On the Existence and Uniqueness of Solutions for Local Fractional Differential Equations
Abstract
:1. Introduction
2. Basic Definitions and Preliminaries
- 1.
- & if and only if
- 2.
- 3.
- , for and
- If on , then is an increasing on that interval.
- If on , then is a decreasing on that interval.
3. Main Results
4. Applications
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Hilfer, R. Applications of Fractional Calculus in Physics; World Scientific: Singapore, 2000. [Google Scholar]
- Agarwal, R.B.; Meehan, M.; Regan, D. Fixed Point Theory and Applications; Cambridge University Press: Cambridge, UK, 2001. [Google Scholar]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.A. Theory and Applications of Fractional Differential Equations; Elsevier: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Area, I.; Nieto, J.J.; Losada, J. A note on the fractional logistic equation. Physica A 2016, 444, 182–187. [Google Scholar] [CrossRef]
- Podlubny, I. Fractional Differential Equations; Academic Press: New York, NY, USA, 1999. [Google Scholar]
- Sorrentinos, G. Analytic Modeling and Experimental Identification of Viscoelastic Mechanical Systems; Advances in Fractional Calculus; Springer: New York, NY, USA, 2007. [Google Scholar]
- Mainardi, F. Fractals and Fractional Calculus in Continuum Mechanics; Springer: New York, NY, USA, 1997. [Google Scholar]
- Magin, R. Fractional Calculus in Bioengineering; Begell House Publishers Inc.: Danbury, CT, USA, 2004. [Google Scholar]
- Jafari, H.; Jassim, H.K.; Tchier, F.; Baleanu, D. On the Approximate Solutions of Local Fractional Differential Equations with Local Fractional Operator. Entropy 2016, 18, 150. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Golmankhaneh, A.K.; Baleanu, D.; Yang, X.J. Local fractional Sumudu transform with application to IVPs on Cantor set. Abstr. Appl. Anal. 2014, 2014, 620529. [Google Scholar] [CrossRef]
- Zhao, C.G.; Yang, A.M.; Jafari, H.; Haghbin, A. The Yang-Laplace transform for solving the IVPs with local fractional derivative. Abstr. Appl. Anal. 2014, 2014, 386459. [Google Scholar] [CrossRef]
- Ibrahim, R.W.; Momani, S. On existence and uniqueness of solutions of a class of fractional differential equations. J. Math. Anal. Appl. 2007, 3334, 1–10. [Google Scholar] [CrossRef]
- Su, X.; Liu, L. Existence of solution for boundary value problem of nonlinear fractional differential equation. Appl. Math. J. Chin. Univ. Ser. B 2007, 223, 291–298. [Google Scholar]
- Abdulla, A.B.; Al-Refai, M.; Al-Rawashdeh, A. On the existence and uniqueness of solutions for a class of non-linear fractional boundary value problems. J. King Saud Univ. Sci. 2015, 28, 103–110. [Google Scholar] [CrossRef]
- El-Shahed, M. On the Existence and Uniqueness of Solutions for Q-Fractional Boundary Value Problem. Int. J. Math. Anal. 2011, 5, 1619–1630. [Google Scholar]
- Yang, X.J. Local Fractional Functional Analysis and Its Applications; Asian Academic Publisher Limited: Hong Kong, China, 2011. [Google Scholar]
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jafari, H.; Jassim, H.K.; Al Qurashi, M.; Baleanu, D. On the Existence and Uniqueness of Solutions for Local Fractional Differential Equations. Entropy 2016, 18, 420. https://doi.org/10.3390/e18110420
Jafari H, Jassim HK, Al Qurashi M, Baleanu D. On the Existence and Uniqueness of Solutions for Local Fractional Differential Equations. Entropy. 2016; 18(11):420. https://doi.org/10.3390/e18110420
Chicago/Turabian StyleJafari, Hossein, Hassan Kamil Jassim, Maysaa Al Qurashi, and Dumitru Baleanu. 2016. "On the Existence and Uniqueness of Solutions for Local Fractional Differential Equations" Entropy 18, no. 11: 420. https://doi.org/10.3390/e18110420
APA StyleJafari, H., Jassim, H. K., Al Qurashi, M., & Baleanu, D. (2016). On the Existence and Uniqueness of Solutions for Local Fractional Differential Equations. Entropy, 18(11), 420. https://doi.org/10.3390/e18110420