EEG-Based Person Authentication Using a Fuzzy Entropy-Related Approach with Two Electrodes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Experimental Paradigm
2.3. Data Acquisition
2.4. Data Preprocessing
2.5. Feature Extraction
2.6. Classification
2.7. Performance Metrics
3. Results
3.1. Brain Topographic Map
3.2. Feature Selection
3.3. Feature Analysis
3.4. Classification Results
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Duc, B.; Fischer, S.; Bigun, J. Face authentication with Gabor information on deformable graphs. IEEE Trans. Image Process. 1999, 8, 504–516. [Google Scholar] [CrossRef] [PubMed]
- Karu, K.; Jain, A.K. Fingerprint classification. Pattern Recognit. 1996, 29, 389–404. [Google Scholar] [CrossRef]
- Covavisaruch, N.; Prateepamornkul, P.; Ruchikachorn, P.; Taksaphan, P. Personal verification and identification using hand geometry. ECTI Trans. Comput. Inf. Technol. 2005, 1, 457–464. [Google Scholar]
- Kumar, A.; Passi, A. Comparison and combination of iris matchers for reliable personal authentication. Pattern Recognit. 2010, 43, 1016–1026. [Google Scholar] [CrossRef]
- Frischholz, R.W.; Dieckmann, U. BiolD: A multimodal biometric identification system. Computer 2000, 33, 64–68. [Google Scholar] [CrossRef]
- Pham, T.; Ma, W.; Tran, D.; Nguyen, P.; Phung, D. A study on the feasibility of using EEG signals for authentication purpose. In Neural Information Processing; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- La Rocca, D.; Campisi, P.; Scarano, G. EEG biometrics for individual recognition in resting state with closed eyes. In Proceedings of the International Conference of the Biometrics Special Interest Group, Darmstadt, Germany, 6–7 September 2012.
- Aboalayon, K.A.I.; Faezipour, M.; Almuhammadi, W.S.; Moslehpour, S. Sleep Stage Classification Using EEG Signal Analysis: A Comprehensive Survey and New Investigation. Entropy 2016, 18, 272. [Google Scholar] [CrossRef]
- García-Martínez, B.; Martínez-Rodrigo, A.; Cantabrana, R.Z.; García, J.M.P.; Alcaraz, R. Application of Entropy-Based Metrics to Identify Emotional Distress from Electroencephalographic Recordings. Entropy 2016, 18, 221. [Google Scholar] [CrossRef]
- Hu, J.F.; Mu, Z.D.; Wang, P. Multi-feature authentication system based on event evoked electroencephalogram. J. Med. Imaging Health Inf. 2015, 5, 862–870. [Google Scholar]
- Paranjape, R.B.; Mahovsky, J.; Benedicenti, L.; Koles, Z. The electroencephalogram as a biometric. In Proceedings of the 2011 Canadian Conference on Electrical and Computer Engineering, Toronto, ON, Canada, 13–16 May 2001.
- Marcel, S.; Millán, J.R. Person authentication using brainwaves (EEG) and maximum a posteriori model adaptation. IEEE Trans. Pattern Anal. Mach. Intell. 2007, 29, 743–752. [Google Scholar] [CrossRef] [PubMed]
- Phothisonothai, M. An investigation of using SSVEP for EEG-based user authentication system. In Proceedings of the 2015 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference, Hong Kong, China, 16–19 December 2015; pp. 923–926.
- Kumari, P.; Kumar, S.; Vaish, A. Feature extraction using emprical mode decomposition for biometric system. In Proceedings of the 2014 International Conference on Signal Propagation and Computer Technology, Ajmer, India, 12–13 July 2014; pp. 283–287.
- Das, R.; Maiorana, E.; La Rocca, D.; Campisi, P. EEG biometrics for user recognition using visually evoked potentials. In Proceedings of the 2015 International Conference of the Biometrics Special Interest Group, Darmstadt, Germany, 9–11 September 2015.
