Many-Body-Localization Transition in the Strong Disorder Limit: Entanglement Entropy from the Statistics of Rare Extensive Resonances
Abstract
:1. Introduction
- (i)
- If the transition is directly towards the thermal ergodic phase satisfying E.T.H., the continuous vanishing of the coefficient of the volume law of Equation (8) is actually forbidden by the strong subadditivity property [36], and the only possibility is that the critical point is itself thermal, i.e., it should satisfy the volume law with the finite thermal coefficient given by Equation (3). This scenario was found numerically [38,39] and via the RG based on entanglement [34] or resonances [35]. Then, the difference between the critical point and the delocalized phase is not visible in the disorder-averaged entanglement entropy, but in its variance [34,38,39] and in the dynamical properties [34,35].
- (ii)
- If the transition is towards a delocalized non-ergodic phase, i.e., a phase satisfying the volume law, but not the E.T.H. with the thermal coefficient fixed by Equation (3), then the continuous vanishing of the coefficient of the volume law of Equation (8) is possible, and the exponent α is not a priori fixed by the strong-subadditivity property (see [36] for more details). This scenario is suggested by the point of view that the MBL transition is somewhat similar to an Anderson localization transition in the Hilbert space of “infinite dimensionality” as a consequence of the exponential growth of the size of the Hilbert space with the volume [40,41,42,43,44,45,46].
2. Singular Perturbation from the Many-Body Localized Phase
2.1. Motivation: Strong Disorder Limit of the Anderson Localization Transition
- (i)
- For the short-range tight-binding model in dimension d, there is a continuous interpolation between the “weak multifractality” regime in and the “strong multifractality” in high dimension d.
- (ii)
- For the tight-binding model with long-range hopping:
2.2. Model and Notations
2.3. First Order Perturbation Theory for the Eigenstates
2.4. Reduced Density Matrix of the Region A
2.5. Entanglement Spectrum
3. Statistical Properties of the Entanglement Spectrum
3.1. Probability Distribution of the Variable
3.2. Probability Distribution of
3.3. Probability Distribution of the Weight
3.4. Probability Distribution of
- (i)
- As a consequence, the average of is also finite and given by:Therefore, at lowest order in the couplings, one has:
- (ii)
- For , the average of is infinite, and one needs to estimate the Laplace transform of its probability distribution as above:Using Equation (50) and the change of variable , one obtains:Therefore, Equation (66) becomes:
3.5. Disorder-Averaged Values of the Rényi Entropies
- (i)
- (ii)
4. Scaling of the Entanglement Entropy with the Length
4.1. Statistical Properties of the Couplings
4.2. Study of the Scale
- (i)
- for , there is an exponential convergence at a large distance, so the many-body localized phase is stable and displays a finite entanglement entropy.
- (ii)
- for , there is no exponential factor anymore in Equation (89), but only the power law .
4.3. Entanglement Growth at Criticality
4.4. Correlation Length Exponent ν of the MBL Phase
5. Multifractal Statistics of the Entanglement Spectrum
5.1. Multifractal Exponents
5.2. Multifractal Spectrum at the Critical Point
5.3. Multifractal Spectrum in the Many-Body Localized Phase
6. Conclusions
Acknowledgments
Conflicts of Interest
Appendix
Appendix A. Off-Diagonal Elements of the Reduced Density Matrix
Appendix B. Disorder-Averaged Values
Appendix B.1. Region
Appendix B.2. Region
Appendix B.3. Consequence for the Variance of the Entanglement Entropy
References
