Randomness Representation of Turbulence in Canopy Flows Using Kolmogorov Complexity Measures †
Abstract
:1. Introduction
2. Kolmogorov Complexity and Information Measures Derived from It
2.1. Kolmogorov Complexity
- -
- the first digit is always the first pattern, which implies
- -
- -
- -
- -
- -
- -
2.2. The Kolmogorov Complexity Spectrum and Its Highest Value
3. Experimental Details
4. Results
4.1. Basic Statistical Parameters
4.2. Shannon Entropy as a Measure of the Order or Disorder of the Flow
4.3. Kolmogorov Complexity
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Gurzadyan, V.G. Kolmogorov Complexity as a Descriptor of Cosmic Microwave Background Maps. EPL 1999, 46, 114–117. [Google Scholar] [CrossRef]
- Gell-Mann, M.; Lloyd, S. Information Measures, Effective Complexity, and Total Information. Complexity 1996, 2, 44–52. [Google Scholar] [CrossRef]
- Gell-Mann, M.; Lloyd, S. Effective Complexity. In Nonextensive Entropy: Interdisciplinary Applications; Gell-Mann, M., Tsallis, C., Eds.; Oxford University Press: Oxford, UK, 2003. [Google Scholar]
- Kreinovich, V.; Kunin, I.A. Kolmogorov Complexity and Chaotic Phenomena. Int. J. Eng. Sci. 2003, 41, 483–493. [Google Scholar] [CrossRef]
- Abarzhi, S. Review of theoretical modelling approaches of Rayleigh–Taylor instabilities and turbulent mixing. Philos. Trans. R. Soc. A 2010, 368, 1809–1828. [Google Scholar] [CrossRef] [PubMed]
- Lorenz, R.D. Maximum Frictional Dissipation and the Information Entropy of Windspeeds. J. Non-Equilib. Thermodyn. 2002, 27, 229–238. [Google Scholar] [CrossRef]
- Weck, P.J.; Schaffner, D.A.; Brown, M.R.; Wicks, R.T. Permutation entropy and statistical complexity analysis of turbulence in laboratory plasmas and the solar wind. Phys. Rev. E 2015, 91, 023101. [Google Scholar] [CrossRef] [PubMed]
- Ichimiya, M.; Nakamura, I. Randomness representation in turbulent flows with Kolmogorov complexity (in mixing layer). J. Fluid Sci. Technol. 2013, 8, 407–422. [Google Scholar] [CrossRef]
- Pope, S.B. Turbulent Flows; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar]
- Jimenez, J. Turbulent flows over rough walls. Annu. Rev. Fluid Mech. 2004, 36, 173–196. [Google Scholar] [CrossRef]
- Poggi, D.; Porporato, A.; Ridolfi, L.; Albertson, J.D.; Katul, G.G. The effect of vegetation density on canopy sub-layer turbulence. Bound. Lay. Meteorol. 2004, 111, 565–587. [Google Scholar] [CrossRef]
- Flack, K.A.; Schultz, M.P.; Shapiro, T. Experimental support for Townsend’s Reynolds number similarity hypothesis on rough walls. Phys. Fluids 2005, 17, 035102. [Google Scholar] [CrossRef]
- Nezu, I.; Sanjou, M. Turbulence structure and coherent motion in vegetated canopy open-channel flows. J. Hydro-Environ. Res. 2008, 2, 62–90. [Google Scholar] [CrossRef]
- Cushman-Roisin, B.; Gualtieri, C.; Mihailović, D.T. Environmental Fluid Mechanics: Current issues and future outlook. In Fluid Mechanics of Environmental Interfaces, 2nd ed.; Gualtieri, C., Mihailović, D.T., Eds.; CRC Press/Balkema: Leiden, The Netherlands, 2012. [Google Scholar]
