Schroedinger vs. Navier–Stokes
Abstract
:1. Introduction
2. The Physics of Navier–Stokes from Schroedinger
2.1. Computation of the Viscosity
2.2. Viscous States vs. Dissipation–Free States
2.2.1. Exact Solutions
2.2.2. Approximate Solutions
2.3. The Ratio of Viscosity to Entropy Density
2.4. NonstationaRy States: Emergent Reversibility
2.5. Stationary States: Emergent Holography
3. Discussion
Author Contributions
Conflicts of Interest
References
- Zurek, W. Decoherence, Einselection, and the Quantum Origins of the Classical. Rev. Mod. Phys. 2003, 75. [Google Scholar] [CrossRef]
- Couder, Y.; Protière, S.; Fort, E.; Boudaoud, A. Dynamical phenomena: Walking and orbiting droplets. Nature 2005, 437. [Google Scholar] [CrossRef] [PubMed]
- Raftery, J.; Sadri, D.; Schmidt, S.; Türeci, H.; Houck, A. Observation of a Dissipation–Induced Classical to Quantum Transition. Phys. Rev. X 2014, 4, 031043. [Google Scholar] [CrossRef]
- Onsager, L.; Machlup, S. Fluctuations and Irreversible Processes. Phys. Rev. 1953, 91, 1505–1512. [Google Scholar] [CrossRef]
- Landau, L.; Lifshitz, E. Course of Theoretical Physics Vol. 6: Fluid Mechanics; Butterworth–Heinemann: Oxford, UK, 2000. [Google Scholar]
- Maldacena, J. The Large-N limit of Superconformal Field Theories and Supergravity. Int. J. Theor. Phys. 1998, 38, 1113–1133. [Google Scholar] [CrossRef]
- Kovtun, P.; Son, D.; Starinets, A. Viscosity in Strongly Interacting Quantum Field Theories from Black Hole Physics. Phys. Rev. Lett. 2005, 94, 111601. [Google Scholar] [CrossRef] [PubMed]
- Luzum, M.; Romatschke, P. Conformal Relativistic Viscous Hydrodynamics: Applications to RHIC Results at = 200 GeV. Phys. Rev. C 2008, 78, 034915. [Google Scholar] [CrossRef]
- Fernández de Córdoba, P.; Isidro, J.M.; Perea, M.H. Emergent Quantum Mechanics as a Thermal Ensemble. Int. J. Geom. Meth. Mod. Phys. 2014, 11, 1450068. [Google Scholar] [CrossRef]
- Kolekar, S.; Padmanabhan, T. Indistinguishability of Thermal and Quantum Fluctuations. 2013. arXiv:1308.6289v3. [Google Scholar] [CrossRef]
- Kosloff, R. Quantum Thermodynamics: A Dynamical Viewpoint. Entropy 2013, 15, 2100–2128. [Google Scholar] [CrossRef]
- Madelung, E. Quantentheorie in Hydrodynamischer Form. Zeitschrift für Physik 1927, 40, 322–326. [Google Scholar] [CrossRef]
- Bohm, D. A Suggested Interpretation of the Quantum Theory in Terms of “Hidden” Variables. I. Phys. Rev. 1952, 85. [Google Scholar] [CrossRef]
- Elze, H.-T. Symmetry Aspects in Emergent Quantum Mechanics. J. Phys. Conf. Ser. 2009, 171, 012034. [Google Scholar] [CrossRef]
- Elze, H.-T. Discrete Mechanics, Time Machines and Hybrid Systems. EPJ Web Conf. 2013, 58, 01013. [Google Scholar] [CrossRef]
- Gallego Torromé, R. A Finslerian Version of ’t Hooft Deterministic Quantum Models. J. Math. Phys. 2006, 47, 072101. [Google Scholar] [CrossRef]
- Torromé, R.G. A Theory of Emergent Quantum Mechanics. 2014. arXiv:1402.5070. [Google Scholar]
- Hooft, G. Emergent Quantum Mechanics and Emergent Symmetries. 2007. arXiv:0707.4568v1. [Google Scholar]
- Hooft, G. The Fate of the Quantum. 2013. arXiv:1308.1007v1. [Google Scholar]
- Hooft, G. The Cellular Automaton Interpretation of Quantum Mechanics. 2015. arXiv:1405.1548v3. [Google Scholar]
- Carroll, R. On the Emergence Theme of Physics; World Scientific: Singapore, Singapore, 2010. [Google Scholar]
- Padmanabhan, T. General Relativity from a Thermodynamic Perspective. Gen. Rel. Grav. 2014, 46. [Google Scholar] [CrossRef]
- Verlinde, E. On the Origin of Gravity and the Laws of Newton. J. High Energy Phys. 2011, 2011. [Google Scholar] [CrossRef]
- De Broglie, L. La Thermodynamique <<Cachée>> des Particules. Ann. Inst. Henri Poincaré Sect. A Phys. Théor. 1964, 1, 1–19. (In French) [Google Scholar]
- Matone, M. “Thermodynamique Cachée des Particules” and the Quantum Potential. 2012. arXiv:1111.0270v4. [Google Scholar]
- Fernández de Córdoba, P.; Isidro, J.M.; Perea, M.H.; Vazquez Molina, J. The Irreversible Quantum. Int. J. Geom. Meth. Mod. Phys. 2014, 12, 1550013. [Google Scholar] [CrossRef]
- Landauer, R. Irreversibility and Heat Generation in the Computing Process. IBM J. Res. Dev. 1961, 5, 183–191. [Google Scholar] [CrossRef]
- Abraham, S.; Fernández de Córdoba, P.; Isidro, J.M.; Santander, J.L.G. A Mechanics for the Ricci Flow. Int. J. Geom. Meth. Mod. Phys. 2009, 6, 759–767. [Google Scholar] [CrossRef]
- Goldstein, S.; Hara, T.; Tasaki, H. The Approach to Equilibrium in a Macroscopic Quantum System for a Typical Nonequilibrium Subspace. 2014. arXiv:1402.3380v2. [Google Scholar]
- Kobayashi, S.; Nomizu, K. Foundations of Differential Geometry; Wiley: New York, NY, USA, 1996. [Google Scholar]
- Arnold, V. Mathematical Methods of Classical Mechanics; Springer: Berlin, Germany, 1989. [Google Scholar]
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fernández de Córdoba, P.; Isidro, J.M.; Vázquez Molina, J. Schroedinger vs. Navier–Stokes. Entropy 2016, 18, 34. https://doi.org/10.3390/e18010034
Fernández de Córdoba P, Isidro JM, Vázquez Molina J. Schroedinger vs. Navier–Stokes. Entropy. 2016; 18(1):34. https://doi.org/10.3390/e18010034
Chicago/Turabian StyleFernández de Córdoba, P., J. M. Isidro, and J. Vázquez Molina. 2016. "Schroedinger vs. Navier–Stokes" Entropy 18, no. 1: 34. https://doi.org/10.3390/e18010034
APA StyleFernández de Córdoba, P., Isidro, J. M., & Vázquez Molina, J. (2016). Schroedinger vs. Navier–Stokes. Entropy, 18(1), 34. https://doi.org/10.3390/e18010034