- Barbosa, I.B.; Vilhelmsen, K.; van der Meer, A.; van der Weel, R.; Theoharis, T. EEG Biometrics: On the Use of Occipital Cortex Based Features from Visual Evoked Potentials. Available online: http://ojs.bibsys.no/index.php/NIK/article/view/243/206 (accessed on 30 November 2016).
- Abo-Zahhad, M.; Ahmed, S.M.; Abbas, S.N. A new multi-level approach to EEG based human authentication using eye blinking. Pattern Recognit. Lett. 2016, 82, 216–225. [Google Scholar] [CrossRef]
- Liew, S.H.; Choo, Y.H.; Low, Y.F.; Yusoh, Z.I.M. Identifying Visual Evoked Potential (VEP) Electrodes Setting for Person Authentication. Int. J. Adv. Soft Comput. Appl. 2015, 7, 85–99. [Google Scholar]
- Yeom, S.K.; Suk, H.I.; Lee, S.W. Person authentication from neural activity of face-specific visual self-representation. Pattern Recognit. 2013, 46, 1159–1169. [Google Scholar] [CrossRef]
- Sharma, R.; Pachori, R.B.; Acharya, U.R. Application of Entropy Measures on Intrinsic Mode Functions for the Automated Identification of Focal Electroencephalogram Signals. Entropy 2015, 17, 669–691. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, C.; Zheng, C. EEG-based estimation of mental fatigue by using KPCA–HMM and complexity parameters. Biomed. Signal Process. Control 2010, 5, 124–130. [Google Scholar] [CrossRef]
- Chai, R.; Tran, Y.; Naik, G.R.; Nguyen, T.N.; Ling, S.H.; Craig, A.; Nguyen, H.T. Classification of EEG based-mental fatigue using principal component analysis and Bayesian neural network. In Proceedings of the 38th Annual International Conference of Engineering in Medicine and Biology Society, Orlando, FL, USA, 16–20 August 2016; pp. 4654–4657.
- Song, Y.; Crowcroft, J.; Zhang, J. Automatic epileptic seizure detection in EEGs based on optimized sample entropy and extreme learning machine. J. Neurosci. Method 2012, 210, 132–146. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, T.; Cho, R.Y.; Mizuno, T.; Kikuchi, M.; Murata, T.; Takahashi, K.; Wada, Y. Antipsychotics reverse abnormal EEG complexity in drug-naïve schizophrenia: A multiscale entropy analysis. Neuroimage 2010, 51, 173–182. [Google Scholar] [CrossRef] [PubMed]
- Kar, S.; Bhagat, M.; Routray, A. EEG signal analysis for the assessment and quantification of driver’s fatigue. Transp. Res. F 2010, 13, 297–306. [Google Scholar] [CrossRef]
- Chai, R.; Naik, G.; Nguyen, T.N.; Ling, S.; Tran, Y.; Craig, A.; Nguyen, H. Driver fatigue classification with independent component by entropy rate bound minimization analysis in an EEG-based system. IEEE J. Biomed. Health Inf. 2016. [Google Scholar] [CrossRef] [PubMed]
- Chai, R.; Naik, G.R.; Tran, Y.; Ling, S.H.; Craig, A.; Nguyen, H.T. Classification of driver fatigue in an electroencephalography-based countermeasure system with source separation module. In Proceedings of the 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Milano, Italy, 25–29 August 2015; pp. 514–517.