- Raupach, M.R.; Finnigan, J.J.; Brunet, Y. Coherent eddies and turbulence in vegetation canopies: The mixing-layer analogy. Bound. Lay. Meteorol. 1996, 78, 351–382. [Google Scholar] [CrossRef]
- Hussain, A.K.M.F. Coherent Structures—Reality and Myth. Phys. Fluids 1983, 26, 2816–2850. [Google Scholar] [CrossRef]
- Nepf, H.M. Flow and transport in regions with aquatic vegetation. Annu. Rev. Fluid Mech. 2012, 44, 123–142. [Google Scholar] [CrossRef]
- Rogers, M.M.; Moser, R.D. Direct simulation of a self-similar turbulent mixing layer. Phys. Fluids 1994, 6, 903–923. [Google Scholar] [CrossRef]
- Tsuji, Y.; Nakamura, I. The fractal aspect of an isovelocity set and its relationship to bursting phenomena in the turbulent boundary layer. Phys. Fluids 1994, 6, 3429–3441. [Google Scholar] [CrossRef]
- Li, M.; Vitanyi, P. An Introduction to Kolmogorov Complexity and Its Applications, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 1997. [Google Scholar]
- Lempel, A.; Ziv, J. On the complexity of finit sequence. IEEE Trans. Inf. Theory 1976, 22, 75–81. [Google Scholar] [CrossRef]
- Sellers, P.; Mintz, Y.; Sud, Y.C.; Dachler, A. A Simple Biosphere Model (SIB) for Use within General Circulation Models. J. Atmos. Sci. 1986, 43, 505–531. [Google Scholar] [CrossRef]
- Batchelor, G.K. The Theory of Homogeneous Turbulence; Cambridge University Press: Cambridge, UK, 1956. [Google Scholar]
- Fricsh, U. Turbulence: The Legacy of A. N. Kolmogorov; Cambridge University Press: Cambridge, UK, 1995. [Google Scholar]
- Terwijn, S.A. The Mathematical Foundations of Randomness. In The Challenge of Chance: A Multidisciplinary Approach from Science and the Humanities; Landsman, K., van Wolde, E., Eds.; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar]
- Kolmogorov, A.N. Grundbegriffe der Wahrscheinlichkeitsrechnung; Springer: Berlin/Heidelberg, Germany, 1933. [Google Scholar]
- Sato, H. Laminar-Turbulent Transition in Free Shear Flow. In Progress in Fluid Mechanics -Turbulent Flow; Tani, I., Ed.; Maruzen: Tokyo, Japan, 1980. (In Japanese) [Google Scholar]
- Pietri, L.; Petroff, A.; Amielh, M.; Anselmet, F. Turbulence characteristics within sparse and dense canopies. Environ. Fluid Mech. 2009, 9, 297–320. [Google Scholar] [CrossRef]
- Pietri, L.; Petroff, A.; Amielh, M.; Anselmet, F. Turbulent flows interacting with varying density canopies. Mech. Ind. 2009, 10, 181–185. [Google Scholar] [CrossRef]
- Feldman, D.P.; Crutchfeld, J.P. Measures of statistical complexity: Why? Phys. Lett. A 1998, 238, 244–252. [Google Scholar] [CrossRef]
- Kolmogorov, A. Logical basis for information theory and probability theory. IEEE Trans. Inf. Theory 1968, 14, 662–664. [Google Scholar] [CrossRef]
- Cerra, D.; Datcu, M. Algorithmic relative complexity. Entropy 2011, 13, 902–914. [Google Scholar] [CrossRef] [Green Version]
- Kaspar, F.; Schuster, H.G. Easily calculable measure for the complexity of spatiotemporal patterns. Phys. Rev. A 1987, 36, 842–848. [Google Scholar] [CrossRef]
- Zhang, X.S.; Roy, R.J.; Jensen, E.W. EEG complexity as a measure of depth of anesthesia for patients. IEEE Trans. Biomed. Eng. 2001, 48, 1424–1433. [Google Scholar] [CrossRef] [PubMed]