- Deutsch, J.M. Quantum statistical mechanics in a closed system. Phys. Rev. A 1991, 43, 2046–2049. [Google Scholar] [CrossRef] [PubMed]
- Srednicki, M. Chaos and quantum thermalization. Phys. Rev. E 1994, 50, 888–901. [Google Scholar] [CrossRef]
- Rigol, M.; Dunjko, V.; Olshanii, M. Thermalization and its mechanism for generic isolated quantum systems. Nature 2008, 452, 854–858. [Google Scholar] [CrossRef] [PubMed]
- Goldstein, S.; Huse, D.A.; Lebowitz, J.L.; Tumulka, R. Thermal equilibrium of a macroscopic quantum system in a pure state. Phys. Rev. Lett. 2015, 115, 100402. [Google Scholar] [CrossRef] [PubMed]
- D’Alessio, L.; Kafri, Y.; Polkovnikov, A.; Rigol, M. From Quantum Chaos and Eigenstate Thermalization to Statistical Mechanics and Thermodynamics. 2015; arxiv:1509.06411. [Google Scholar]
- Nandkishore, R.; Huse, D.A. Many body localization and thermalization in quantum statistical mechanics. Annu. Rev. Condens. Matter Phys. 2015, 6, 15–38. [Google Scholar] [CrossRef]
- Altman, E.; Vosk, R. Universal dynamics and renormalization in many-body-localized Systems. Annu. Rev. Condens. Matter Phys. 2015, 6, 383–409. [Google Scholar]
- Bauer, B.; Nayak, C. Area laws in a many-body localized state and its implications for topological order. J. Stat. Mech. 2013, 2013. [Google Scholar] [CrossRef]
- Pekker, D.; Clark, B.K. Encoding the structure of many-body localization with matrix product operators. 2014; arxiv:1410.2224. [Google Scholar]
- Yu, X.; Pekker, D.; Clark, B.K. Finding matrix product state representations of highly-excited eigenstates of many-body localized Hamiltonians. 2015; arxiv:1509.01244. [Google Scholar]
- Friesdorf, M.; Werner, A.H.; Brown, W.; Scholz, V.B.; Eisert, J. Many-body localization implies that eigenvectors are matrix-product states. Phys. Rev. Lett. 2015, 114, 170505. [Google Scholar] [CrossRef] [PubMed]
- Khemani, V.; Pollmann, F.; Sondhi, S.L. Obtaining highly-excited eigenstates of many-body localized Hamiltonians by the density matrix renormalization group. 2015; arxiv:1509.00483. [Google Scholar]
- Chandran, A.; Carrasquilla, J.; Kim, I.H.; Abanin, D.A.; Vidal, G. Spectral tensor networks for many-body localization. Phys. Rev. B 2015, 92, 024201. [Google Scholar] [CrossRef]
- Fisher, D.S. Random antiferromagnetic quantum spin chains. Phys. Rev. B 1994, 50, 3799–3821. [Google Scholar] [CrossRef]
- Fisher, D.S. Random transverse field Ising spin chains. Phys. Rev. Lett. 1992, 69, 534–537. [Google Scholar] [CrossRef] [PubMed]
- Fisher, D.S. Critical behavior of random transverse-field Ising spin chains. Phys. Rev. B 1995, 51, 6411–6461. [Google Scholar] [CrossRef]
- Fisher, D.S. Phase transitions and singularities in random quantum systems. Physica A 1999, 263, 222–233. [Google Scholar] [CrossRef]
- Vosk, R.; Altman, E. Many-body localization in one dimension as a dynamical renormalization group fixed point. Phys. Rev. Lett. 2013, 110, 067204. [Google Scholar] [CrossRef] [PubMed]
- Vosk, R.; Altman, E. Dynamical quantum phase transitions in random spin chains. Phys. Rev. Lett. 2014, 112, 217204. [Google Scholar] [CrossRef]
- Pekker, D.; Refael, G.; Altman, E.; Demler, E.; Oganesyan, V. Hilbert-glass transition: New universality of temperature-tuned many-body dynamical quantum criticality. Phys. Rev. X 2014, 4, 011052. [Google Scholar] [CrossRef]
- Huang, Y.; Moore, J.E. Excited-state entanglement and thermal mutual information in random spin chains. Phys. Rev. B 2014, 90, 220202(R). [Google Scholar] [CrossRef]
- Vasseur, R.; Potter, A.C.; Parameswaran, S.A. Quantum criticality of hot random spin chains. Phys. Rev. Lett. 2015, 114, 217201. [Google Scholar] [CrossRef] [PubMed]