- Chakraborty, B.; Bhattacharyya, S.; Dutta, P. An Unsupervised Video Shot Boundary Detection Technique Using Fuzzy Entropy Estimation of Video Content. In Handbook on Soft Computing for Video Surveillance; CRC Press: Boca Raton, FL, USA, 2012; pp. 237–253. [Google Scholar]
- Acharya, U.R.; Fujita, H.; Sudarshan, V.K.; Bhat, S.; Koh, J.E.W. Application of entropies for automated diagnosis of epilepsy using EEG signals: A review. Knowl. Based Syst. 2015, 88, 85–96. [Google Scholar] [CrossRef]
- Xiang, J.; Li, C.; Li, H.; Cao, R.; Wang, B.; Han, X.; Chen, J. The detection of epileptic seizure signals based on fuzzy entropy. J. Neurosci. Methods 2015, 243, 18–25. [Google Scholar] [CrossRef] [PubMed]
- Luukka, P. Feature selection using fuzzy entropy measures with similarity classifier. Expert Syst. Appl. 2011, 38, 4600–4607. [Google Scholar] [CrossRef]
- Yang, B.; Li, H.; Wang, Q.; Zhang, Y. Subject-based feature extraction by using fisher WPD-CSP in brain–computer interfaces. Comput. Methods Programs Biomed. 2016, 129, 21–28. [Google Scholar] [CrossRef] [PubMed]
- Bhardwaj, S.; Jadhav, P.; Adapa, B.; Acharyya, A.; Naik, G.R. Online and automated reliable system design to remove blink and muscle artefact in EEG. In Proceedings of the 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Milano, Italy, 25–29 August 2015; pp. 6784–6787.
- Kwon, Y.; Kim, K.I.; Tompkin, J.; Kim, J.H.; Theobalt, C. Efficient learning of image super-resolution and compression artifact removal with semi-local Gaussian processes. IEEE Trans. Pattern Anal. Mach. Intell. 2015, 37, 1792–1805. [Google Scholar] [CrossRef] [PubMed]
- Feis, R.A.; Smith, S.M.; Filippini, N.; Douaud, G.; Dopper, E.G.; Heise, V.; Trachtenberg, A.J.; van Swieten, J.C.; van Buchem, M.A.; Rombouts, S.A. ICA-based artifact removal diminishes scan site differences in multi-center resting-state fMRI. Front. Neurosci. 2015, 9, 395. [Google Scholar] [CrossRef] [PubMed]
- Jadhav, P.; Shanamugan, D.; Chourasia, A.; Ghole, A.; Acharyya, A.; Naik, G. Automated detection and correction of eye blink and muscular artefacts in EEG signal for analysis of Autism Spectrum Disorder. In Proceedings of the 36th Annual International Conference of the Engineering in Medicine and Biology Society, Chicago, IL, USA, 26–30 August 2014; pp. 1881–1884.
- Bao, X.C.; Wang, J.L.; Hu, J.F. Method of individual identification based on electroencephalogram analysis. In Proceedings of the 2009 International Conference on New Trends in Information and Service Science, Beijing, China, 30 June–2 July 2009; pp. 390–393.
- Yentes, J.M.; Hunt, N.; Schmid, K.K.; Kaipust, J.P.; McGrath, D.; Stergiou, N. The appropriate use of approximate entropy and sample entropy with short data sets. Ann. Biomed. Eng. 2013, 41, 349–365. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Wang, Z.; Xie, H.; Yu, W. Characterization of surface EMG signal based on fuzzy entropy. IEEE Trans. Neural Syst. Rehabil. Eng. 2007, 15, 266–272. [Google Scholar] [CrossRef] [PubMed]
- Ince, N.F.; Arica, S.; Tewfik, A. Classification of single trial motor imagery EEG recordings with subject adapted non-dyadic arbitrary time–frequency tilings. J. Neural Eng. 2006, 3, 235–239. [Google Scholar] [CrossRef] [PubMed]
- Hosseinifard, B.; Moradi, M.H.; Rostami, R. Classifying depression patients and normal subjects using machine learning techniques and nonlinear features from EEG signal. Comput. Methods Programs Biomed. 2013, 109, 339–345. [Google Scholar] [CrossRef] [PubMed]
- Miyamoto, C.; Baba, S.; Nakanishi, I. Biometric person authentication using new spectral features of electroencephalogram (EEG). In Proceedings of the 2008 International Symposium on Intelligent Signal Processing and Communications Systems, Bangkok, Thailand, 8–11 February 2009.
