice Hall: London, UK, 1996. [Google Scholar]
- Otieno, M.; Beushausen, H.; Alexander, M. Prediction of corrosion rate in reinforced concrete structures—a critical review and preliminary results. Mater. Corros 2012, 63, 777–790. [Google Scholar]
- McCafferty, E. Introduction to Corrosion Science; Springer: Berlin, Germany, 2010. [Google Scholar]
- Stern, M.; Geary, A.L. Electrochemical polarization I: A theoretical analysis of the shape of polarization curve. J. Electrochem. Soc. 1957, 104, 56–63. [Google Scholar]
- Andrade, C.; Gonzalez, J.A. Quantitative measurements of corrosion rate of reinforcing steels embedded in concrete using polarization resistance measurements. Werkstofjti und Korrosion 1978, 29, 515–519. [Google Scholar]
- Andrade, C.; Alonso, C. Test methods for on-site corrosion rate measurement of steel reinforcement in concrete by means of the polarization resistance method. Mater. Struct 2004, 37, 623–643. [Google Scholar]
- Meng, H.C.; Ludema, K.C. Wear models and predictive Equations: their form and content. Wear 1995, 181, 443–457. [Google Scholar]
- Ludema, K.C. Friction, Wear, Lubrication: A Textbook in Tribology; CRC Press: Boca Raton, FL, USA, 1996. [Google Scholar]
- Was, G.S. Fundamentals of Radiation Materials Science; Springer: Berlin, Germany, 2007. [Google Scholar]
- Thompson, M.W. Defects and Radiation Damage in Metals; Syndics of the Cambridge University Press: London, UK, 1969. [Google Scholar]
- Odette, G.R.; Lucas, G.E. Embrittlement of nuclear reactor pressure vessels. JOM 2001, 53, 18–22. [Google Scholar]
- Valanis, C.K. Thermodynamics of internal variables in the presence of internal forces. J. Appl. Phys 1976, 47, 4765–4767. [Google Scholar]
- Collins, J.A. Failure of Materials in Mechanical Design: Analysis, Prediction, Prevention, 2nd ed.; Wiley: New York, NY, USA, 1993. [Google Scholar]
- Callister, W.D., Jr. Materials Science and Engineering: An Introduction, 7th ed.; Wiley: New York, NY, USA, 2007. [Google Scholar]
- Lemaitre, J.; Desmorat, R. Engineering Damage Mechanics: Ductile, Creep, Fatigue and Brittle Failures; Springer: Berlin, Germany, 2005. [Google Scholar]
- Hayhurst, D.R. Creep rupture under multi-axial states of stress. J. Mech. Phys. Solids 1972, 20, 381–390. [Google Scholar]
- Leckie, F.A.; Hayhurst, D.R. Constitutive equations for creep rupture. Acta Metall 1977, 25, 1059–1070. [Google Scholar]
- Lin, J.; Dunne, F.P.E.; Hayhurst, D.R. Aspects of testpiece design responsible for errors in cyclic plasticity experiments. Int. J. Damage Mech 1999, 8, 109–137. [Google Scholar]
- Lin, J.; Liu, Y.; Dean, T.A. A review on damage mechanisms, models and calibration methods under various deformation conditions. Int. J. Damage Mech 2005, 14, 299–319. [Google Scholar]
- Yang, Q.; Chen, X.; Zhou, W. Thermodynamic relationship between creep crack growth and creep deformation. J. Non-Equilib. Thermodyn 2005, 30, 81–94. [Google Scholar]
- Mishin, Y.; Warren, J.A.; Sekerka, R.F.; Boettinger, W.J. Irreversible thermodynamics of creep in crystalline solids. Phys. Rev. B 2013, 88, 184303. [Google Scholar]
- Bejan, A. Advanced Engineering Thermodynamics; Wiley: New York, NY, USA, 1988. [Google Scholar]
- Byington, C.; Watson, M.; Edwards, D. Data-driven neural network methodology to remaining life predictions for aircraft actuator components. Proceedings of 2004 IEEE Aerospace Conference, New York, NY, USA, 6–13 March 2004; pp. 3581–3589.