- Pouranvari, M.; Yang, K. Entanglement spectrum and entangled modes of highly excited states in random XX spin chains. Phys. Rev. B 2015, 92, 245134. [Google Scholar] [CrossRef]
- You, Y.Z.; Qi, X.L.; Xu, C. Entanglement Holographic Mapping of Many-Body Localized System by Spectrum Bifurcation Renormalization Group. 2016; arxiv:1508.03635. [Google Scholar]
- Monthus, C. Many-body localization: Construction of the emergent local conserved operators via block real-space renormalization. J. Stat. Mech. 2016, 2016, 033101. [Google Scholar] [CrossRef]
- Swingle, B. A simple model of many-body localization. 2013; arxiv:1307.0507. [Google Scholar]
- Serbyn, M.; Papić, Z.; Abanin, D.A. Local conservation laws and the structure of the many-body localized states. Phys. Rev. Lett. 2013, 111, 127201. [Google Scholar] [CrossRef] [PubMed]
- Huse, D.A.; Nandkishore, R.; Oganesyan, V. Phenomenology of fully many-body-localized systems. Phys. Rev. B 2014, 90, 174202. [Google Scholar] [CrossRef]
- Nanduri, A.; Kim, H.; Huse, D.A. Entanglement spreading in a many-body localized system. Phys. Rev. B 2014, 90, 064201. [Google Scholar] [CrossRef]
- Imbrie, J.Z. On Many-Body Localization for Quantum Spin Chains. 2014; arxiv:1403.7837. [Google Scholar]
- Serbyn, M.; Papić, Z.; Abanin, D.A. Quantum quenches in the many-body localized phase. Phys. Rev. B 2014, 90, 174302. [Google Scholar] [CrossRef]
- Chandran, A.; Kim, I.H.; Vidal, G.; Abanin, D.A. Constructing local integrals of motion in the many-body localized phase. Phys. Rev. B 2015, 91, 085425. [Google Scholar] [CrossRef]
- Ros, V.; Müller, M.; Scardicchio, A. Integrals of motion in the many-body localized phase. Nucl. Phys. B 2015, 891, 420–465. [Google Scholar] [CrossRef]
- Vosk, R.; Huse, D.A.; Altman, E. Theory of the many-body localization transition in one-dimensional systems. Phys. Rev. X 2015, 5, 031032. [Google Scholar] [CrossRef]
- Potter, A.C.; Vasseur, R. Universal properties of many-body delocalization transitions. Phys. Rev. X 2015, 5, 031033. [Google Scholar] [CrossRef]
- Grover, T. Certain general constraints on the many-body localization transition. 2014; arxiv:1405.1471. [Google Scholar]
- Chandran, A.; Laumann, C.R.; Oganesyan, V. Finite size scaling bounds on many-body localized phase transitions. 2015; arxiv:1509.04285. [Google Scholar]
- Kjäll, J.A.; Bardarson, J.H.; Pollmann, F. Many-body localization in a disordered quantum Ising chain. Phys. Rev. Lett. 2014, 113, 107204. [Google Scholar] [CrossRef] [PubMed]
- Luitz, D.J.; Laflorencie, N.; Alet, F. Many-body localization edge in the random-field Heisenberg chain. Phys. Rev. B 2015, 91, 081103. [Google Scholar] [CrossRef]
- Altshuler, B.L.; Gefen, Y.; Kamenev, A.; Levitov, L.S. Quasiparticle lifetime in a finite system: A nonperturbative approach. Phys. Rev. Lett. 1997, 78, 2803–2806. [Google Scholar] [CrossRef]
- Gornyi, I.V.; Mirlin, A.D.; Polyakov, D.G. Interacting electrons in disordered wires: Anderson localization and low-T transport. Phys. Rev. Lett. 2005, 95, 206603. [Google Scholar] [CrossRef] [PubMed]
- Oganesyan, V.; Huse, D.A. Localization of interacting fermions at high temperature. Phys. Rev. B 2007, 75, 155111. [Google Scholar] [CrossRef]
- Monthus, C.; Garel, T. Many-body localization transition in a lattice model of interacting fermions: Statistics of renormalized hoppings in configuration space. Phys. Rev. B 2010, 81, 134202. [Google Scholar] [CrossRef]
- De Luca, A.; Altshuler, B.L.; Kravtsov, V.E.; Scardicchio, A. Anderson localization on the Bethe lattice: Nonergodicity of extended states. Phys. Rev. Lett. 2014, 113, 046806. [Google Scholar] [CrossRef] [PubMed]
- Gornyi, I.V.; Mirlin, D.A.; Polyakov, D.G. Many-body delocalization transition and relaxation in a quantum dot. Phys. Rev. B 2016, 93, 125419. [Google Scholar] [CrossRef]