Subjects | Accuracy (%) | FAR (%) | FRR (%) |
---|---|---|---|
1 | 85.4 | 8.0 | 6.4 |
2 | 92.1 | 3.1 | 4.6 |
3 | 84.0 | 6.8 | 9.0 |
4 | 83.9 | 7.1 | 8.9 |
5 | 90.0 | 6.6 | 3.3 |
6 | 84.6 | 3.8 | 5.7 |
7 | 86.5 | 5.7 | 7.6 |
8 | 88.2 | 4.5 | 5.2 |
9 | 87.3 | 6.2 | 3.1 |
10 | 90.7 | 3.6 | 2.4 |
Mean (Std) | 87.3 (2.9) | 5.5 (1.7) | 5.6 (2.4) |
Subjects | Accuracy of the Whole Brain | The Best Accuracy | Accuracy of FP1 and FP2 | FAR (%) | FRR (%) |
---|---|---|---|---|---|
1 | 89.8 | 91.3 | 85.4 | 8.0 | 6.4 |
2 | 96.5 | 97.1 | 92.1 | 3.1 | 4.6 |
3 | 84.5 | 90.0 | 84.0 | 6.8 | 9.0 |
4 | 93.1 | 94.6 | 83.9 | 7.1 | 8.9 |
5 | 88.5 | 92.2 | 90.0 | 6.6 | 3.3 |
6 | 92.7 | 94.5 | 84.6 | 3.8 | 5.7 |
7 | 85.5 | 88.5 | 86.5 | 5.7 | 7.6 |
8 | 91.4 | 93.4 | 88.2 | 4.5 | 5.2 |
9 | 90.3 | 92.3 | 87.3 | 6.2 | 3.1 |
10 | 92.7 | 95.1 | 90.7 | 3.6 | 2.4 |
Mean (Std) | 90.5 (3.6) | 92.9 (2.5) | 87.3 (2.9) | 5.5 (1.7) | 5.6 (2.4) |
Author | Method | Stimulus Type | Electrodes | Accuracy (%) | FAR (%) | FRR (%) |
---|---|---|---|---|---|---|
Yeom [19] | Dynamic feature | Visual stimuli (self and non-self faces) | Selected five electrodes | 86.3 | 13.9 | 13.9 |
Liew [18] | Fuzzy-Rough Nearest Neighbor | Pictures | 64 | 85.2 | NA | NA |
Abo-Zahhad [17] | Multi-level | relaxation, visual stimulation, and eye blinking | All | 84.5 | NA | NA |
Miyamoto [42] | Alpha rhythm | Rest (with closed eyes) | All | 79.0 | 21.0 | 21.0 |
Marcel [12] | Gaussian mixture models | Motor imagery | All | 80.7 | 14.4 | 24.3 |
This paper | Fuzzy Entropy | Visual Stimuli (self-photos and non-self-photos) | Two electrodes (FP1 + FP2) | 87.3 | 5.5 | 5.6 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mu, Z.; Hu, J.; Min, J. EEG-Based Person Authentication Using a Fuzzy Entropy-Related Approach with Two Electrodes. Entropy 2016, 18, 432. https://doi.org/10.3390/e18120432
Mu Z, Hu J, Min J. EEG-Based Person Authentication Using a Fuzzy Entropy-Related Approach with Two Electrodes. Entropy. 2016; 18(12):432. https://doi.org/10.3390/e18120432
Chicago/Turabian StyleMu, Zhendong, Jianfeng Hu, and Jianliang Min. 2016. "EEG-Based Person Authentication Using a Fuzzy Entropy-Related Approach with Two Electrodes" Entropy 18, no. 12: 432. https://doi.org/10.3390/e18120432
APA StyleMu, Z., Hu, J., & Min, J. (2016). EEG-Based Person Authentication Using a Fuzzy Entropy-Related Approach with Two Electrodes. Entropy, 18(12), 432. https://doi.org/10.3390/e18120432