Perturbation of Fractional Multi-Agent Systems in Cloud Entropy Computing
Abstract
:1. Introduction
2. Setting
3. Existence Results of A Perturbed System
4. The Proposed Algorithm
5. Stability of the Outcomes
6. Applications
Time | Utility | ||
---|---|---|---|
1 | 1 | 0.5380 | 0.48 |
2 | 0.5281 | 0.49 | |
3 | 0.5139 | 0.491 | |
4 | 0.5128 | 0.492 | |
5 | 0.5117 | 0.5000 | |
0.75 | 1 | 0.5800 | 0.5001 |
2 | 0.5740 | 0.5005 | |
3 | 0.5585 | 0.5006 | |
4 | 0.5573 | 0.5007 | |
5 | 0.5561 | 0.5008 | |
0.5 | 1 | 0.6113 | 0.4000 |
2 | 0.6001 | 0.4001 | |
3 | 0.5839 | 0.50011 | |
4 | 0.5827 | 0.50012 | |
5 | 0.5814 | 0.5002 |
7. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Kerrigan, B.; Chen, Y. A Study of Entropy Sources in Cloud Computers: Random Number Generation on Cloud Hosts. In Computer Network Security; Springer: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Tarasov, V.E. Fractional Dynamics: Applications of Fractional Calculus to Dynamics of Particles, Fields and Media; Springer: Berlin/Heidelberg, Germany, 2011. [Google Scholar]
- Meerschaert, M.M.; Sikorskii, A. Stochastic Models for Fractional Calculus; Walter de Gruyter: Berlin, Germany, 2011. [Google Scholar]
- Machado, J.T.; Mata, M.E. Pseudo phase plane and fractional calculus modeling of western global economic downturn. Commun. Nonlinear Sci. Numer. Simul. 2015, 22, 396–406. [Google Scholar] [CrossRef]
- Machado, J.T.; Mata, M.E. A fractional perspective to the bond graph modelling of world economies. Nonlinear Dyn. 2014, 80, 1839–1852. [Google Scholar] [CrossRef]
- Ghosh, S. Distributed Systems: An Algorithmic Approach, 2nd ed.; CRC press: Boca Raton, FL, USA, 2014. [Google Scholar]
- Ren, W.; Beard, R.W. Distributed Consensus in Multi-Vehicle Cooperative Control; Springer: London, UK, 2008. [Google Scholar]
- Li, D.; Liu, Q.; Wang, X. Distributed quantized consensus for agents on directed networks. J. Syst. Sci. Complex. 2013, 26, 489–511. [Google Scholar] [CrossRef]
- Zeitz, M. Canonical forms for nonlinear systems. In Processdings of IFAC-Symposium, Capri, Italy, 14–16 June 1989; pp. 33–38.
- Meng, D.; Jia, Y.; Du, J. Nonlinear finite-time bipartite consensus protocol for multi-agent systems associated with signed graphs. Int. J. Control 2015, 88, 1–24. [Google Scholar] [CrossRef]
- Lu, C.; Wang, X.; Koutsoukos, X. Feedback utilization control in distributed real-time systems with end-to-end tasks. IEEE Trans. Parallel Distrib. Syst. 2005, 16, 550–561. [Google Scholar]
- Diao, Y.; Gandhi, N.; Hellerstein, J.L.; Parekh, S.; Tilbury, D.M. Using mimo feedback control to enforce policies for interrelated metrics with application to the apache web server. In Proceedings of Network Operations and Management Symposium, 2002 (NOMS 2002), Florence, Italy, 15–19 April 2002; pp. 219–234.
- Xu, W.; Zhu, X.; Singhal, S.; Wang, Z. Predictive control for dynamic resource allocation in enterprise data centers. In Proceedings of Network Operations and Management Symposium, 2006 (NOMS 2006), Vancouver, BC, Canada, 3–7 April 2006; pp. 115–126.
- Olfati-Saber, R.; Fax, A.; Murray, R.M. Consensus and cooperation in networked multi-agent systems. Proc. IEEE 2007, 95, 215–233. [Google Scholar] [CrossRef]
- Dhage, B.C. Approximation methods in the theory of hybrid differential equations with linear perturbations of second type. Tamkang J. Math. 2014, 45, 39–61. [Google Scholar] [CrossRef]
- Ibrahim, R.W.; Jalab, H.A.; Gani, A. Cloud entropy management system involving a fractional power. Entropy 2016, 18. [Google Scholar] [CrossRef]
- Dhage, B.; O’Regan, D. A fixed point theorem in banach algebras with applications to functional integral equations. Funct. Differ. Equ. 2004, 7, 259–267. [Google Scholar]
- Pluzhnik, E.; Nikulchev, E.; Payain, S. Concept of feedback in future computing models to cloud systems. 2014. arXiv:1402.4663. [Google Scholar]
- Tsallis, C. Introduction to Nonextensive Statistical Mechanics; Springer: New York, NY, USA, 2009. [Google Scholar]
- Machado, J.T. Entropy analysis of integer and fractional dynamical systems. Nonlinear Dyn. 2010, 62, 371–378. [Google Scholar]
- Machado, J.T. Entropy analysis of fractional derivatives and their approximation. J. Appl. Nonlinear Dyn. 2012, 1, 109–112. [Google Scholar] [CrossRef]
- Machado, J.T. Fractional order generalized information. Entropy 2014, 16, 2350–2361. [Google Scholar] [CrossRef]
- Ibrahim, R.W. The fractional differential polynomial neural network for approximation of functions. Entropy 2013, 15, 4188–4198. [Google Scholar] [CrossRef]
- Ibrahim, R.W.; Jalab, H.A. Existence of entropy solutions for nonsymmetric fractional systems. Entropy 2014, 16, 4911–4922. [Google Scholar] [CrossRef]
- Ibrahim, R.W.; Jalab, H.A. Existence of Ulam stability for iterative fractional differential equations based on fractional entropy. Entropy 2015, 17, 3172–3181. [Google Scholar] [CrossRef]
- Laskin, N. Fractional Poisson process. Commun. Nonlinear Sci. Numer. Simul. 2003, 8, 201–213. [Google Scholar] [CrossRef]
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ibrahim, R.W.; Jalab, H.A.; Gani, A. Perturbation of Fractional Multi-Agent Systems in Cloud Entropy Computing. Entropy 2016, 18, 31. https://doi.org/10.3390/e18010031
Ibrahim RW, Jalab HA, Gani A. Perturbation of Fractional Multi-Agent Systems in Cloud Entropy Computing. Entropy. 2016; 18(1):31. https://doi.org/10.3390/e18010031
Chicago/Turabian StyleIbrahim, Rabha W., Hamid A. Jalab, and Abdullah Gani. 2016. "Perturbation of Fractional Multi-Agent Systems in Cloud Entropy Computing" Entropy 18, no. 1: 31. https://doi.org/10.3390/e18010031
APA StyleIbrahim, R. W., Jalab, H. A., & Gani, A. (2016). Perturbation of Fractional Multi-Agent Systems in Cloud Entropy Computing. Entropy, 18(1), 31. https://doi.org/10.3390/e18010031