- Monthus, C. Many-body-localization transition: Strong multifractality spectrum at the critical point towards a non-ergodic delocalized phase. 2016; arxiv:1603.04701. [Google Scholar]
- Evers, F.; Mirlin, A.D. Anderson transitions. Rev. Mod. Phys. 2008, 80, 1355–1417. [Google Scholar] [CrossRef]
- Levitov, L.S. Absence of localization of vibrational modes due to dipole-dipole interaction. Europhys. Lett. 1989, 9, 83–86. [Google Scholar] [CrossRef]
- Levitov, L.S. Delocalization of vibrational modes caused by electric dipole interaction. Phys. Rev. Lett. 1990, 64, 547–550. [Google Scholar] [CrossRef] [PubMed]
- Altshuler, B.L.; Levitov, L.S. Weak chaos in a quantum Kepler problem. Phys. Rep. 1997, 288, 487–512. [Google Scholar] [CrossRef]
- Levitov, L.S. Critical Hamiltonians with long range hopping. Annalen der Physik 1999, 8, 697–706. [Google Scholar] [CrossRef]
- Evers, F.; Mirlin, A.D. Fluctuations of the inverse participation ratio at the Anderson transition. Phys. Rev. Lett. 2000, 84, 3690–3693. [Google Scholar] [CrossRef] [PubMed]
- Mirlin, A.D.; Evers, F. Multifractality and critical fluctuations at the Anderson transition. Phys. Rev. B 2000, 62, 7920–7933. [Google Scholar] [CrossRef]
- Fyodorov, Y.V.; Ossipov, A.; Rodriguez, A. The Anderson localization transition and eigenfunction multifractality in an ensemble of ultrametric random matrices. J. Stat. Mech. 2009, L12001. [Google Scholar] [CrossRef]
- Fyodorov, Y.V.; Kupiainen, A.; Webb, C. Towards rigorous analysis of the Levitov–Mirlin–Evers recursion. 2015; arxiv:1509.01366. [Google Scholar]
- Yevtushenko, O.; Kratsov, V.E. Virial expansion for almost diagonal random matrices. J. Phys. A 2003, 36, 8265–8289. [Google Scholar] [CrossRef]
- Yevtushenko, O.; Ossipov, A. Supersymmetry approach to almost diagonal random matrices. J. Phys. A 2007, 40, 4691–4716. [Google Scholar] [CrossRef]
- Kronmüller, S.; Yevtushenko, O.M.; Cuevas, E. Supersymmetric virial expansion for time-reversal invariant disordered systems. J. Phys. A 2010, 43, 075001. [Google Scholar] [CrossRef]
- Kratsov, V.E.; Ossipov, A.; Yevtushenko, O.M.; Cuevas, E. Dynamical scaling for critical states: Is Chalker’s ansatz valid for strong fractality? Phys. Rev. B 2010, 82, 161102(R). [Google Scholar] [CrossRef]
- Bogomolny, E.; Giraud, O. Perturbation approach to multifractal dimensions for certain critical random-matrix ensembles. Phys. Rev. E 2012, 84, 036212. [Google Scholar] [CrossRef] [PubMed]
- Bogomolny, E.; Giraud, O. Multifractal dimensions for all moments for certain critical random matrix ensembles in the strong multifractality regime. Phys. Rev. E 2012, 85, 046208. [Google Scholar] [CrossRef] [PubMed]
- Bogomolny, E.; Giraud, O. Eigenfunction entropy and spectral compressibility for critical random matrix ensembles. Phys. Rev. Lett. 2011, 106, 044101. [Google Scholar] [CrossRef] [PubMed]
- Monthus, C.; Garel, T. Anderson localization transition with long-ranged hoppings: Analysis of the strong multifractality regime in terms of weighted Levy sums. J. Stat. Mech. 2010, P09015. [Google Scholar] [CrossRef]
- Lévy, P. Théorie de l’addition des Variables Aléatoires; Gauthier-Villars: Paris, France, 1937. (In French) [Google Scholar]
- Bouchaud, J.P.; Georges, A. Anomalous diffusion in disordered media: Statistical mechanisms, models and physical applications. Phys. Rep. 1990, 195, 127–293. [Google Scholar] [CrossRef]
- Derrida, B. From random walks to spin glasses. Physica D 1997, 107, 186–198. [Google Scholar] [CrossRef]
- Derrida, B.; Flyvbjerg, H. Statistical properties of randomly broken objects and of multivalley structures in disordered systems. J. Phys. A 1987, 20, 5273–5288. [Google Scholar] [CrossRef]