- Radhakrishnan, N.; Wilson, J.D. An alternate partitioning technique to quantify the regularity of complex time series. Int. J. Bifurc. Chaos 2000, 10, 1773–1779. [Google Scholar] [CrossRef]
- Small, M. Applied Nonlinear Time Series Analysis: Applications in Physics, Physiology and Finance; World Scientific: Singapore, 2005. [Google Scholar]
- Ferenets, R.; Lipping, T.; Anier, A. Comparison of entropy and complexity measures for the assessment of depth of sedation. IEEE Trans. Biomed. Eng. 2006, 53, 1067–1077. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Gao, J.; Principe, J.C. Analysis of biomedical signals by the Lempel-Ziv complexity: The effect of finite data size. IEEE Trans. Biomed. Eng. 2006, 53, 2606–2609. [Google Scholar] [PubMed]
- Mihailović, D.T.; Mimić, G.; Nikolić-Djorić, E.; Arsenić, I. Novel measures based on the Kolmogorov complexity for use in complex system behavior studies and time series analysis. Open Phys. 2015, 13, 1–14. [Google Scholar] [CrossRef]
- Mihailović, D.T.; Mimić, G.; Gualtieri, P.; Arsenić, I.; Gualtieri, C. Randomness representation in turbulent flows with bed roughness elements using the spectrum of the Kolmogorov complexity. In Proceedings of the 8th International Congress on Environmental Modelling and Software, Toulouse, France, 10–14 July 2016; pp. 4–11. [Google Scholar]
- Annoni, M.; Monno, M.; Scarano, G. Uncertainty components interaction on the water jet velocity measurement by laser velocimetry. In Proceedings of the American WJTA Conference and Expo, Houston, TX, USA, 18–20 August 2009. [Google Scholar]
- Annoni, M. Water jet velocity uncertainty in laser Doppler velocity measurements. Measurement 2012, 45, 1639–1650. [Google Scholar] [CrossRef]
- ITTC Recommended Procedure and Guidelines. Uncertainty Analysis Laser Doppler Velocimetry Calibration; ITTC: Kgs. Lyngby, Denmark, 2008. [Google Scholar]
- Ristić, S.; Ilić, J.; Čantrak, D.; Ristić, O.; Janković, N. Estimation of laser Doppler anemometry measuring volume displacement in cylindrical pipe flow. Therm. Sci. 2012, 16, 1027–1042. [Google Scholar] [CrossRef]
- Nezu, I.; Onitsuka, K. Turbulent structure in partly vegetated open channel flows with LDA and PIV measurements. J. Hydraul. Res. 2011, 39, 629–642. [Google Scholar] [CrossRef]
- Ghannam, K.; Poggi, D.; Porporato, A.; Katul, G. The spatio-temporal statistical structure and ergodic behaviour of scalar turbulence within a rod canopy. Bound. Lay. Meteorol. 2015, 157, 447–460. [Google Scholar] [CrossRef]
- Wijesekera, H.W.; Dillion, T.M. Shannon entropy as an indicator of age for turbulent overturns in the ocean thermoclines. J. Geophys. Res. 1997, 102, 3279–3291. [Google Scholar] [CrossRef]
- Wesson, H.K.; Katul, G.G.; Siqueira, M. Quantifying organization of atmospheric turbulent eddy motion using nonlinear time series analysis. Bound. Lay. Meteorol. 2003, 106, 507–525. [Google Scholar] [CrossRef]
- Shannon, C.E. A mathematical theory of communication. Bell Syst. Tech. J. 1948, 27, 379–623. [Google Scholar] [CrossRef]