- Schwabacher, M.; Goebel, K. A Survey of Artificial Intelligence for Prognostics; AAAI Fall Symposium: Moffett Field, CA, USA, 2007. [Google Scholar]
- Bhangu, B.S.; Bentley, P.; Stone, D.A.; Bingham, C.M. Nonlinear observers for predicting state-of-charge and state-of-health of lead-acid batteries for hybrid-electric vehicles. IEEE Trans. Veh. Tech 2005, 54, 783–798. [Google Scholar]
- Bryant, M.D. Modeling degradation using thermodynamic entropy. Proceedings of the 2014 IEEE Conference on Prognostics and Health Management, Cheney, WA, USA, 22–25 June, 2014.
- Bryant, M.D. A data driven method for model based diagnostics and prognostics. Proceedings of the 2014 IEEE Conference on Prognostics and Health Management, Cheney, WA, USA, 22–25 June, 2014.
- Imanian, A.; Modarres, M. A thermodynamic entropy based approach for prognosis and health management. Proceedings of the 2014 IEEE Conference on Prognostics and Health Management, Cheney, WA, USA, 22–25 June, 2014.
- Dolenc, B. Novel Approaches to Machine Prognostics. Ph.D. Thesis, Jozef Stefan Institute, Ljubljana, Slovenia, 2014. [Google Scholar]
- Basaran, C.; Nie, S.; Gomez, J.; Gunel, E.; Li, S.; Lin, M.; Tang, H.; Yan, C.; Yao, W.; Ye, H. Thermodynamic theory for damage evolution in solids. In Handbook of Damage Mechanics; Voyiadjis, G.Z., Ed.; Springer: New York, NY, USA, 2014. [Google Scholar]
- Tucker, J.P.; Chan, D.K.; Subbarayan, G.; Handwerker, C.A. Maximum entropy fracture model and its use for predicting cyclic hysteresis in Sn3.8Ag0.7Cu and Sn3.0Ag0.5 solder alloys. Microelectron. Reliab 2014, 54, 2513–2522. [Google Scholar]
Primary mechanism | Thermodynamic force, X | Thermodynamic flow, J | Examples of materials damage process |
---|---|---|---|
Heat conduction | Temperature gradient, ∇(1/T) | Heat flux, q | Fatigue, creep, wear |
Plastic deformation of solids | Stress, σ/T | Plastic strain, | Fatigue, creep, wear |
Chemical reaction | Reaction affinity, Ak/T | Reaction rate, vk | Corrosion, wear |
Mass diffusion | Chemical potential, −∇(μk/T) | Diffusion flux, Jk | Wear, creep |
Electrochemical reaction | Electrochemical potential, | Current density, icorr/z | Corrosion |
Irradiation | Particle flux density, Ar/T | Velocity of target atoms after collision, | Irradiation damage |
Annihilation of lattice sites | Creep driving force | Creep deformation rate, R | Creep |
© 2014 by the authors; licensee MDPI, Basel, Switzerland This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amiri, M.; Modarres, M. An Entropy-Based Damage Characterization. Entropy 2014, 16, 6434-6463. https://doi.org/10.3390/e16126434
Amiri M, Modarres M. An Entropy-Based Damage Characterization. Entropy. 2014; 16(12):6434-6463. https://doi.org/10.3390/e16126434
Chicago/Turabian StyleAmiri, Mehdi, and Mohammad Modarres. 2014. "An Entropy-Based Damage Characterization" Entropy 16, no. 12: 6434-6463. https://doi.org/10.3390/e16126434
APA StyleAmiri, M., & Modarres, M. (2014). An Entropy-Based Damage Characterization. Entropy, 16(12), 6434-6463. https://doi.org/10.3390/e16126434