On the Virtual Cell Transmission in Ultra Dense Networks
Abstract
:1. Introduction
1.1. Related Works
1.1.1. BS-Centric Transmission
1.1.2. User-Centric Transmission
1.1.3. Global Optimal Approach
1.2. Our Contribution
- This paper proposes a user-centric scheme, where only partial coordination is required, and can scale well with the network size.
- This paper proposes an interference graph-based virtual cell merging scheme, where the size of the merged virtual cells can be well scaled by tuning the interference graph threshold. Then, the grouped users are jointly served by the merged virtual cell via ZF and MVC-MMSE to eliminate the intra-cluster and inter-cluster interference.
- This paper proposes IA within every cluster based on the virtual cell merging scheme, which aims to eliminate strong intra-cluster interference.
2. System Model
3. Transmission Schemes Based on Virtual Cell Merging
3.1. Virtual Cell Merging with ZF and MVC-MMSE Transmission
3.1.1. Interference Graph Construction
3.1.2. Virtual Cell Merging Based on the Interference Graph
Algorithm 1 Interference graph-based virtual cell merging algorithm. |
Initialization: |
|
3.1.3. ZF Transmission
3.1.4. MVC-MMSE Transmission
3.2. Virtual Cell Merging with IA Transmission
3.2.1. Virtual Cell Merging
Algorithm 2 Virtual cell merging algorithm. |
Initialization: |
|
3.2.2. IA Transmission
4. Simulation Results and Analysis
4.1. Virtual Cell Merging with ZF and MVC-MMSE Transmission
4.2. Virtual Cell Merging with IA Transmission
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Cisco Visual Networking Index: Global Mobile Data Traffic Forecast Update, 2015–2020, Cisco White Paper. 2016. Available online: http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/mobile-white-paper-c11-520862.html (accessed on 17 October 2016).
- Hwang, I.; Song, B.; Soliman, S. A Holistic View on Hyper-Dense Heterogeneous and Small Cell Networks. IEEE Commun. Mag. 2013, 51, 20–27. [Google Scholar] [CrossRef]
- Chih-Lin, I.; Han, S.; Xu, Z.; Sun, Q.; Pan, Z. G: Rethink Mobile Communications for 2020+. Phil. Trans. R. Soc. 2016, 374. [Google Scholar] [CrossRef] [PubMed]
- Larsson, E.G.; Edfors, O.; Tufvesson, F.; Marzetta, T.L. Massive mimo for next generation wireless systems. IEEE Commun. Mag. 2014, 52, 186–195. [Google Scholar] [CrossRef]
- Nikopour, H.; Yi, E.; Bayesteh, A.; Au, K.; Hawryluck, M.; Baligh, H.; Ma, J. SCMA for downlink multiple access of 5G wireless networks. In Proceedings of the IEEE GLOBECOM, Austin, TX, USA, 8–12 December 2014; pp. 3940–3945.
- Galinina, O.; Pyattaev, A.; Andreevy, S.; Dohler, M.; Koucheryavy, Y. 5G multi-RAT LTE-WiFi ultra-dense small cells: Performance dynamics, architecture, and trends. IEEE J. Sel. Areas Commun. 2015, 33, 1224–1240. [Google Scholar] [CrossRef]
- Lo´pez-Pe´rez, D.; Ding, M.; Claussen, H.; Jafari, A. Towards 1 Gbps/UE in Cellular Systems: Understanding Ultra-Dense Small Cell Deployments. IEEE Commun. Surv. Tutor. J. 2015, 17, 2078–2101. [Google Scholar] [CrossRef]
- Heath, R.; Peters, S.; Wang, Y.; Zhang, J. A current perspective on distributed antenna systems for the downlink of cellular systems. IEEE Commun. Mag. 2013, 51, 161–167. [Google Scholar] [CrossRef]
- Wang, J.; Dai, L. Asymptotic Rate Analysis of Downlink Multi-user Systems with Co-located and Distributed Antennas. IEEE Trans. Wirel. Commun. 2015, 14, 3046–3058. [Google Scholar] [CrossRef]
- Dai, L. An uplink capacity analysis of the distributed antenna system (DAS): From cellular DAS to DAS with virtual cells. IEEE Trans. Wirel. Commun. 2014, 13, 2717–2731. [Google Scholar]
- Wang, J.; Dai, L. Downlink Rate Analysis for Virtual-Cell based Large-Scale Distributed Antenna Systems. IEEE Trans. Wirel. Commun. 2016, 15, 1998–2011. [Google Scholar] [CrossRef]
- Gao, H.; Lv, T.; Fang, D.; Yang, S.; Yuen, C. Limited feedback-based interference alignment for interfering multi-access channels. IEEE Commun. Lett. 2014, 18, 540–543. [Google Scholar] [CrossRef]
- Gao, H.; Leithon, J.; Yuen, C.; Suraweera, H. New uplink opportunistic interference alignment: An active alignment approach. In Proceedings of the IEEE WCNC, Shanghai, China, 7–10 April 2013; pp. 1123–1127.