- Green, S.R.; Grace, J.; Hutchings, N.J. Observations of turbulent air flow in three stands of widely spaced Sitka spruce. Agric. For. Meteorol. 1995, 74, 205–225. [Google Scholar] [CrossRef]
- Brunet, Y.; Finnigan, J.J.; Raupach, M.R. A wind tunnel study of air flow in waving wheat: Single-point velocity statistic. Bound. Lay. Meteorol. 1994, 70, 95–132. [Google Scholar] [CrossRef]
Test | D1 | D2 | D3 |
---|---|---|---|
(m2·m−2) | 0.024 | 0.048 | 0.096 |
(°) | 0.03 | 0.02 | 0.03 |
Q (l s−1) | 33 | 22 | 22 |
(cm) | 6.35 | 6.44 | 6.29 |
Cylinders per unit area | 400 | 800 | 1600 |
D1 | ||||
Mean | SD | Skew | Kurtosis | |
2.667 | 1.49 | 0.1604 | −0.3934 | −0.1155 |
1.8 | 1.35 | 0.2035 | −0.2483 | −0.4652 |
1 | 1.19 | 0.2069 | −0.0657 | −0.3909 |
0.4 | 0.97 | 0.1878 | 0.1676 | −0.2180 |
0.067 | 0.90 | 0.1715 | 0.1985 | −0.1444 |
D2 | ||||
Mean | SD | Skew | Kurtosis | |
2.667 | 1.59 | 0.1412 | −0.3644 | −0.1181 |
1.8 | 0.93 | 0.1648 | −0.1675 | −0.4227 |
1 | 0.76 | 0.1677 | 0.0389 | −0.3873 |
0.4 | 0.61 | 0.1490 | 0.2396 | −0.0580 |
0.067 | 0.53 | 0.1313 | 0.3232 | 0.0796 |
D3 | ||||
Mean | SD | Skew | Kurtosis | |
2.667 | 1.65 | 0.1609 | −0.2996 | −0.1691 |
1.8 | 0.97 | 0.1871 | −0.1501 | −0.4304 |
1 | 0.73 | 0.1923 | 0.1616 | −0.4566 |
0.4 | 0.58 | 0.1588 | 0.3942 | 0.0678 |
0.067 | 0.49 | 0.1369 | 0.4273 | 0.3019 |
Integral Length Scale | |||
---|---|---|---|
D1 | D2 | D3 | |
2.667 | 3.206 | 2.710 | 2.170 |
2.333 | 3.310 | 2.621 | 2.164 |
2.000 | 5.099 | 2.480 | 1.919 |
1.800 | 3.649 | 2.465 | 1.822 |
1.600 | 3.403 | 2.135 | 1.807 |
1.400 | 2.346 | 2.612 | 1.537 |
1.267 | 2.337 | 1.843 | 1.483 |
1.133 | 2.014 | 1.688 | 1.458 |
1.000 | 1.912 | 1.446 | 1.341 |
0.933 | 1.950 | 1.407 | 1.235 |
0.867 | 1.650 | 1.236 | 1.294 |
0.800 | 1.650 | 1.436 | 1.245 |
0.733 | 1.541 | 1.262 | 1.048 |
0.667 | 1.481 | 1.057 | 1.048 |
0.600 | 1.414 | 1.055 | 1.044 |
0.533 | 1.391 | 1.065 | 0.966 |
0.467 | 1.242 | 0.958 | 0.966 |
0.400 | 1.207 | 0.880 | 0.861 |
0.333 | 1.247 | 0.777 | 0.802 |
0.267 | 1.064 | 0.727 | 0.843 |
0.200 | 0.927 | 0.764 | 0.751 |
0.133 | 1.078 | 0.642 | 0.644 |
0.067 | 0.776 | 0.593 | 0.497 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mihailović, D.; Mimić, G.; Gualtieri, P.; Arsenić, I.; Gualtieri, C. Randomness Representation of Turbulence in Canopy Flows Using Kolmogorov Complexity Measures. Entropy 2017, 19, 519. https://doi.org/10.3390/e19100519
Mihailović D, Mimić G, Gualtieri P, Arsenić I, Gualtieri C. Randomness Representation of Turbulence in Canopy Flows Using Kolmogorov Complexity Measures. Entropy. 2017; 19(10):519. https://doi.org/10.3390/e19100519
Chicago/Turabian StyleMihailović, Dragutin, Gordan Mimić, Paola Gualtieri, Ilija Arsenić, and Carlo Gualtieri. 2017. "Randomness Representation of Turbulence in Canopy Flows Using Kolmogorov Complexity Measures" Entropy 19, no. 10: 519. https://doi.org/10.3390/e19100519
APA StyleMihailović, D., Mimić, G., Gualtieri, P., Arsenić, I., & Gualtieri, C. (2017). Randomness Representation of Turbulence in Canopy Flows Using Kolmogorov Complexity Measures. Entropy, 19(10), 519. https://doi.org/10.3390/e19100519