- Monthus, C.; Garel, T. Critical weight statistics of the random energy model and of the directed polymer on the Cayley tree. Phys. Rev. E 2007, 75, 051119. [Google Scholar] [CrossRef] [PubMed]
- Kunz, H.; Souillard, B. The localization transition on the Bethe lattice. J. Phys. Lett. 1983, 44, 411–414. [Google Scholar] [CrossRef]
- Mirlin, A.D.; Fyodorov, Y.V. Localization transition in the Anderson model on the Bethe lattice: Spontaneous symmetry breaking and correlation functions. Nucl. Phys. B 1991, 366, 507–532. [Google Scholar] [CrossRef]
- Monthus, C.; Garel, T. Anderson transition on the Cayley tree as a traveling wave critical point for various probability distributions. J. Phys. A 2009, 42, 075002. [Google Scholar] [CrossRef]
- Harris, A.B. Effect of random defects on the critical behaviour of Ising models. J. Phys. C 1974, 7, 1671–1692. [Google Scholar] [CrossRef]
- Chayes, J.T.; Chayes, L.; Fisher, D.S.; Spencer, T. Finite-size scaling and correlation lengths for disordered systems. Phys. Rev. Lett. 1986, 57, 2999–3002. [Google Scholar] [CrossRef] [PubMed]
- De Luca, A.; Scardicchio, A. Ergodicity breaking in a model showing many-body localization. Europhys. Lett. 2013, 101, 37003. [Google Scholar] [CrossRef]
- Torres-Herrera, E.J.; Santos, L.S. Dynamics at the many-body localization transition. Phys. Rev. B 2015, 92, 014208. [Google Scholar] [CrossRef]
- Chen, X.; Yu, X.; Cho, G.Y.; Clark, B.K. Eduardo Fradkin Many-body localization transition in Rokhsar-Kivelson-type wave functions. Phys. Rev. B 2015, 92, 214204. [Google Scholar] [CrossRef]
- Serbyn, M.; Papic, Z.; Abanin, D.A. Criterion for many-body localization-delocalization phase transition. Phys. Rev. X 2015, 041047. [Google Scholar] [CrossRef]
- Serbyn, M.; Moore, J.E. Spectral statistics across the many-body localization transition. Phys. Rev. B 2016, 93, 041424. [Google Scholar] [CrossRef]
- Monthus, C. Level repulsion exponent β for many-body localization transitions and for Anderson localization transitions via Dyson Brownian motion. J. Stat. Mech. 2016, 3, 033113. [Google Scholar] [CrossRef]
- Pietracaprina, F.; Ros, V.; Scardicchio, A. Forward approximation as a mean-field approximation for the Anderson and many-body localization transitions. Phys. Rev. B 2016, 93, 054201. [Google Scholar] [CrossRef]
- Laumann, C.R.; Pal, A.; Scardicchio, A. Many-body mobility edge in a mean-field quantum spin glass. Phys. Rev. Lett. 2014, 113, 200405. [Google Scholar] [CrossRef] [PubMed]
- Baldwin, C.L.; Laumann, C.R.; Pal, A.; Scardicchio, A. The many-body localized phase of the quantum random energy model. Phys. Rev. B 2016, 93, 024202. [Google Scholar] [CrossRef]
© 2016 by the author; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Monthus, C. Many-Body-Localization Transition in the Strong Disorder Limit: Entanglement Entropy from the Statistics of Rare Extensive Resonances. Entropy 2016, 18, 122. https://doi.org/10.3390/e18040122
Monthus C. Many-Body-Localization Transition in the Strong Disorder Limit: Entanglement Entropy from the Statistics of Rare Extensive Resonances. Entropy. 2016; 18(4):122. https://doi.org/10.3390/e18040122
Chicago/Turabian StyleMonthus, Cécile. 2016. "Many-Body-Localization Transition in the Strong Disorder Limit: Entanglement Entropy from the Statistics of Rare Extensive Resonances" Entropy 18, no. 4: 122. https://doi.org/10.3390/e18040122
APA StyleMonthus, C. (2016). Many-Body-Localization Transition in the Strong Disorder Limit: Entanglement Entropy from the Statistics of Rare Extensive Resonances. Entropy, 18(4), 122. https://doi.org/10.3390/e18040122