- Zhou, R.; Lv, T.; Long, W.; Gao, H. Limited feedback schemes based on inter-cell interference alignment in two-cell interfering MIMO MAC. In Proceedings of the IEEE ICC, Budapest, Hungary, 9–13 June 2013; pp. 3807–3811.
- Zhao, N.; Yu, F.; Sun, H. Adaptive energy-efficient power allocation in green interference alignment wireless networks. IEEE Trans. Veh. Technol. 2015, 64, 4268–4281. [Google Scholar] [CrossRef]
- Gotsis, A.; Stefanatos, S.; Alexiou, A. Spatial coordination strategies in future ultra-dense wireless networks. In Proceedings of the 11th International Symposium on Wireless Communications Systems, ISWCS 2014, Barcelona, Spain, 26–29 August 2014; pp. 801–807.
- Gotsis, A.; Stefanatos, S.; Alexiou, A. Global Network Coordination in Densified Wireless Access Networks through Integer Linear Programming. In Proceedings of the IEEE PIMRC’13, Tokyo, Japan, 8–11 September 2009; pp. 1548–1553.
- Shi, Y.; Zhang, J.; Letaief, K.B.; Bai, B.; Chen, W. Large-scale convex optimization for ultra-dense Cloud-RAN. IEEE Wirel. Commun. Mag. 2015, 22, 84–91. [Google Scholar] [CrossRef]
- Chih-Lin, I.; Yuan, Y.; Huang, J.; Ma, S.; Cui, C.; Duan, R. Rethink fronthaul for soft RAN. IEEE Commun. Mag. 2015, 53, 82–88. [Google Scholar]
- Shannon, C.E. A Mathematical Theory of Communication. Bell Syst. Tech. J. 1948, 27, 379–423. [Google Scholar] [CrossRef]
- Goldsmith, A. Wireless Communication; Cambridge University Press: Cambridge, UK, 2005. [Google Scholar]
Parameters | Value |
---|---|
Network layout | Uniform |
Number of BSs | 10,000/1000 |
Number of UEs | 50 |
Carrier frequency | 2 GHz |
Bandwidth | 20 MHz |
Path loss factor | 4 |
Transmitting SNR | dB |
Number of UE antennas | 1 for ZF and MVC-MMSE transmission and 2 for IA transmission |
Channel model | Rayleigh channel |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, X.; Zeng, J.; Su, X.; Xiao, C.; Wang, J.; Huang, L. On the Virtual Cell Transmission in Ultra Dense Networks. Entropy 2016, 18, 374. https://doi.org/10.3390/e18100374
Zhu X, Zeng J, Su X, Xiao C, Wang J, Huang L. On the Virtual Cell Transmission in Ultra Dense Networks. Entropy. 2016; 18(10):374. https://doi.org/10.3390/e18100374
Chicago/Turabian StyleZhu, Xiaopeng, Jie Zeng, Xin Su, Chiyang Xiao, Jing Wang, and Lianfen Huang. 2016. "On the Virtual Cell Transmission in Ultra Dense Networks" Entropy 18, no. 10: 374. https://doi.org/10.3390/e18100374
APA StyleZhu, X., Zeng, J., Su, X., Xiao, C., Wang, J., & Huang, L. (2016). On the Virtual Cell Transmission in Ultra Dense Networks. Entropy, 18(10), 374. https://doi.org/10.3390/e18100374